
LOFT-Q Quick Guide
Organization

:
Mixtile Team

Author: Phil.Han <phil.han@focalcrest.com>
Version: 0.1

Date: 2015.01.23

LOFT-Q is the second prototyping board of Mixtile project. Based on AllWinner A31 SOC,
designed for embedded developers, engineers, makers and hackers, it can be used as home
media center, personal could device, NAS, etc. This guide will help developers quickly
building the environment, compiling usable os and customizing you own application.

Build Environment
The board has burned with the latest stable os when you get it. And if you want to
customize the board add your own external devices, you will have to rebuild your own
system image, then you will have to make some preparation as below.

Source Architecture
The main source of LOFT-Q as below:

• documents: https://github.com/mixtile/loftq-docs
• build: https://github.com/mixtile/loftq-build
• uboot: https://github.com/mixtile/loftq-uboot
• linux: https://github.com/mixtile/loftq-linux
• buildroot: https://github.com/mixtile/buildroot
• android: https://bitbucket.org/Mixtile/loftq-android

Building Environment
Now we can follow steps as below, download different parts of the code, and build the
developing environment.

• Create building folder

1

mailto:phil.han@focalcrest.com
https://github.com/mixtile/loftq-docs
https://github.com/mixtile/loftq-build
https://github.com/mixtile/loftq-uboot
https://github.com/mixtile/loftq-linux
https://github.com/mixtile/buildroot
https://bitbucket.org/Mixtile/loftq-android

Follow the following instructions to make root folder.

mkdir loftq
cd loftq

• Download code repositories
As previous description, we will have to download the kernel, buildroot, uboot, etc. it
will need some time to download all the code repositories.

git clone https://github.com/mixtile/loftq-build.git
git clone https://github.com/mixtile/loftq-uboot.git
git clone https://github.com/mixtile/loftq-linux.git
git clone https://github.com/mixtile/buildroot.git

About loftq-build
loftq-build contains the srcipts and tools for building uboot, linux, android, and packing
system image.
Before accurately building, we will have to import the building environments to current
working command line.

source loftq-build/sunxi_env.sh

After environment importing, we can start compiling instructions, such as building uboot
for linux:

linux_build_uboot

About sunxi_env
sunxi_env.sh is the env importing script for LOFT-Q, working as the lunch script for
Android. it will import environment variables and compiling instructions to current working
shell.
At the front, it's the definations of the repository paths for uboot, linux, buildroot and
android, developers could make some modifitations according to their own configurations.
The following the the original configs:

export BUILD_TRUNK=$(pwd)
export BUILD_TRUNK_OUT=$BUILD_TRUNK/out

envs for sunxi tools
export SUNXI_TOOLS_PATH=$(pwd)/loftq-build
export SUNXI_LINUX_PATH=$(pwd)/loftq-linux
export SUNXI_UBOOT_PATH=$(pwd)/loftq-uboot
export SUNXI_TOOLCHAIN_PATH=${SUNXI_TOOLS_PATH}/toolschain/gcc-linaro/bin/

envs for android
export ANDROID_TRUNK=$(pwd)/android
export ANDROID_DEVICE=loftq
export ANDROID_DEVICE_TRUNK=${ANDROID_TRUNK}/device/mixtile/${ANDROID_DEVICE}

2

envs for ubuntu touch
only used if we have android base sdk released by ubuntu touch team
Note: now we can build this image but can't burn it to disk with PhoenixTool
export UBUNTU_OUTPUT=$BUILD_TRUNK_OUT/ubuntu
export UBUNTU_TARBALL=$UBUNTU_OUTPUT/vivid-preinstalled-touch-armhf.tar.gz

commom env
export ANDROID_OUT=${ANDROID_TRUNK}/out
export ANDROID_DEVICE_OUT=${ANDROID_OUT}/target/product/${ANDROID_DEVICE}

export LINARO_GCC_PATH=$SUNXI_TOOLCHAIN_PATH
export PATH=$PATH:$LINARO_GCC_PATH

And developers can also add their own compiling instructions, sample as linux_build_uboot :

function linux_build_uboot()
{
 CURDIR=$PWD

 cd $SUNXI_UBOOT_PATH
 make distclean
 make sun6i_config
 make -j4
 cd $CURDIR
}

Uboot Building
As for building of uboot, we have two methods. we can build it with predefined building
instruction in sunxi_env and follow the manual commands step by step.

Predefined building
we have predefined building instructions uboot for android and linux.

• Uboot for Linux

linux_build_uboot

• Uboot for Android

android_build_uboot

Manually building
Manually building is just the seperate instructions of predefined instruction. Commands as
below:

make distclean
make sun6i_config
make -j4

3

Linux Kernel Building
Now the kernel we use is based on the cuszomized version by Allwinner for A31 soc, whihc
is linux 3.3 . this version contains the drivers and configurations for both android and
common linux releases, and we can compile kernel for both GNU/Linux and Android.

Predefined building
loftq-build also provides predefined instructions for kernel building.

• kernel for GNU/Linux

linux_build_kernel

• kernel for Android

android_build_kernel

Manually building
Manually building for kernel will be a little complex, which needs external toolchain
support.

• toolchain importing

export SUNXI_TOOLS_PATH=$(pwd)/loftq-build
export SUNXI_TOOLCHAIN_PATH=$SUNXI_TOOLS_PATH/toolschain/gcc-linaro/bin/
export PATH=$PATH:$SUNXI_TOOLCHAIN_PATH

Developers can add these variables according to own path definations.
• kernel building for GNU/Linux

cd loftq-linux
make distclean
./build.sh -p sun6i

• kernel building for Android

cd loftq-linux
make distclean
./build.sh -p sun6i_fiber

Buildroot building
Buildroot is a simple, efficient and easy-to-use tool to generate embedded Linux systems
through cross-compilation.

Getting source
Now we have the latest buildroot support, developers can download the code from our
github repository, which will bee updated with the official repository.

4

git clone https://github.com/mixtile/buildroot.git

Compiling buildroot
After downloading source, we can begin compiling buildroot.

make mixtile_loftq_defconfig
make

Note

• When building with make, it will try to downlaod all the code of package
configured, also some temp files will be generated, so before building, it's
necessary to prepare enough disk space according to number of packages, or it
may cause building failed.

• after building finished, there will be output/images at the root building
directory.

Packing image
This step is packing image, we will have to put rootfs.ext4 generated in previous step into
the specified directory $BUILD_TRUNK/out/linux and then run cmds:

linux_pack

As for linux image packing, it will show one prompt session as below:

nano@vps:~/mixtile/loftq$ linux_pack
Generating linux out directory!
Copiing uboot!
Copying linux kernel and modules!
Packing final image!
Start packing for Lichee system

All valid chips:
0. sun6i
Please select a chip:

then enter 0 for choosing sun6i, the next session for os :

All valid platforms:
0. android
1. dragonboard
2. linux
Please select a platform:

Now, we use linux, so enter 2 for linux, and then:

5

All valid boards:
0. aw_w01
1. aw_w02
2. evb
3. loftq
4. loftq_suse
5. qc
Please select a board:

we use loftq, so enter 3, maybe the options list will vary with time. so choose the specified
option according to your request. and then it will continue packing according to your
selections, screen info as below:

....

c:\bat
c:\magic.bin
find magic !!
RealLen=0x5A5C00
CPlugin Free lib
CPlugin Free lib
get rootfs from ../../../out/linux
compute signature for datafile /home/nano/mixtile/loftq/loftq-build/pack/out/boot.fex
/home/nano/mixtile/loftq/loftq-build/pack/pctools/linux/eDragonEx/
/home/nano/mixtile/loftq/loftq-build/pack/out
Begin Parse sys_partion.fex
Add partion bootloader.fex BOOTLOADER_FEX00
Add partion very bootloader.fex BOOTLOADER_FEX00
FilePath: bootloader.fex
FileLength=5a5c00 FileSizeHigh=0
Add partion env.fex ENV_FEX000000000
Add partion very env.fex ENV_FEX000000000
FilePath: env.fex
FileLength=20000 FileSizeHigh=0
Add partion boot.fex BOOT_FEX00000000
Add partion very boot.fex BOOT_FEX00000000
FilePath: boot.fex
FileLength=dac800 FileSizeHigh=0
Add partion rootfs.fex ROOTFS_FEX000000
Add partion very rootfs.fex ROOTFS_FEX000000
FilePath: rootfs.fex
FileLength=8327800 FileSizeHigh=0
BuildImg 0
Dragon execute image.cfg SUCCESS !
---------image is at-------------

 /home/nano/mixtile/loftq/loftq-build/pack/sun6i_linux_loftq.img

pack finish

/home/nano/mixtile/loftq/loftq-build/pack/sun6i_linux_loftq.img is the target image
that we need. And next, we can burn this image to sdcard for installing or booting with
PhoenixCard.

6

Note

PhoenixCard is the tool provided by Allwinner for burning sdcard for booting or
factory installing, which is only for windows platform. so we can't fully be free, and
with mainline kernel or uboot, we can fly without this tool ;) , but for now, we still
need this.

Customizing
We have preadded packages in configuration file, also developers can add or delete them
according to requirement. Commands as below:

make menuconfig

menuconfig needs some extra libs or commands support, it you have been warned
something missed, you can install them according to the prompting infomation.

More Info
Sites of Buildroot:

• Official site: http://buildroot.uclibc.org
• Documents: http://buildroot.uclibc.org/docs.html

Ubuntu building
ubuntu support is still under working, please wait ...

Android building
The android source is based on Android 4.4.2 provided by Allwinner with drivers for
bluetooth, wifi, spdif, inner disk and more. The source tarball needs really much space that
we can't afford it with one single code repository, so later, we will release latest code
archive in our site. And for now we have one repository for Android code, because of its big
body, only readable for downloading.
Building steps as below:

• enter android directory.

cd android

• build uboot for android with predefined instruction.

android_build_uboot

• build kernel for android with predefined instruction.

android_build_kernel

• build android project.

7

http://buildroot.uclibc.org
http://buildroot.uclibc.org/docs.html

source build/envsetup.sh
lunch mars_loftq-eng
android_extract_bsp
make -j16
android_pack

OpenSUSE
openSUSE is one of the best GNU/Linux distribution in the world, which is from German.
Now we can boot up and try openSUSE JeOS for ARM with customized Uboot and Linux
kernel.

JeOS rootfs
There are several versions of JeOS that can work on LOFT-Q.

• Factory: http://download.opensuse.org/ports/armv7hl/factory/images/
• 13.1: http://download.opensuse.org/ports/armv7hl/distribution/13.1/appliances/
• 12.3: http://download.opensuse.org/ports/armv7hl/distribution/12.3/images/

We can choose one version for testing. More info about different versions, please refer to
https://en.opensuse.org/HCL:Chroot .

Generating image
Here we take 13.1 version as testing example. then we have to download the
openSUSE-*-ARM-JeOS.armv7-rootfs-*.tbz tarball. then we follow these steps to
generate rootfs.ext4 :

1. build uboot and linux kernel for GNU/Linux.
2. uncompress JeOS tarball to openSUSE-JeOS directory.
3. generate rootfs.ext4.

./loftq-build/rootfs2ext4.sh -d ./openSUSE-JeOS -t ./rootfs.ext4

4. copy rootfs.ext4 to $BUILD_TRUNK/out/linux.

cp rootfs.ext4 ./out/linux/

5. generate image for PhoenixCard.

linux_pack

6. burn target image generated in last step to sdcard with PhoenixCard.
Now, we have one bootable sd card for testing openSUSE, have fun ;).

8

http://download.opensuse.org/ports/armv7hl/factory/images/
http://download.opensuse.org/ports/armv7hl/distribution/13.1/appliances/
http://download.opensuse.org/ports/armv7hl/distribution/12.3/images/
https://en.opensuse.org/HCL:Chroot

	Build Environment
	Source Architecture
	Building Environment
	About loftq-build
	About sunxi_env
	Uboot Building
	Predefined building
	Manually building

	Linux Kernel Building
	Predefined building
	Manually building

	Buildroot building
	Getting source
	Compiling buildroot
	Packing image
	Customizing
	More Info

	Ubuntu building
	Android building
	OpenSUSE
	JeOS rootfs
	Generating image

