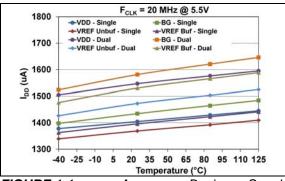
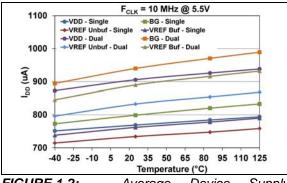


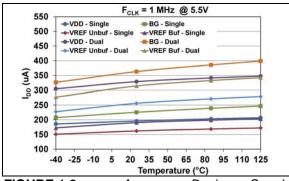
Typical Performance Curves

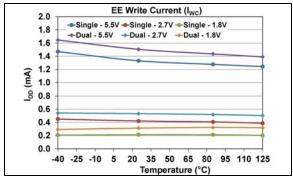

1.0 TYPICAL PERFORMANCE CURVES

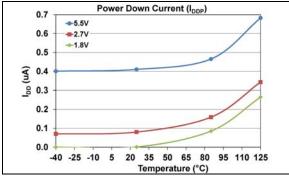
Note 1: The following performance graphs are for the devices that are documented in the MCP48FEBXX data sheet (DS-20005429). This document allows the MCP48FEBXX data sheet's functional description to be in PDF format with a file size smaller than the 10 MB limit of many email file servers.

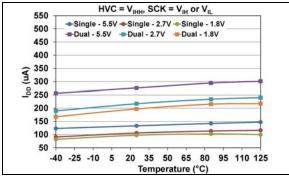

The graphs and tables provided following this note are a statistical summary based on a limited number of

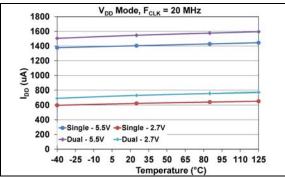
The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

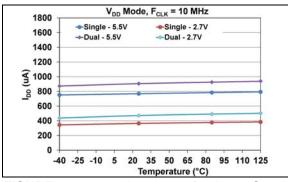

2: For quick indexing of Characterization Graphs, expand the PDF bookmarks. Graphs related to all devices (I_{DD}, I_{PD}, V_{IH}, V_{IL}, V_{OH}, V_{OL}, V_{IHH}, and V_{OUT} drive) are before the device V_{OUT} linearity graphs (Total Unadjusted Error, INL, and DNL).

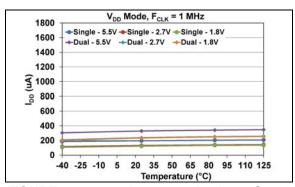

FIGURE 1-1: Average Device Supply Active Current (I_{DDA}) (at 5.5V and $F_{SCK} = 20 \text{ MHz})$ vs. Temperature and DAC Reference Voltage Mode.

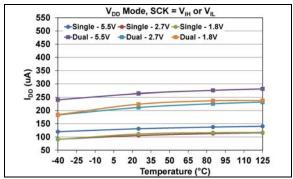

FIGURE 1-2: Average Device Supply Active Current (I_{DDA}) (at 5.5V and $F_{SCK} = 10 \text{ MHz})$ vs. Temperature and DAC Reference Voltage Mode.

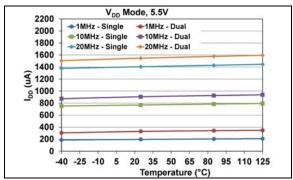

FIGURE 1-3: Average Device Supply Active Current (I_{DDA}) (at 5.5V and $F_{SCK} = 1$ MHz) vs. Temperature and DAC Reference Voltage Mode.

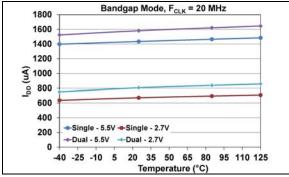

FIGURE 1-4: Average Device EEPROM Write Cycle Current (I_{WC}) vs. Temperature and Voltage. (**MCP48FEBXX only**).

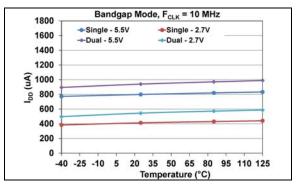

FIGURE 1-5: Average Power-Down Current (I_{DDP}) vs. Temperature and Voltage.

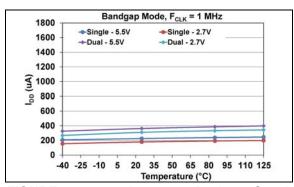

FIGURE 1-6: Average Device Current with High Voltage Command Pin (HVC) = V_{IHH} vs. Temperature and Voltage, SCK = V_{IH} or V_{IL} .

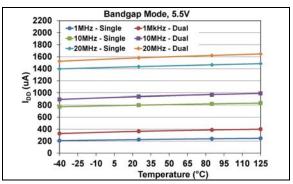

FIGURE 1-7: Average Device Supply Current - Active Interface (I_{DDA}) ($F_{SCK} = 20$ MHz) vs. Voltage and Temperature, VRxB:VRxA = `00" (V_{DD} mode).


FIGURE 1-8: Average Device Supply Current - Active Interface (I_{DDA}) ($F_{SCK} = 10$ MHz) vs. Voltage and Temperature, $VRxB:VRxA = `00" (V_{DD} mode)$.


FIGURE 1-9: Average Device Supply Current - Active Interface (I_{DDA}) ($F_{SCK} = 1$ MHz) vs. Voltage and Temperature, VRxB:VRxA = '00' (V_{DD} mode).


FIGURE 1-10: Average Device Supply Current - Inactive Interface (I_{DD}) (SCK = V_{IH} or V_{IL}) vs. Voltage and Temperature, $VRxB:VRxA = `00" (V_{DD} mode)$.


FIGURE 1-11: Average Device Supply Current vs. F_{SCK} Frequency, Voltage and Temperature, VRxB:VRxA = '00' (V_{DD} mode).


FIGURE 1-12: Average Device Supply Current - Active Interface (I_{DDA}) ($F_{SCK} = 20$ MHz) vs. Voltage and Temperature, $VRxB:VRxA = {}^{\circ}01$ ' (Bandgap mode).

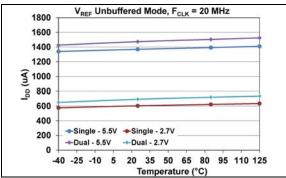

FIGURE 1-13: Average Device Supply Current - Active Interface (I_{DDA}) ($F_{SCK} = 10$ MHz) vs. Voltage and Temperature, VRxB:VRxA = '01' (Bandgap mode).

FIGURE 1-14: Average Device Supply Current - Active Interface (I_{DDA}) ($F_{SCK} = 1$ MHz) vs. Voltage and Temperature, VRxB:VRxA = '01' (Bandgap mode).

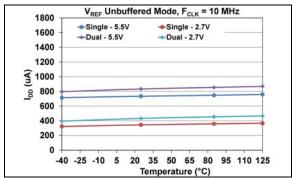


FIGURE 1-15: Average Device Supply Current vs. F_{SCK} Frequency, Voltage and Temperature, VRxB:VRxA = '01', (Bandgap mode).

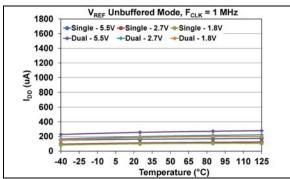


FIGURE 1-16: Average Device Supply Current - Active Interface (I_{DDA}) ($F_{SCK} = 20$ MHz) vs. Voltage and Temperature,

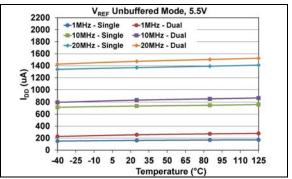

 $VRxB:VRxA = '10' (V_{REF} Unbuffered mode).$

FIGURE 1-17: Average Device Supply Current - Active Interface (I_{DDA}) ($F_{SCK} = 10 \text{ MHz}$) vs. Voltage and Temperature, VRxB:VRxA = '10' (V_{REF} Unbuffered mode).

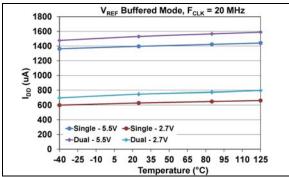
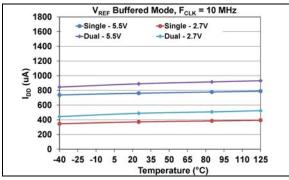

FIGURE 1-18: Average Device Supply Current - Active Interface (I_{DDA}) ($F_{SCK} = 1$ MHz) vs. Voltage and Temperature, VRxB:VRxA = '10' (V_{RFF} Unbuffered mode).

FIGURE 1-19: Average Device Supply Current vs. F_{SCK} Frequency, Voltage and Temperature,


 $VRxB:VRxA = '10' (V_{REF} Unbuffered mode).$

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.

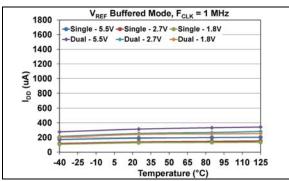
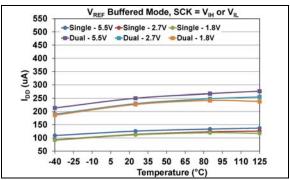
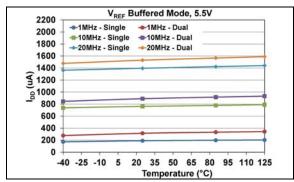
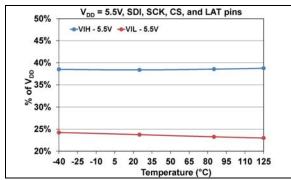


FIGURE 1-20: Average Device Supply Current - Active Interface (I_{DDA}) ($F_{SCK} = 20 \text{ MHz}$) vs. Voltage and Temperature,


 $VRxB:VRxA = '11' (V_{REF} Buffered mode).$


FIGURE 1-21: Average Device Supply Current - Active Interface (I_{DDA}) ($F_{SCK} = 10 \text{ MHz}$) vs. Voltage and Temperature, $VRxB:VRxA = '11' (V_{RFF} \text{ Buffered mode})$.


FIGURE 1-22: Average Device Supply Current - Active Interface (I_{DDA}) ($F_{SCK} = 1$ MHz) vs. Voltage and Temperature, VRxB:VRxA = '11' (V_{RFF} Buffered mode).

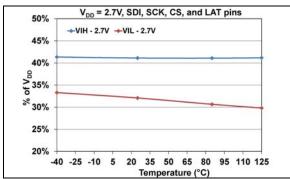
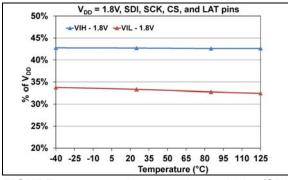
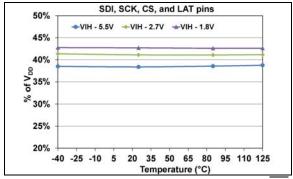
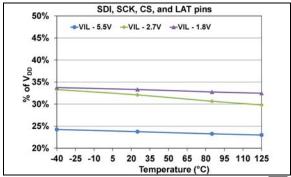
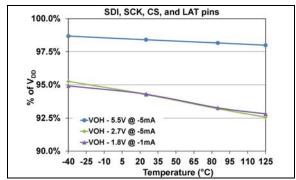

FIGURE 1-23: Average Device Supply Current - Inactive Interface (I_{DD}) (SCK = V_{IH} or V_{IL}) vs. Voltage and Temperature, VRxB:VRxA = '11' (V_{REF} Buffered mode).

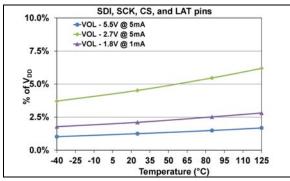
FIGURE 1-24: Average Device Supply Current vs. F_{SCK} Frequency, Voltage and Temperature, VRxB:VRxA = '11' (V_{RFF} Buffered mode).

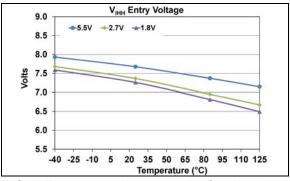
FIGURE 1-25: Average V_{IH} and V_{IL} (SDI, SCK, \overline{CS} , and \overline{LAT} pins) ($V_{DD} = 5.5V$) vs. Temperature.

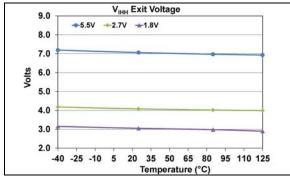
FIGURE 1-26: Average V_{IH} and V_{IL} (SDI, SCK, \overline{CS} , and \overline{LAT} pins) ($V_{DD}=2.7V$) vs. Temperature.

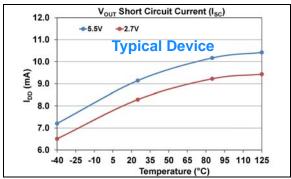




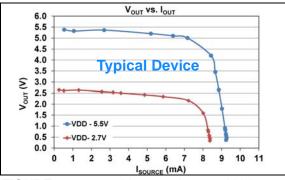

FIGURE 1-27: Average V_{IH} and V_{IL} (SDI, SCK, \overline{CS} , and \overline{LAT} pins) ($V_{DD} = 1.8V$) vs. Temperature.

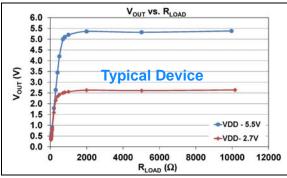

FIGURE 1-28: Average V_{IH} (SDI, SCK, \overline{CS} , and \overline{LAT} pins) vs. Voltage and Temperature.


FIGURE 1-29: Average V_{IL} (SDI, SCK, \overline{CS} , and \overline{LAT} pins) vs. Voltage and Temperature.


FIGURE 1-30: Average V_{OH} (SDO pin) vs. Voltage and Temperature.


FIGURE 1-31: Average V_{OL} (SDO pin) vs. Voltage and Temperature.


FIGURE 1-32: Average HVC pin High Voltage Entry Voltage $(V_{IHHENTRY})$ vs. V_{DD} Voltage and Temperature.


FIGURE 1-33: Average HVC pin High Voltage Exit Voltage ($V_{IHHEXIT}$) vs. V_{DD} Voltage and Temperature.

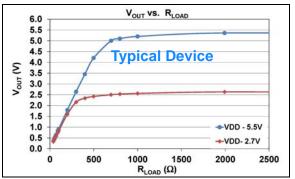

FIGURE 1-34: V_{OUT} Short-Circuit Current (I_{SC}) vs. Voltage and Temperature.

FIGURE 1-35: V_{OUT} vs. I_{OUT} and Voltage (at +25°C).

FIGURE 1-36: V_{OUT} vs. R_{LOAD} and Voltage (at +25°C).

FIGURE 1-37: V_{OUT} vs. R_{LOAD} and Voltage (at +25°C) (R_{LOAD} 0 Ω - 2500 Ω).

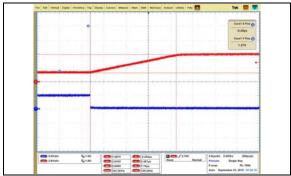
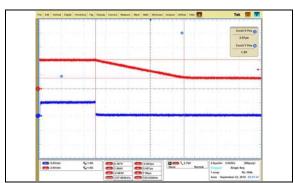
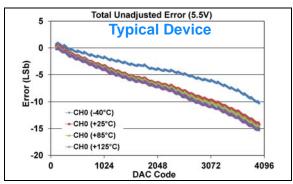
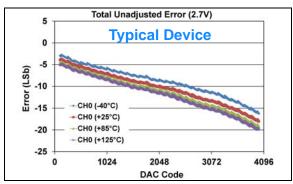
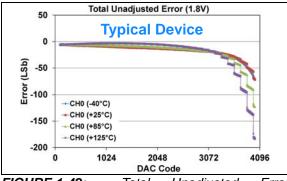


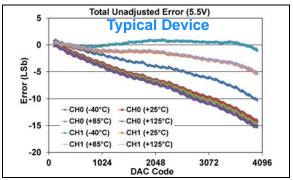
FIGURE 1-38: Half-Scale Settling Time – 400h to C00h (MCP48FXB2X).

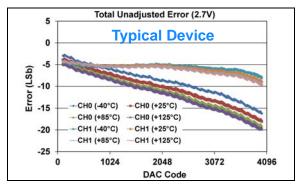




FIGURE 1-39: Half-Scale Settling Time – C00h to 400h (MCP48FXB2X).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.


12-bit: $VRxB: VRxA = '00' (V_{DD} Mode), Gx = '0' (1x)$


FIGURE 1-40: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 5.5V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)).


FIGURE 1-41: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 2.7V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)).

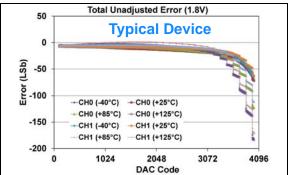

FIGURE 1-42: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) $(12\text{-bit}: V_{DD} = 1.8V, VRxB:VRxA = '00' (V_{DD}), Gx = '0' (1x)),$ (see **Appendix B.1** for additional information).

FIGURE 1-43: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 5.5V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)).

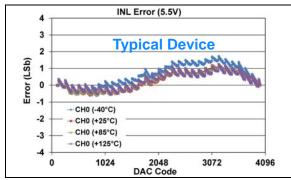


FIGURE 1-44: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) $(12\text{-bit}: V_{DD} = 2.7V, VRxB: VRxA = '00' (V_{DD}), Gx = '0' (1x)).$

FIGURE 1-45: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 1.8V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)), (see **Appendix B.1** for additional information).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V. 12-bit: $VRxB:VRxA = '00' (V_{DD} Mode)$, Gx = '0' (1x)

FIGURE 1-46: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 5.5V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)).

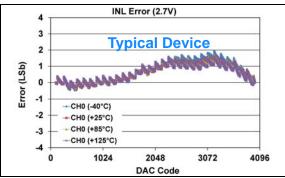
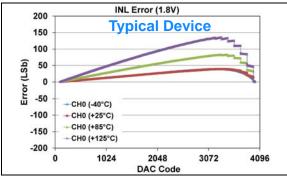
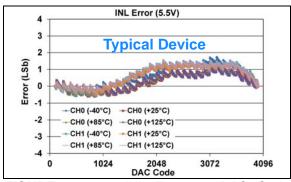




FIGURE 1-47: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: $V_{DD} = 2.7V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)).

FIGURE 1-48: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 1.8V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)), (see **Appendix B.1** for additional information).

FIGURE 1-49: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 5.5V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)).

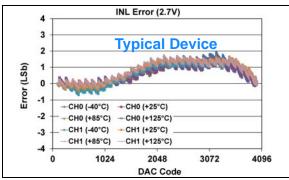
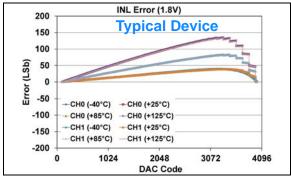
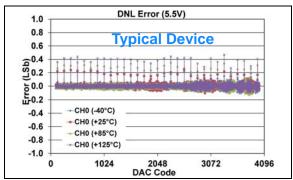
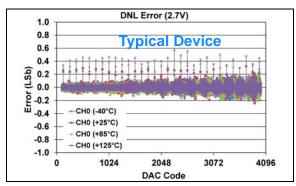
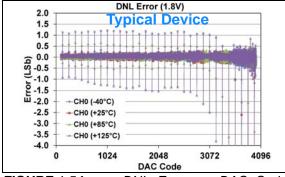



FIGURE 1-50: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 2.7V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)).

FIGURE 1-51: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 1.8V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)), (see **Appendix B.1** for additional information).

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = 5.5V$. 12-bit: $VRxB:VRxA = '00' (V_{DD} Mode)$, Gx = '0' (1x)

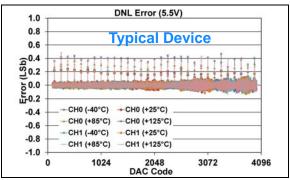

FIGURE 1-52: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: $V_{DD} = 5.5V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)).

FIGURE 1-53: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 2.7V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)).

FIGURE 1-54: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 1.8V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)), (see **Appendix B.1** for additional information).

FIGURE 1-55: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - **MCP48FXB22**) (**12-bit**: $V_{DD} = 5.5V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)).

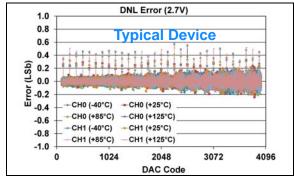


FIGURE 1-56: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 2.7V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)).

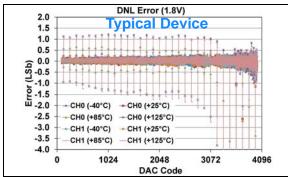
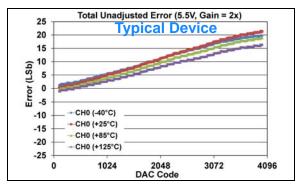
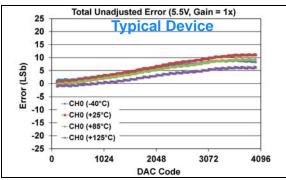
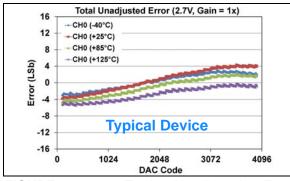
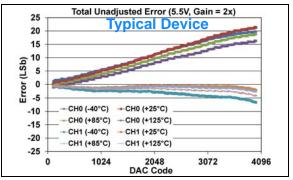
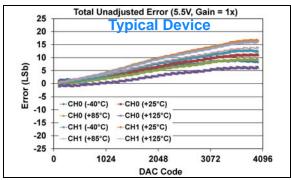




FIGURE 1-57: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 1.8V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)), (see Appendix B.1 for additional information).


12-bit: VRxB:VRxA = '01' (Bandgap Mode)


FIGURE 1-58: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '1' (2x)).


FIGURE 1-59: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

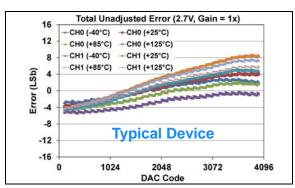

FIGURE 1-60: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) $(12\text{-bit}: V_{DD} = 2.7V, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).$

FIGURE 1-61: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '1' (2x)).

FIGURE 1-62: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

FIGURE 1-63: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 2.7V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.

12-bit: VRxB:VRxA = '01' (Bandgap Mode)

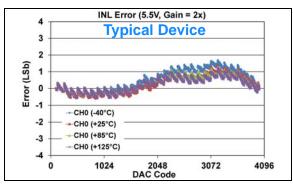
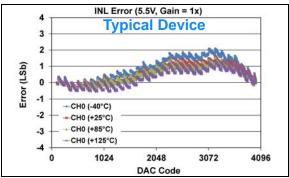



FIGURE 1-64: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '1' (2x)).

FIGURE 1-65: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (**12-bit**: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

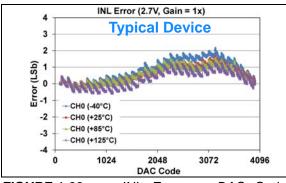
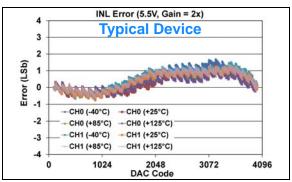



FIGURE 1-66: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: $V_{DD} = 2.7V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

FIGURE 1-67: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '1' (2x)).

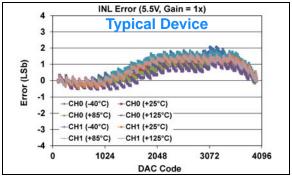


FIGURE 1-68: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

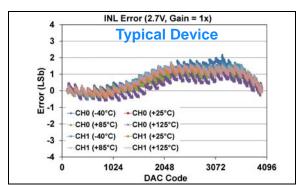


FIGURE 1-69: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 2.7V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

12-bit: VRxB:VRxA = '01' (Bandgap Mode)

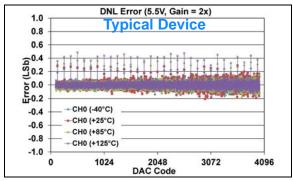


FIGURE 1-70: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '1' (2x)).

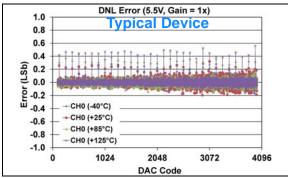


FIGURE 1-71: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

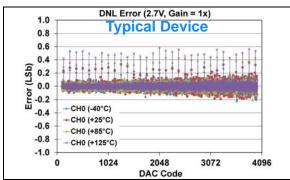


FIGURE 1-72: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: $V_{DD} = 2.7V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

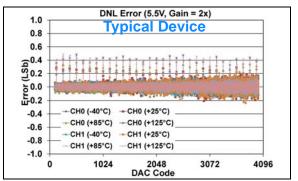


FIGURE 1-73: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '1' (2x)).

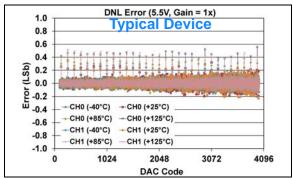
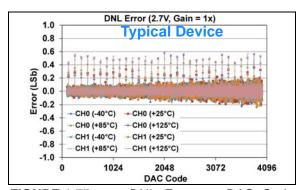
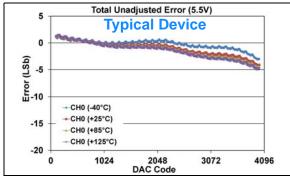
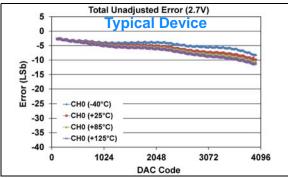
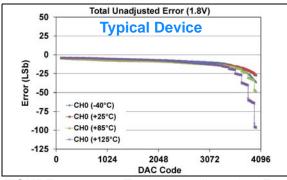


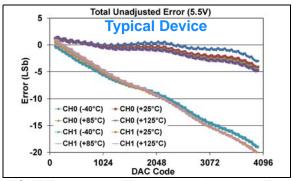
FIGURE 1-74: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

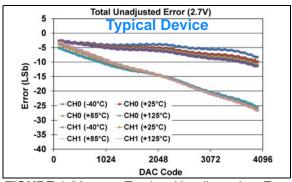




FIGURE 1-75: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 2.7V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.


12-bit: $VRxB: VRxA = '10' (V_{REF} \ Unbuffered \ Mode), \ V_{REF} = V_{DD}, \ Gx = '0' (1x)$


FIGURE 1-76: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) $(12\text{-bit}: V_{DD} = 5.5V, V_{REF} = V_{DD}, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '0' (1x)).$


FIGURE 1-77: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) (**12-bit**: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$, VRxB:VRxA = '10' $(V_{REF}$ Unbuffered), Gx = '0' (1x)).

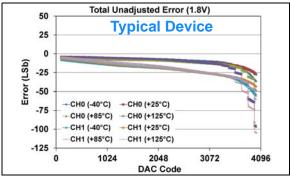

FIGURE 1-78: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) (**12-bit**: $V_{DD} = 1.8V$, $V_{REF} = V_{DD}$, VRXB:VRXA = '10' (V_{REF} Unbuffered), GX = '0' (1x)), (see **Appendix B.2** for additional information).

FIGURE 1-79: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

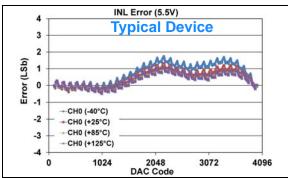


FIGURE 1-80: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

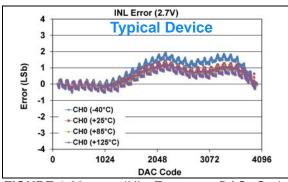
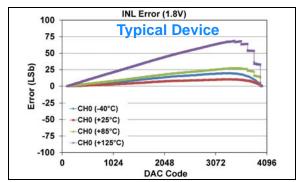
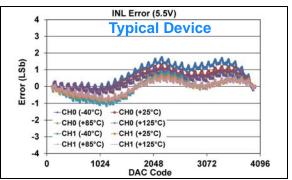
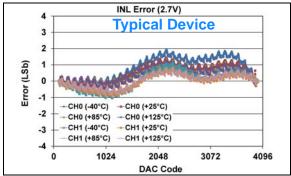


FIGURE 1-81: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = V_{DD}$, $VRXB:VRXA = '10' (V_{REF} Unbuffered)$, GX = '0' (1x)), (see **Appendix B.2** for additional information).


12-bit: $VRxB:VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = V_{DD}, Gx = '0' (1x)$


FIGURE 1-82: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{RFF} Unbuffered)$, Gx = '0' (1x)).


FIGURE 1-83: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '0' (1x)).

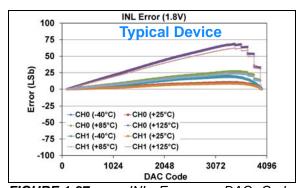

FIGURE 1-84: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = V_{DD}$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '0' (1x)), (see **Appendix B.2** for additional information).

FIGURE 1-85: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{RFF} Unbuffered)$, Gx = '0' (1x)).

FIGURE 1-86: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$, VRxB:VRxA = '10' (V_{RFF} Unbuffered), Gx = '0' (1x)).

FIGURE 1-87: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - **MCP48FXB22**) (**12-bit**: $V_{DD} = 1.8V$, $V_{REF} = V_{DD}$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '0' (1x)), (see **Appendix B.2** for additional information).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.

12-bit: $VRxB:VRxA = '10' (V_{REF} \ Unbuffered \ Mode), \ V_{REF} = V_{DD}, \ Gx = '0' (1x)$

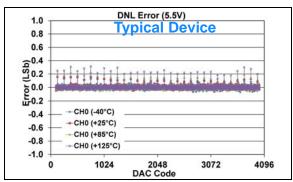


FIGURE 1-88: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000)
(Single Channel - MCP48FXB21)

(12-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

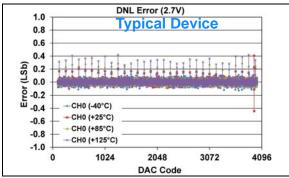



FIGURE 1-89: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

FIGURE 1-90: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = V_{DD}$, VRXB:VRXA = '10' (V_{REF} Unbuffered), GX = '0' (1x)), (see **Appendix B.2** for additional information).

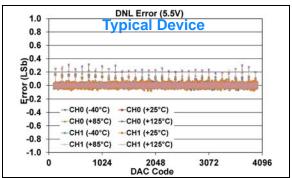


FIGURE 1-91: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{RFF} Unbuffered)$, Gx = '0' (1x)).

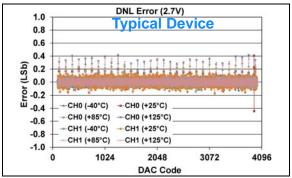


FIGURE 1-92: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{RFF} Unbuffered)$, Gx = '0' (1x)).

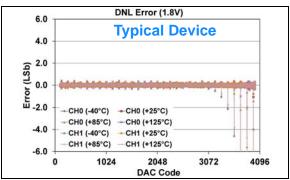
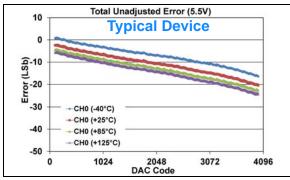
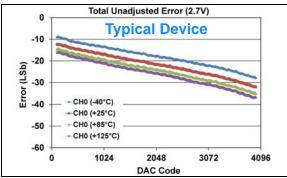
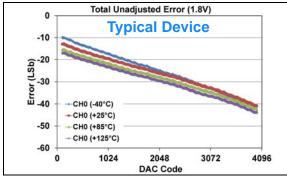
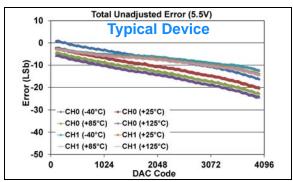
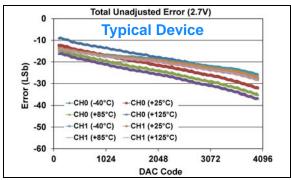




FIGURE 1-93: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = V_{DD}$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '0' (1x)), (see Appendix B.2 for additional information).


12-bit: $VRxB: VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = 1V, Gx = '0' (1x)$


FIGURE 1-94: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '10'$ (V_{REF} Unbuffered), $G_{X} = '0'$ (I_{X}).


FIGURE 1-95: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '10'$ (V_{RFF} Unbuffered), $V_{RFF} = '10'$ ($V_{RFF} = 10'$).

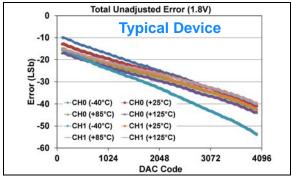

FIGURE 1-96: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '10'$ (V_{REF} Unbuffered), $V_{REF} = '10'$ ($V_{REF} = 1V$).

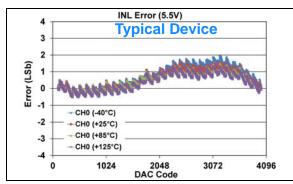
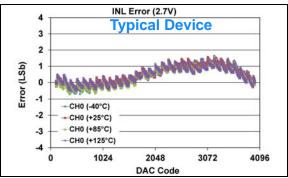
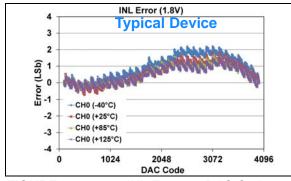
FIGURE 1-97: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '0' (1x).

FIGURE 1-98: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{RFF} Unbuffered), Gx = '0' (1x)).

FIGURE 1-99: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '0' (1x)).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.

12-bit: VRxB: VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = 1V, Gx = '0' (1x)

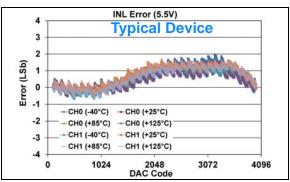

FIGURE 1-100: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{RFF} Unbuffered), Gx = '0' (1x)).

FIGURE 1-101: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '0' (1x)).

FIGURE 1-102: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '10'$ (V_{REF} Unbuffered), $G_{X} = '0'$ (1x)).

FIGURE 1-103: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - **MCP48FXB22**) (**12-bit**: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '0' (1x)).

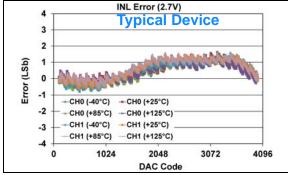


FIGURE 1-104: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '0' (1x)).

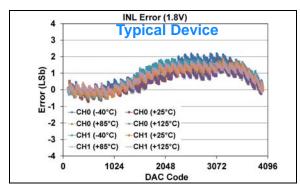
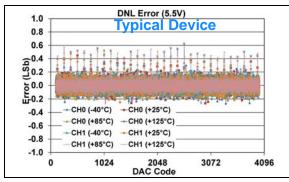
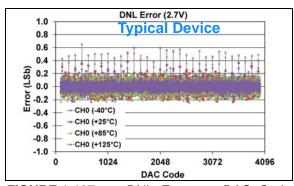
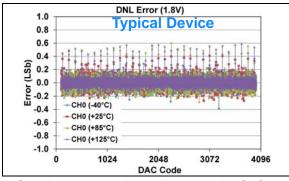
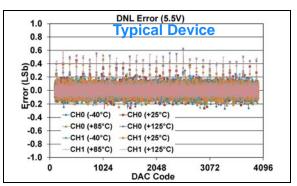
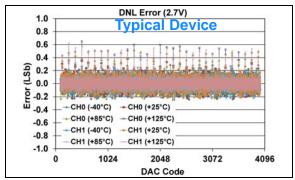


FIGURE 1-105: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '10'$ (V_{REF} Unbuffered), $G_{X} = '0'$ (1x)).

12-bit: $VRxB: VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = 1V, Gx = '0' (1x)$


FIGURE 1-106: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '0' (1x)).


FIGURE 1-107: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRXB:VRXA = '10' (V_{REF} Unbuffered), GX = '0' (1X)).

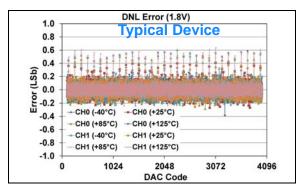
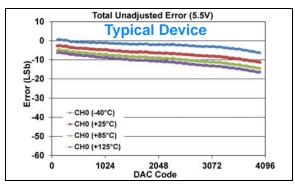
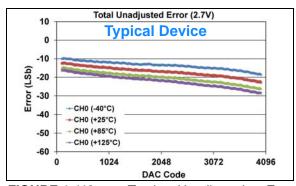
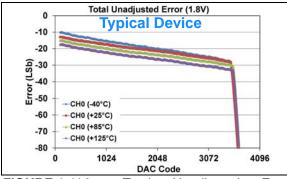

FIGURE 1-108: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '10'$ (V_{REF} Unbuffered), $G_{X} = '0'$ (1x)).

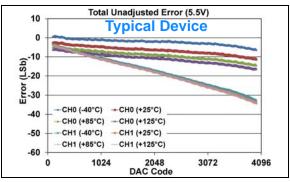
FIGURE 1-109: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '0' (1x)).

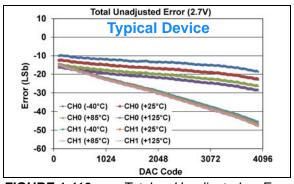

FIGURE 1-110: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{RFF} Unbuffered), Gx = '0' (1x)).


FIGURE 1-111: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '0' (1x)).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.


12-bit: VRxB: VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = 1V, Gx = '1' (2x)


FIGURE 1-112: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '1' (2x)).


FIGURE 1-113: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '1' (2x)).

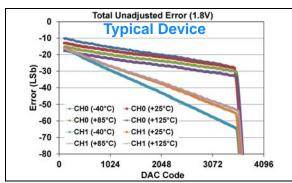
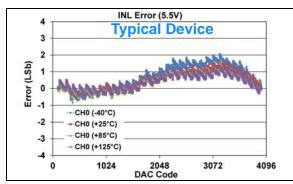
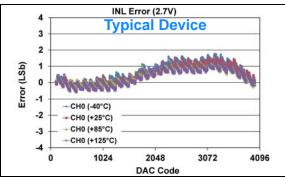
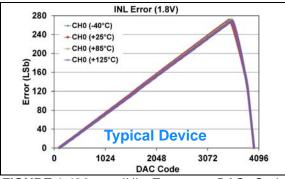

FIGURE 1-114: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '1' (2x)), (see **Appendix B.3** for additional information).

FIGURE 1-115: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '10' $(V_{RFF} \ Unbuffered)$, $Gx = '1' \ (2x)$).

FIGURE 1-116: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '1' (2x).

FIGURE 1-117: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) $(12\text{-bit}: V_{DD} = 1.8V, V_{REF} = 1V, VRxB:VRxA = '10' (V_{REF} Unbuffered), <math>Gx = '1' (2x)$), (see **Appendix B.3** for additional information).

12-bit: $VRxB:VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = 1V, Gx = '1' (2x)$

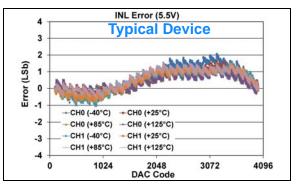

FIGURE 1-118: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{RFF} Unbuffered), Gx = '1' (2x)).

FIGURE 1-119: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '1' (2x)).

FIGURE 1-120: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '1' (2x)), (see **Appendix B.3** for additional information).

FIGURE 1-121: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '1' (2x)).

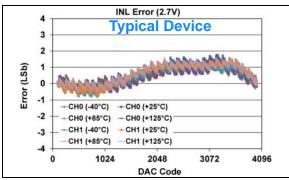
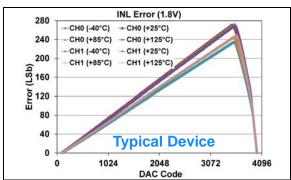



FIGURE 1-122: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{RFF} Unbuffered), Gx = '1' (2x).

FIGURE 1-123: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - **MCP48FXB22**) (**12-bit**: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '1' (2x)), (see **Appendix B.3** for additional information).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.

12-bit: $VRxB: VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = 1V, Gx = '1' (2x)$

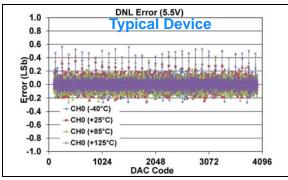
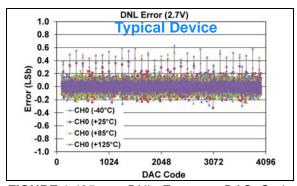
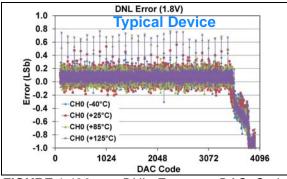




FIGURE 1-124: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '1' (Zx).

FIGURE 1-125: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '10'$ (V_{REF} Unbuffered), $G_{X} = '1'$ (2x)).

FIGURE 1-126: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '10'$ (V_{REF} Unbuffered), $G_{X} = '1'$ (2x)), (see **Appendix B.3** for additional information).

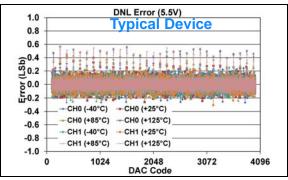


FIGURE 1-127: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '1' (2x)).

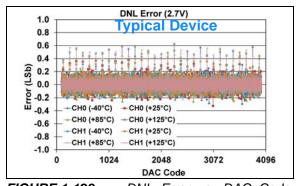
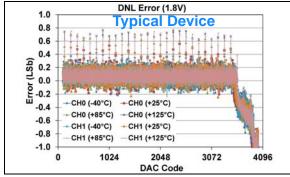
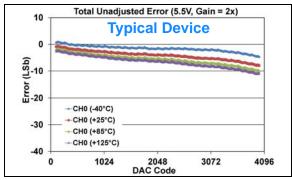




FIGURE 1-128: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '1' (2x).

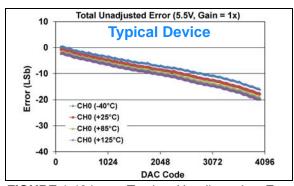
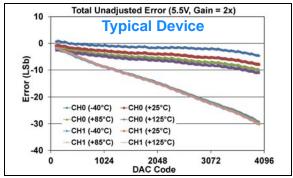
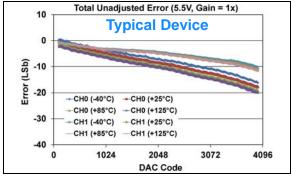


FIGURE 1-129: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '1' (2x)), (see **Appendix B.3** for additional information).

12-bit: VRxB:VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = 2.048V


FIGURE 1-130: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) (**12-bit**: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '1' (2x)).


FIGURE 1-131: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRXB:VRXA = '10' (V_{REF} Unbuffered)$, GX = '0' (1x)).

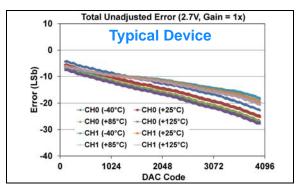

FIGURE 1-132: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

FIGURE 1-133: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '1' (2x)).

FIGURE 1-134: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{RFF} Unbuffered)$, Gx = '0' (1x)).

FIGURE 1-135: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.

12-bit: VRxB:VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = 2.048V

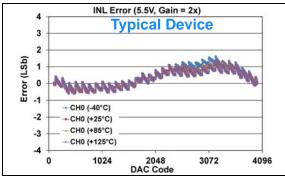
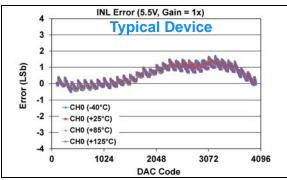



FIGURE 1-136: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '1' (2x)).

FIGURE 1-137: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

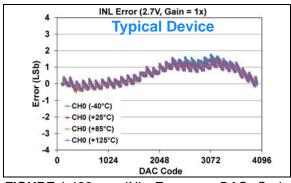


FIGURE 1-138: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

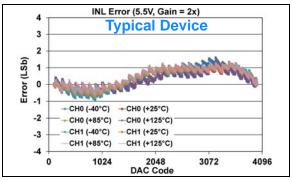


FIGURE 1-139: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '1' (2x)).

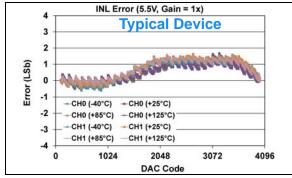


FIGURE 1-140: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

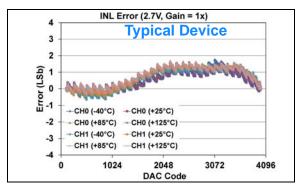


FIGURE 1-141: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

12-bit: $VRxB:VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = 2.048V$

FIGURE 1-142: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '1' (2x)).

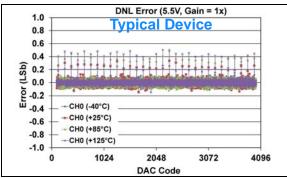
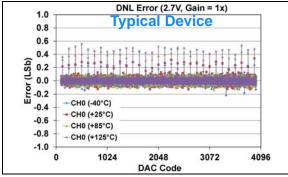



FIGURE 1-143: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

FIGURE 1-144: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

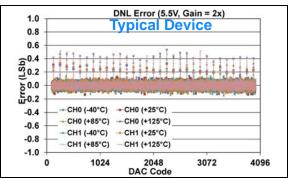


FIGURE 1-145: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '1' (2x)).

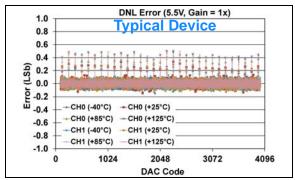
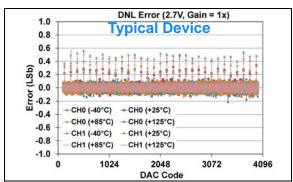
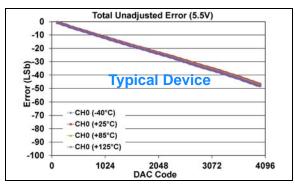
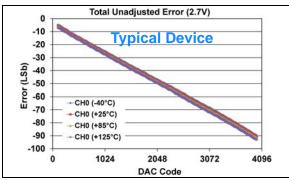
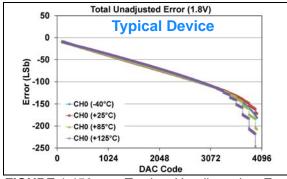


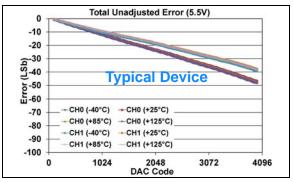
FIGURE 1-146: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{RFF} Unbuffered)$, Gx = '0' (1x)).

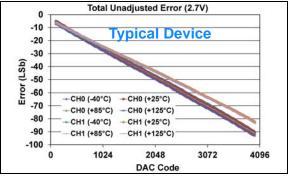




FIGURE 1-147: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.


12-bit: $VRxB:VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = V_{DD}, Gx = '0' (1x)$


FIGURE 1-148: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) (**12-bit**: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, VRxB:VRxA = '11' $(V_{REF}$ Buffered), Gx = '0' (1x)).


FIGURE 1-149: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$, $VRXB:VRXA = '11' (V_{REF} Buffered)$, GX = '0' (1x)).

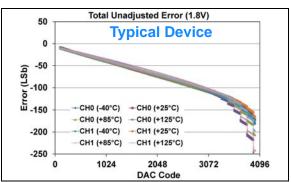

FIGURE 1-150: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) $(12\text{-bit}: V_{DD} = 1.8V, V_{REF} = V_{DD}, VRXB:VRXA = '11' (V_{REF} Buffered), <math>Gx = '0' (1x)$), (see **Appendix B.4** for additional information).

FIGURE 1-151: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

FIGURE 1-152: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) $(12\text{-bit}: V_{DD} = 2.7V, V_{REF} = V_{DD}, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '0' (1x)).$

FIGURE 1-153: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = V_{DD}$, $VRXB:VRXA = '11' (V_{REF} Buffered)$, Gx = '0' (1x), (see **Appendix B.4** for additional information).

12-bit: $VRxB:VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = V_{DD}, Gx = '0' (1x)$

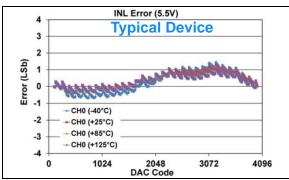


FIGURE 1-154: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

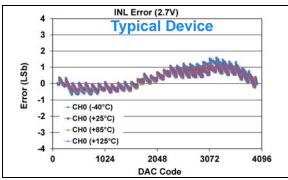
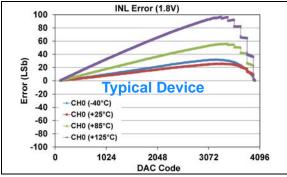



FIGURE 1-155: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

FIGURE 1-156: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)), (see **Appendix B.4** for additional information).

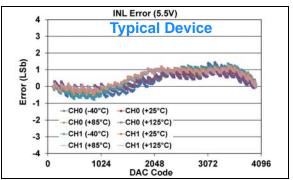
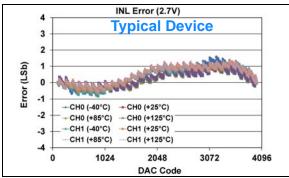
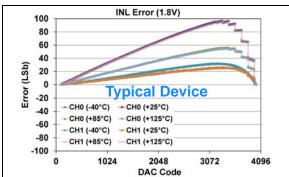




FIGURE 1-157: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

FIGURE 1-158: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

FIGURE 1-159: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = V_{DD}$, VRXB:VRXA = '11' (V_{REF} Buffered), GX = '0' (1x)), (see **Appendix B.4** for additional information).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.

12-bit: $VRxB:VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = V_{DD}, Gx = '0' (1x)$

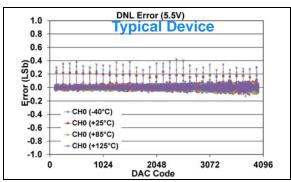


FIGURE 1-160: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

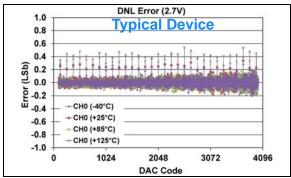


FIGURE 1-161: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

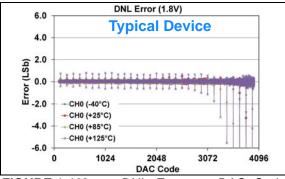


FIGURE 1-162: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x), (see Appendix B.4 for additional information).

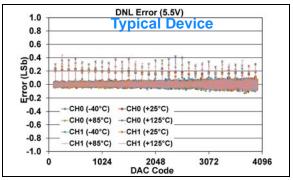


FIGURE 1-163: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

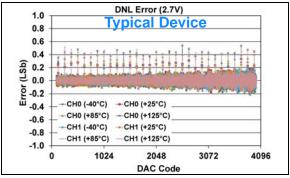
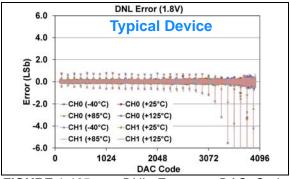
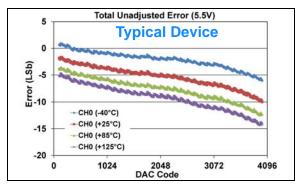




FIGURE 1-164: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{RFF} Buffered)$, Gx = '0' (1x)).

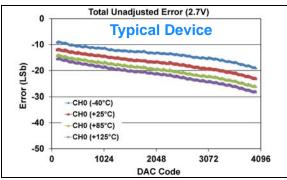
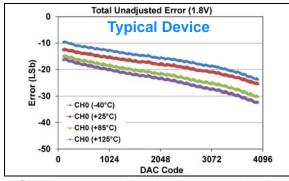
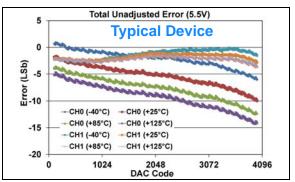
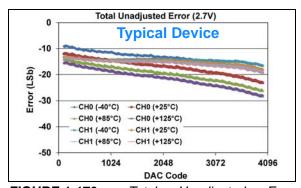


FIGURE 1-165: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)), (see **Appendix B.4** for additional information).


12-bit: $VRxB:VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = 1V, Gx = '0' (1x)$


FIGURE 1-166: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '0' (1x)).


FIGURE 1-167: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '11'$ (V_{RFF} Buffered), $G_{X} = '0'$ (1x)).

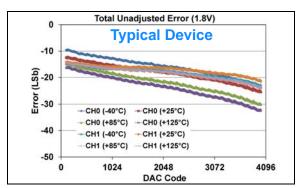

FIGURE 1-168: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '11'$ (V_{REF} Buffered), $G_{X} = '0'$ (I_{X}).

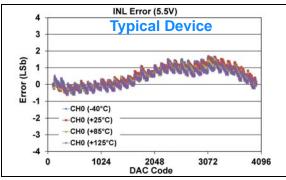
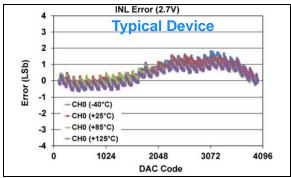
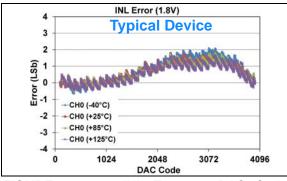
FIGURE 1-169: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '0' (1x)).

FIGURE 1-170: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '0' (1x)).

FIGURE 1-171: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '0' (1x)).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.

12-bit: $VRxB:VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = 1V, Gx = '0' (1x)$

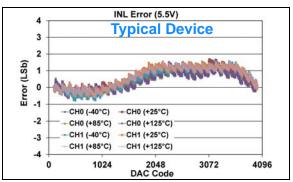

FIGURE 1-172: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '0' (1x)).

FIGURE 1-173: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRXB:VRXA = '11' (V_{REF} Buffered), GX = '0' (1x)).

FIGURE 1-174: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '11'$ (V_{REF} Buffered), $G_{X} = '0'$ (1x)).

FIGURE 1-175: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - **MCP48FXB22**) (**12-bit**: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{RFF} Buffered), Gx = '0' (1x)).

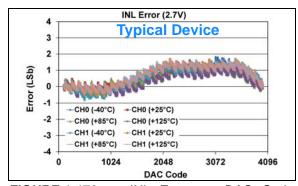


FIGURE 1-176: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '0' (1x)).

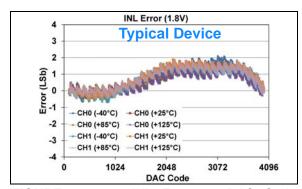
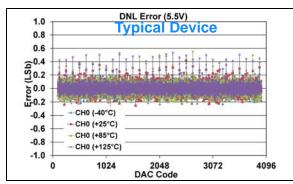
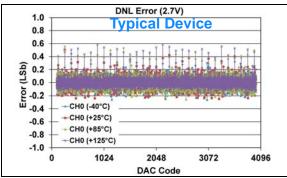
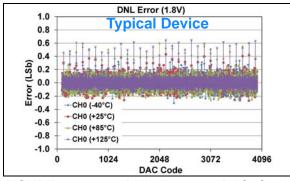


FIGURE 1-177: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '0' (1x)).

12-bit: $VRxB:VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = 1V, Gx = '0' (1x)$

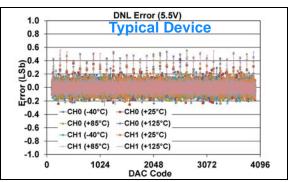
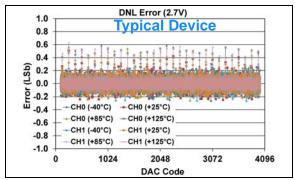
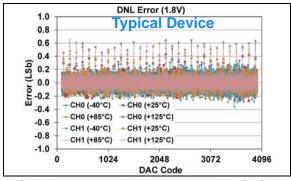
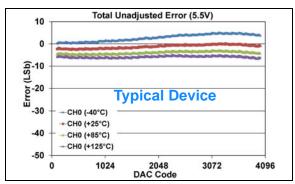

FIGURE 1-178: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '11'$ (V_{RFF} Buffered), $G_{X} = '0'$ (1x)).

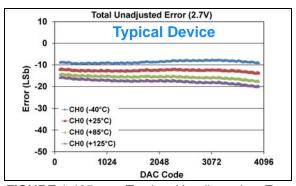
FIGURE 1-179: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '11'$ (V_{RFF} Buffered), $G_{X} = '0'$ (1x)).

FIGURE 1-180: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '11'$ (V_{REF} Buffered), $G_{X} = '0'$ (1x)).

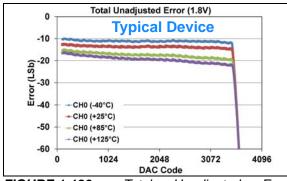
FIGURE 1-181: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - **MCP48FXB22**) (**12-bit**: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{RFF} Buffered), Gx = '0' (1x)).

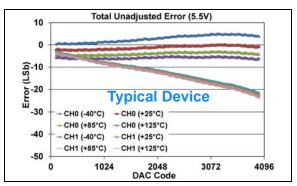



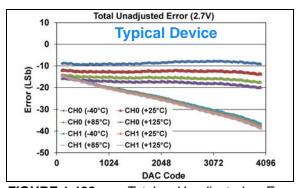

FIGURE 1-182: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{RFF} Buffered), Gx = '0' (1x)).


FIGURE 1-183: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '0' (1x)).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.


12-bit: $VRxB:VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = 1V, Gx = '1' (2x)$


FIGURE 1-184: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) $(12\text{-bit}: V_{DD} = 5.5V, V_{REF} = 1V, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '1' (2x)).$


FIGURE 1-185: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '1' (2x)).

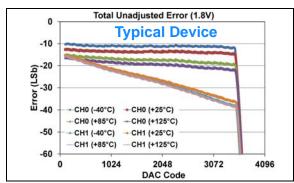

FIGURE 1-186: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '1' (2x)), (see **Appendix B.5** for additional information).

FIGURE 1-187: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '1' (2x).

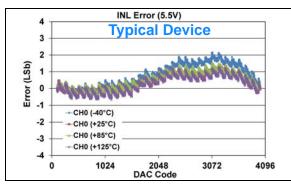


FIGURE 1-188: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '1' (2x)).

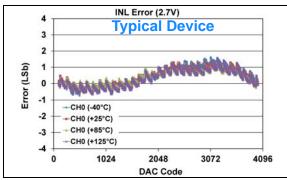
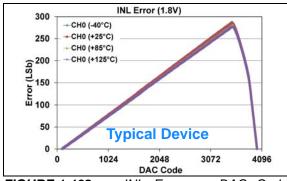
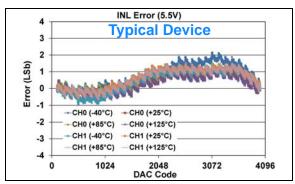
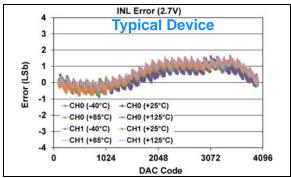


FIGURE 1-189: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '1' (2x), (see **Appendix B.5** for additional information).


12-bit: $VRxB:VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = 1V, Gx = '1' (2x)$


FIGURE 1-190: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '11'$ (V_{RFF} Buffered), $G_{X} = '1'$ (Z_{X}).


FIGURE 1-191: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '11'$ (V_{RFF} Buffered), $G_{X} = '1'$ ($V_{X} = V_{X} = V_{X$

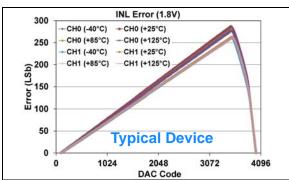

FIGURE 1-192: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '1' (2x)), (see **Appendix B.5** for additional information).

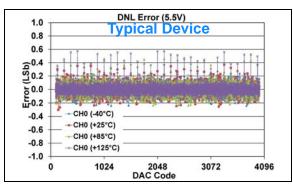
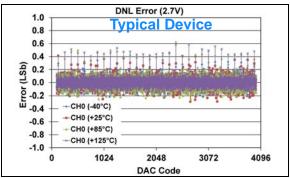
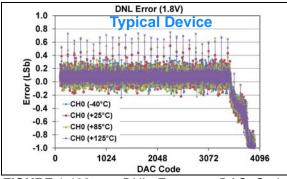
FIGURE 1-193: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '1' (2x).

FIGURE 1-194: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{RFF} Buffered), Gx = '1' (2x).

FIGURE 1-195: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - **MCP48FXB22**) (**12-bit**: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '1' (Zx), (see **Appendix B.5** for additional information).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.

12-bit: $VRxB:VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = 1V, Gx = '1' (2x)$

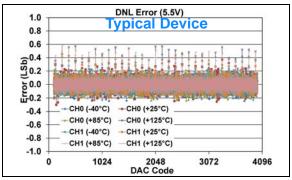

FIGURE 1-196: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{RFF} Buffered), Gx = '1' (2x).

FIGURE 1-197: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (**12-bit**: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{RFF} Buffered), Gx = '1' (2x).

FIGURE 1-198: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '1' (2x)), (see **Appendix B.5** for additional information).

FIGURE 1-199: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - **MCP48FXB22**) (**12-bit**: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{RFF} Buffered), Gx = '1' (2x)).

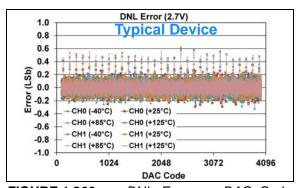
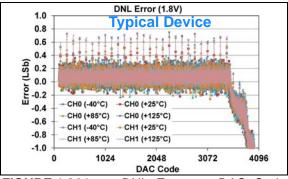
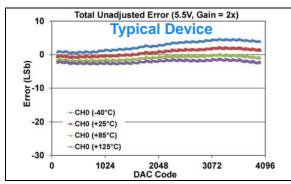




FIGURE 1-200: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '1' (2x).

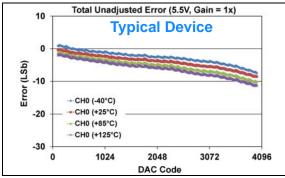
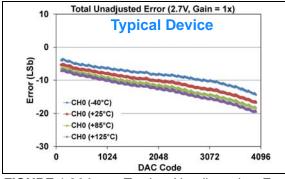
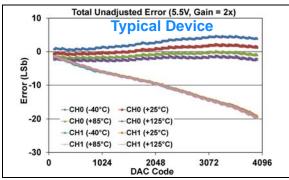
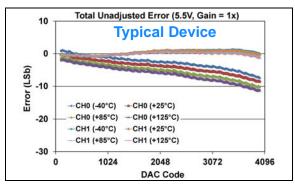


FIGURE 1-201: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '1' (2x), (see **Appendix B.5** for additional information).


12-bit: VRxB: VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = 2.048V


FIGURE 1-202: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) (**12-bit**: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, VRxB:VRxA = '11' $(V_{REF}$ Buffered), Gx = '1' (2x)).


FIGURE 1-203: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

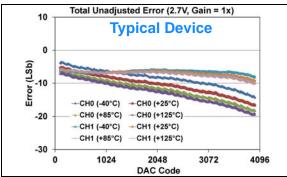

FIGURE 1-204: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB21**) (**12-bit**: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, VRxB:VRxA = '11' $(V_{REF}$ Buffered), Gx = '0' (1x)).

FIGURE 1-205: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{RFF} Buffered)$, Gx = '1' (2x)).

FIGURE 1-206: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

FIGURE 1-207: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB22**) $(12\text{-bit}: V_{DD} = 2.7V, V_{REF} = 2.048V, VRxB:VRxA = '11' <math>(V_{REF}$ Buffered), Gx = '0' (1x)).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.

12-bit: $VRxB:VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = 2.048V$

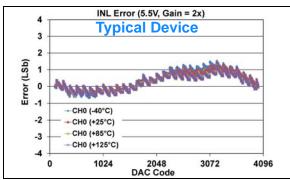


FIGURE 1-208: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '1' (2x)).

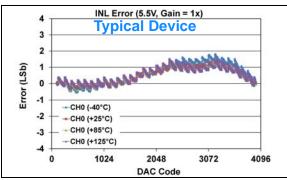
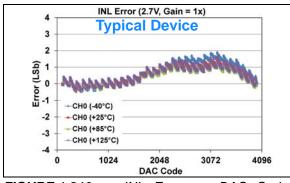



FIGURE 1-209: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

FIGURE 1-210: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - **MCP48FXB21**) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

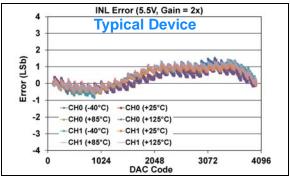


FIGURE 1-211: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '1' (2x)).

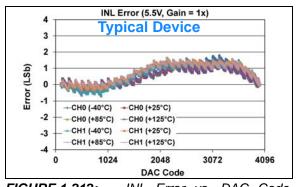


FIGURE 1-212: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{RFF} Buffered)$, Gx = '0' (1x)).

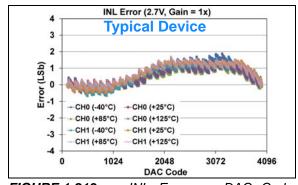


FIGURE 1-213: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

12-bit: $VRxB:VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = 2.048V$

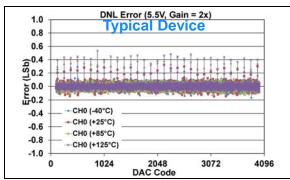


FIGURE 1-214: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '1' (2x)).

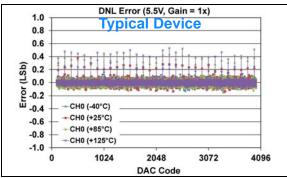


FIGURE 1-215: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

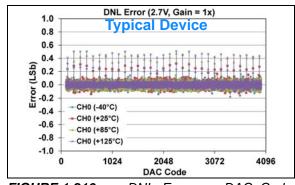


FIGURE 1-216: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

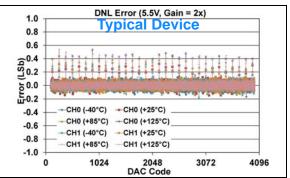


FIGURE 1-217: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '1' (2x)).

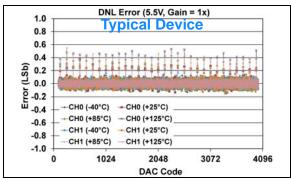
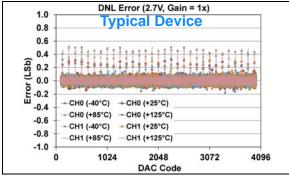
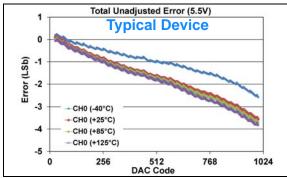
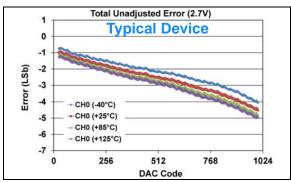
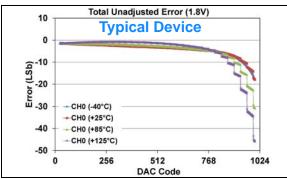


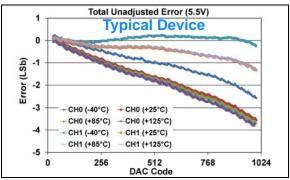
FIGURE 1-218: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{RFF} Buffered)$, Gx = '0' (1x)).

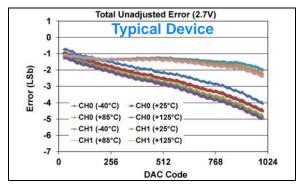




FIGURE 1-219: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.


10-bit: $VRxB: VRxA = '00' (V_{DD} Mode), Gx = '0' (1x)$


FIGURE 1-220: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**) $(10\text{-bit}: V_{DD} = 5.5V, VRxB: VRxA = '00' (V_{DD}), Gx = '0' (1x)).$


FIGURE 1-221: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**) $(10\text{-bit}: V_{DD} = 2.7V, VRxB: VRxA = '00' (V_{DD}), Gx = '0' (1x)).$

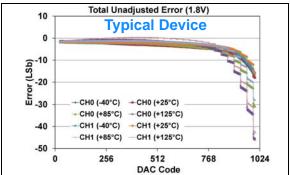
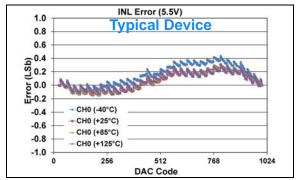
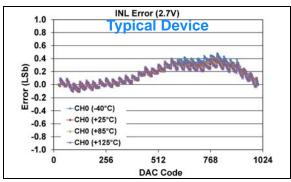
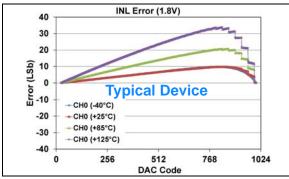

FIGURE 1-222: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**) $(10\text{-bit}: V_{DD} = 1.8V, VRxB:VRxA = '00' (V_{DD}), Gx = '0' (1x)),$ (see **Appendix B.1** for additional information).

FIGURE 1-223: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**) $(10\text{-bit}: V_{DD} = 5.5V, VRxB: VRxA = '00' (V_{DD}), Gx = '0' (1x)).$

FIGURE 1-224: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**) $(10\text{-bit}: V_{DD} = 2.7V, VRxB: VRxA = '00' (V_{DD}), Gx = '0' (1x)).$

FIGURE 1-225: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**) $(10\text{-bit}: V_{DD} = 1.8V, VRxB: VRxA = '00' (V_{DD}), Gx = '0' (1x)),$ (see **Appendix B.1** for additional information).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V. 10-bit: $VRxB:VRxA = '00' (V_{DD} Mode)$, Gx = '0' (1x)

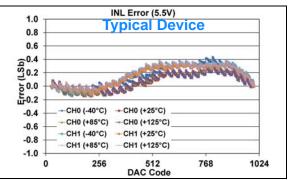

FIGURE 1-226: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: $V_{DD} = 5.5V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)).

FIGURE 1-227: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 2.7V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)).

FIGURE 1-228: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 1.8V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)), (see **Appendix B.1** for additional information).

FIGURE 1-229: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 5.5V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)).

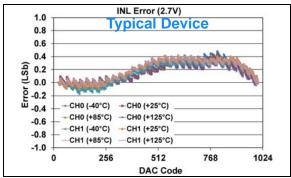
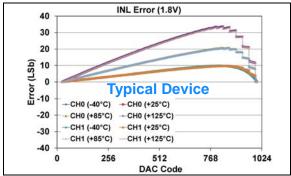



FIGURE 1-230: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 2.7V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)).

FIGURE 1-231: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 1.8V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)), (see **Appendix B.1** for additional information).

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = 5.5V$. 10-bit: $VRxB:VRxA = '00' (V_{DD} Mode)$, Gx = '0' (1x)

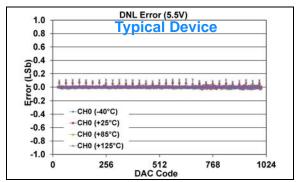
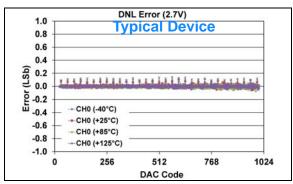
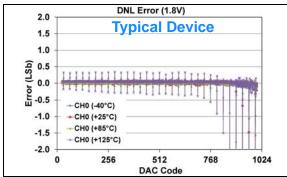




FIGURE 1-232: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: $V_{DD} = 5.5V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)).

FIGURE 1-233: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 2.7V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)).

FIGURE 1-234: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 1.8V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)), (see **Appendix B.1** for additional information).

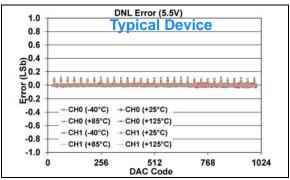


FIGURE 1-235: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 5.5V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)).

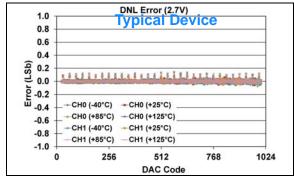


FIGURE 1-236: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 2.7V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)).

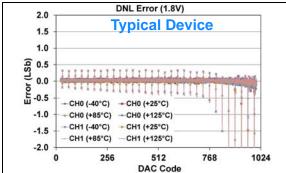
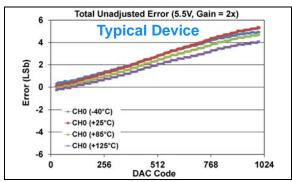
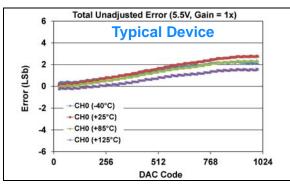
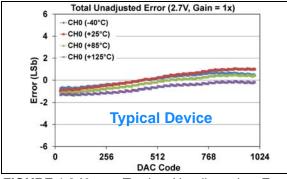
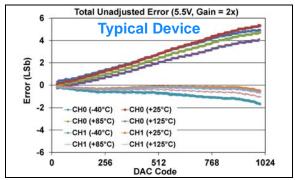
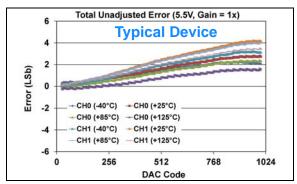




FIGURE 1-237: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 1.8V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)), (see Appendix B.1 for additional information).


10-bit: VRxB:VRxA = '01' (Bandgap Mode)


FIGURE 1-238: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**) $(10\text{-bit}: V_{DD} = 5.5V, VRxB:VRxA = '01' (Bandgap), Gx = '1' (2x)).$


FIGURE 1-239: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**) $(10\text{-bit}: V_{DD} = 5.5V, VRxB:VRxA = '01' (Bandgap), <math>Gx = '0' (1x)$).

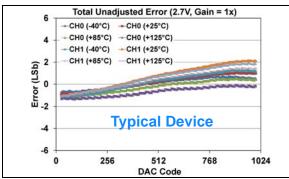

FIGURE 1-240: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**) $(10\text{-bit}: V_{DD} = 2.7V, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).$

FIGURE 1-241: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '1' (2x)).

FIGURE 1-242: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

FIGURE 1-243: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 2.7V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.

10-bit: VRxB:VRxA = '01' (Bandgap Mode)

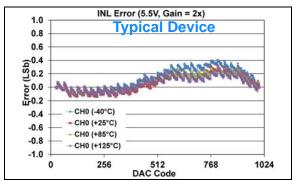
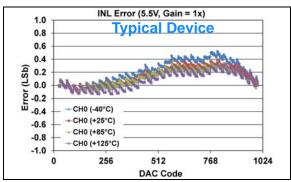



FIGURE 1-244: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '1' (2x)).

FIGURE 1-245: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

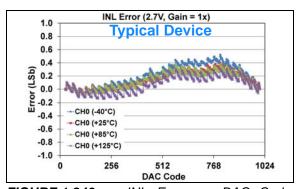
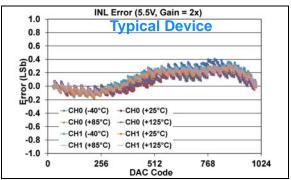



FIGURE 1-246: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: $V_{DD} = 2.7V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

FIGURE 1-247: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '1' (2x)).

FIGURE 1-248: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

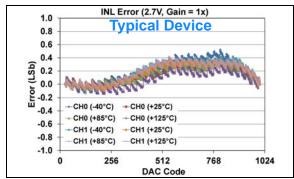


FIGURE 1-249: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 2.7V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

10-bit. VRxB:VRxA = '01' (Bandgap Mode)

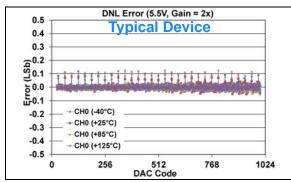


FIGURE 1-250: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '1' (2x)).

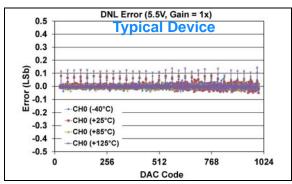
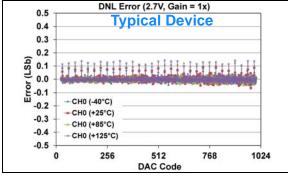
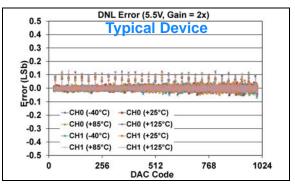
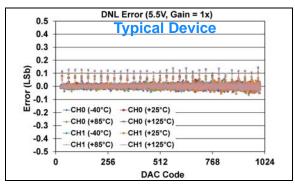
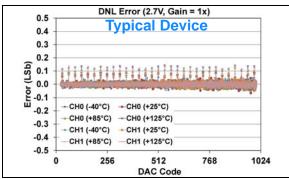




FIGURE 1-251: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

FIGURE 1-252: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 2.7V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

FIGURE 1-253: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '1' (2x)).

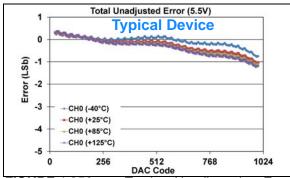
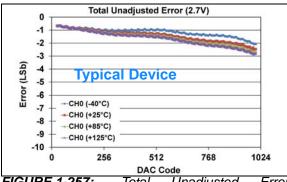

FIGURE 1-254: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

FIGURE 1-255: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 2.7V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).


Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.

10-bit: $VRxB: VRxA = '10' (V_{REF} \ Unbuffered \ Mode), \ V_{REF} = V_{DD}, \ Gx = '0' (1x)$

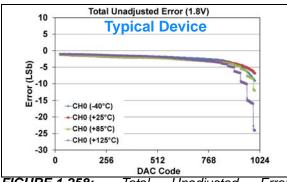


FIGURE 1-256: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**)

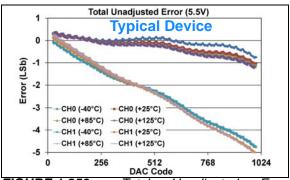

(10-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

FIGURE 1-257: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**) $(10\text{-bit}: V_{DD} = 2.7V, V_{REF} = V_{DD}, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '0' (1x)).$

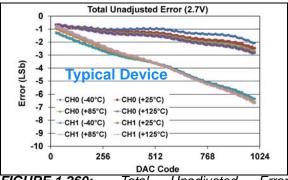
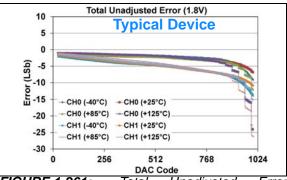


FIGURE 1-258: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**) $(10\text{-bit}: V_{DD} = 1.8V, V_{REF} = V_{DD}, VRXB:VRXA = '10' (V_{REF} Unbuffered), Gx = '0' (1x)), (see$ **Appendix B.2**for additional information).


FIGURE 1-259: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**)

(10-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

FIGURE 1-260: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**) $(10\text{-bit}: V_{DD} = 2.7V, V_{REF} = V_{DD},$

 $V_{DD} = 2.7 \text{ V}, \quad V_{REF} = V_{DD},$ $V_{RXB}:V_{RXA} = 10' (V_{REF} \text{ Unbuffered}), G_{X} = 0' (1_{X}).$

FIGURE 1-261: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**) $(10\text{-bit}: V_{DD} = 1.8V, V_{REF} = V_{DD}, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '0' (1x)), (see$ **Appendix B.2**for additional information).

10-bit: $VRxB:VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = V_{DD}, Gx = '0' (1x)$

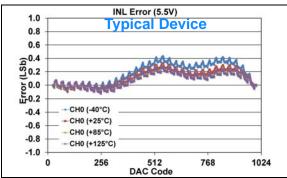


FIGURE 1-262: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11)

(10-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

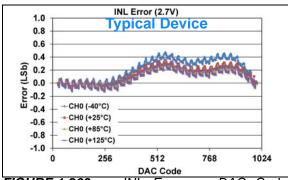


FIGURE 1-263: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

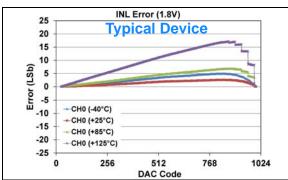


FIGURE 1-264: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: $V_{DD} = 1.8V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)),

(see Appendix B.2 for additional information).

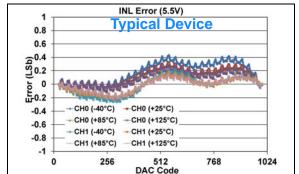
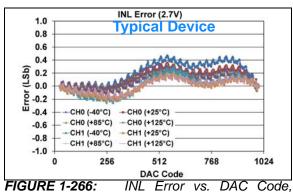
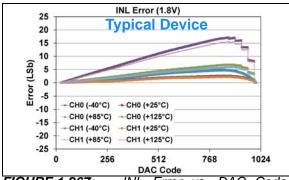




FIGURE 1-265: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12)

(10-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$, $VRXB:VRXA = '10' (V_{REF} Unbuffered)$, GX = '0' (1x)).

FIGURE 1-267: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 1.8V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x),

(see Appendix B.2 for additional information).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.

10-bit: $VRxB: VRxA = '10' (V_{REF} \ Unbuffered \ Mode), \ V_{REF} = V_{DD}, \ Gx = '0' (1x)$

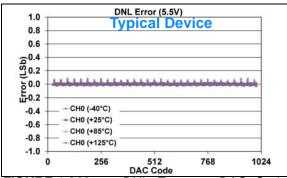
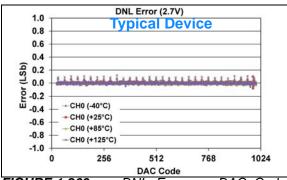
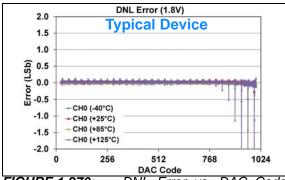




FIGURE 1-268: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11)

(10-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{RFF} Unbuffered)$, Gx = '0' (1x)).

FIGURE 1-269: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{RFF} Unbuffered)$, Gx = '0' (1x)).

FIGURE 1-270: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 1.8V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)),

(see Appendix B.2 for additional information).

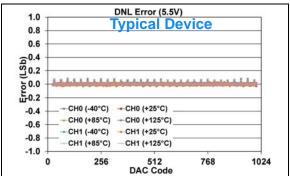


FIGURE 1-271: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12)

(10-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

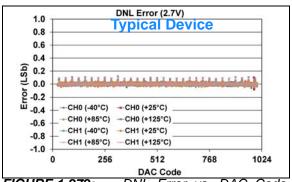
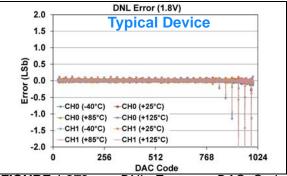
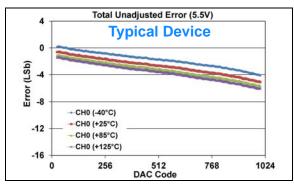
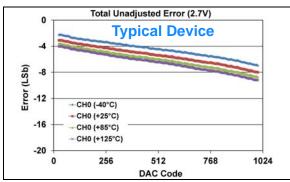
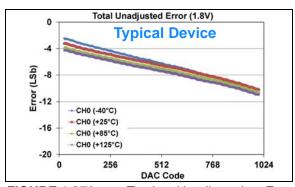


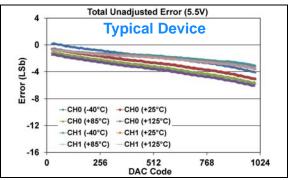
FIGURE 1-272: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{RFF} Unbuffered)$, Gx = '0' (1x)).

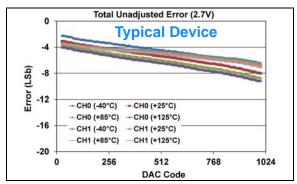




FIGURE 1-273: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12)

(10-bit: $V_{DD} = 1.8V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x), (see **Appendix B.2** for additional information).


10-bit: VRxB: VRxA = '10' (V_{REF} Unbuffered Mode), $V_{REF} = 1V$, Gx = '0' (1x)


FIGURE 1-274: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{RFF} Unbuffered), Gx = '0' (1x).


FIGURE 1-275: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**) $(10\text{-bit}: V_{DD} = 2.7V, V_{REF} = 1V, VRxB:VRxA = '10' (V_{RFF} Unbuffered), <math>Gx = '0' (1x)$).

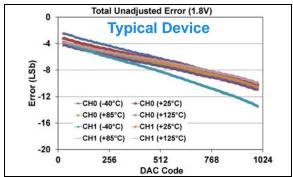
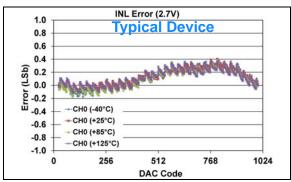
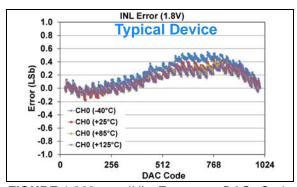

FIGURE 1-276: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**) $(10\text{-bit}: V_{DD} = 1.8V, V_{REF} = 1V, VRxB:VRxA = '10' <math>(V_{REF} \text{ Unbuffered}), Gx = '0' (1x)).$

FIGURE 1-277: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{RFF} Unbuffered), Gx = '0' (1x).


FIGURE 1-278: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{RFF} Unbuffered), Gx = '0' (1x)).


FIGURE 1-279: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**) $(10\text{-bit: }V_{DD} = 1.8V, V_{REF} = 1V, VRxB:VRxA = '10' (V_{RFF} Unbuffered), <math>Gx = '0' (1x)$).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.


10-bit: VRxB:VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = 1V, Gx = '0' (1x)

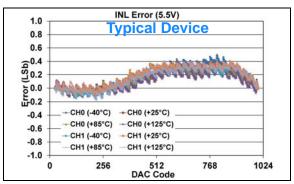

FIGURE 1-280: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{RFF} Unbuffered), Gx = '0' (1x)).

FIGURE 1-281: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{RFF} Unbuffered), Gx = '0' (1x)).

FIGURE 1-282: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '0' (1x)).

FIGURE 1-283: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{RFF} Unbuffered), Gx = '0' (1x)).

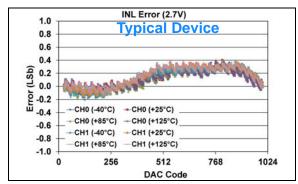


FIGURE 1-284: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '0' (1x)).

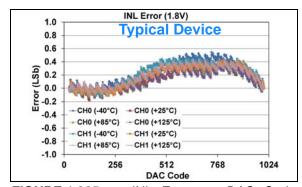
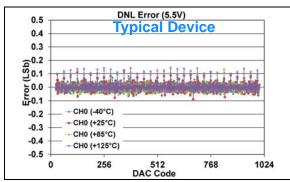
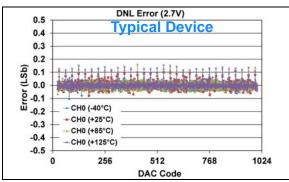




FIGURE 1-285: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '0' (1x)).

10-bit: VRxB: VRxA = '10' (V_{REF} Unbuffered Mode), $V_{REF} = 1V$, Gx = '0' (1x)

FIGURE 1-286: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '10'$ (V_{RFF} Unbuffered), $G_{X} = '0'$ (1x)).

FIGURE 1-287: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{RFF} Unbuffered), Gx = '0' (1x)).

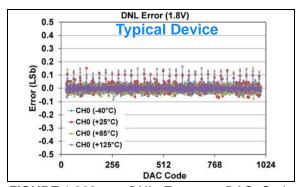
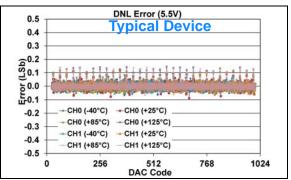
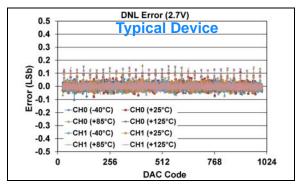
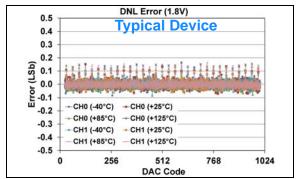
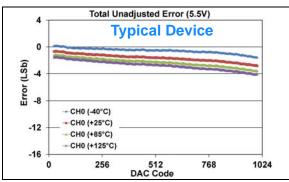
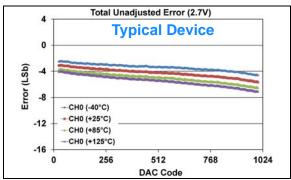



FIGURE 1-288: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '10'$ (V_{REF} Unbuffered), $G_{X} = '0'$ (1x)).

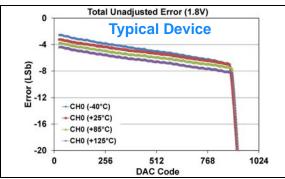
FIGURE 1-289: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{RFF} Unbuffered), Gx = '0' (1x)).

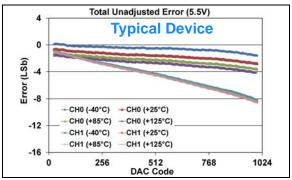



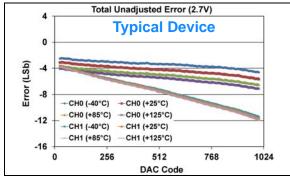

FIGURE 1-290: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{RFF} Unbuffered), Gx = '0' (1x)).


FIGURE 1-291: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '0' (1x)).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.


10-bit: VRxB: VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = 1V, Gx = '1' (2x)


FIGURE 1-292: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**) $(10\text{-bit}: V_{DD} = 5.5 \text{V}, V_{REF} = 1 \text{V}, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '1' (2x)).$


FIGURE 1-293: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '10'$ (V_{RFF} Unbuffered), $V_{RFF} = 1V$, V_{RXB} : $V_{RXA} = '10'$

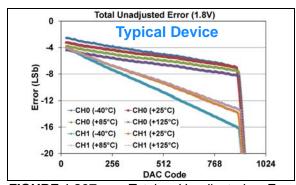

FIGURE 1-294: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**) $(10\text{-bit}: V_{DD} = 1.8V, V_{REF} = 1V, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '1' (2x)),$ (see **Appendix B.3** for additional information).

FIGURE 1-295: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**) $(10\text{-bit}: V_{DD} = 5.5V, V_{REF} = 1V, VRxB:VRxA = '10' (V_{RFF} Unbuffered), <math>Gx = '1' (2x)$).

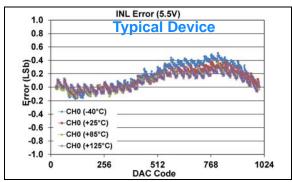


FIGURE 1-296: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**) $(10\text{-bit: }V_{DD} = 2.7V, V_{REF} = 1V, VRxB:VRxA = '10' (V_{RFF} Unbuffered), Gx = '1' (2x)).$

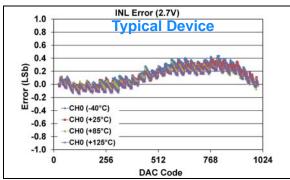
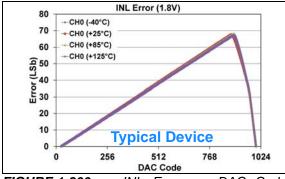


FIGURE 1-297: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '1' (2x)), (see **Appendix B.3** for additional information).


10-bit: VRxB:VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = 1V, Gx = '1' (2x)

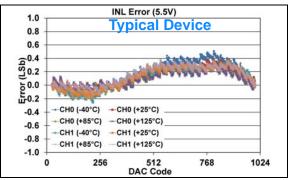
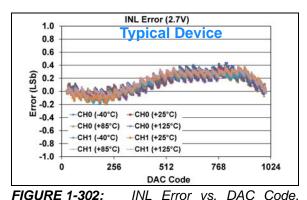
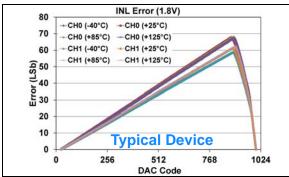
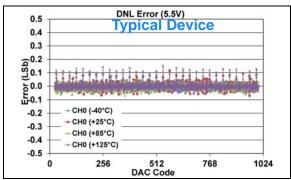

FIGURE 1-298: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{RFF} Unbuffered), Gx = '1' (2x)).

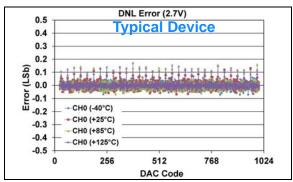
FIGURE 1-299: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '10'$ (V_{REF} Unbuffered), $G_{X} = '1'$ (2x)).

FIGURE 1-300: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '1' (2x)), (see **Appendix B.3** for additional information).

FIGURE 1-301: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{RFF} Unbuffered), Gx = '1' (2x)).


FIGURE 1-302: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '1' (Zx).


FIGURE 1-303: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '10'$ (V_{REF} Unbuffered), $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = V_{RXA} = V_{REF}$ (see **Appendix B.3** for additional information).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.

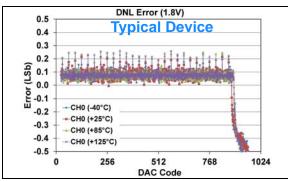

10-bit: VRxB: VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = 1V, Gx = '1' (2x)

FIGURE 1-304: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '10'$ (V_{RFF} Unbuffered), $G_{X} = '1'$ (Z_{X}).

FIGURE 1-305: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '10'$ (V_{RFF} Unbuffered), $G_{X} = '1'$ (2x)).

FIGURE 1-306: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '1' (2x)), (see **Appendix B.3** for additional information).

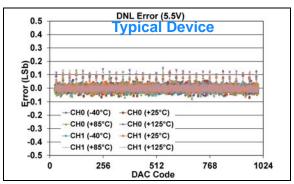


FIGURE 1-307: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '1' (2x).

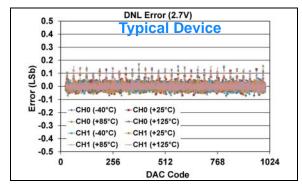
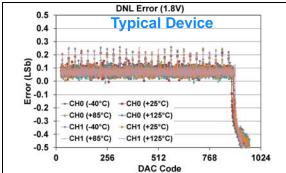
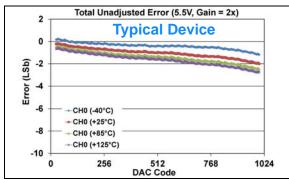




FIGURE 1-308: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '1' (2x).

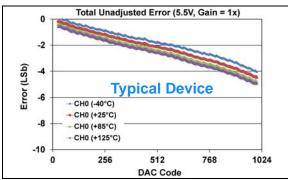
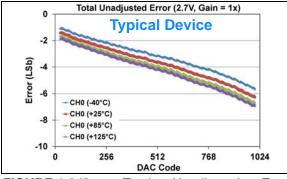
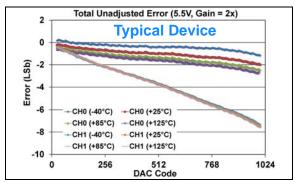
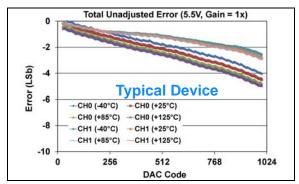


FIGURE 1-309: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '1' (Zx), (see **Appendix B.3** for additional information).


10-bit: $VRxB:VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = 2.048V$


FIGURE 1-310: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**) $(10\text{-bit}: V_{DD} = 5.5\text{V}, V_{REF} = 2.048\text{V}, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '1' (2x)).$


FIGURE 1-311: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**) $(10\text{-bit}: V_{DD} = 5.5V, V_{REF} = 2.048V, VRxB:VRxA = '10' (V_{RFF} Unbuffered), <math>Gx = '0' (1x)$).

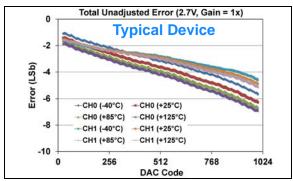

FIGURE 1-312: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**) $(10\text{-bit}: V_{DD} = 2.7V, V_{REF} = 2.048V, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '0' (1x)).$

FIGURE 1-313: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '1' (2x)).

FIGURE 1-314: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**) $(10\text{-bit}: V_{DD} = 5.5\text{V}, V_{REF} = 2.048\text{V}, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '0' (1x)).$

FIGURE 1-315: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**) $(10\text{-bit}: V_{DD} = 2.7V, V_{REF} = 2.048V, VRxB:VRxA = '10' (V_{REF} Unbuffered), <math>Gx = '0' (1x)$).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.

10-bit: VRxB:VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = 2.048V

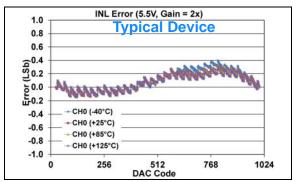
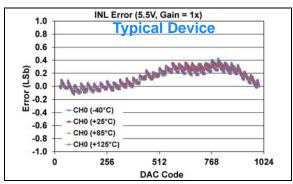



FIGURE 1-316: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '1' (2x)).

FIGURE 1-317: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

FIGURE 1-318: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

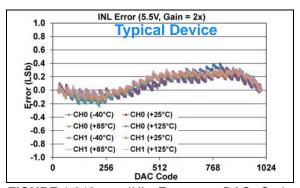


FIGURE 1-319: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '1' (2x)).

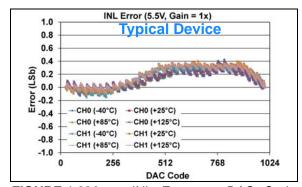


FIGURE 1-320: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{RFF} Unbuffered)$, Gx = '0' (1x)).

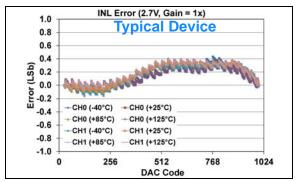


FIGURE 1-321: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

10-bit: $VRxB:VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = 2.048V$

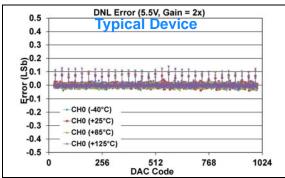


FIGURE 1-322: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '1' (2x)).

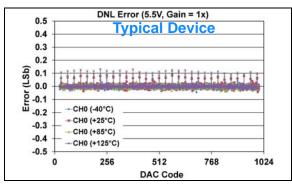


FIGURE 1-323: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

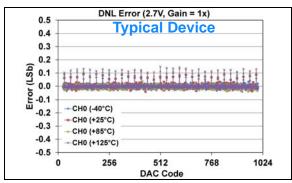
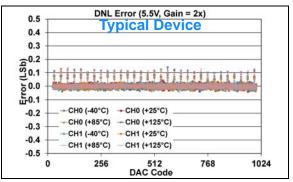



FIGURE 1-324: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

FIGURE 1-325: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$,

 $VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '1' (2x)).$

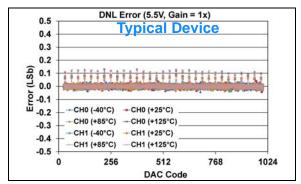
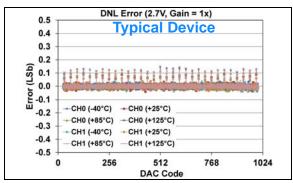
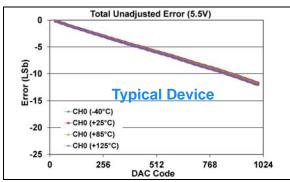
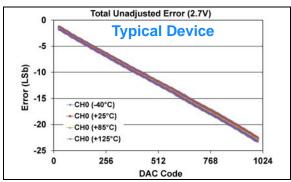
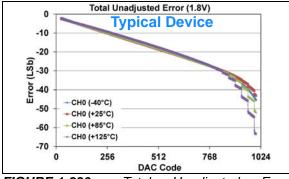


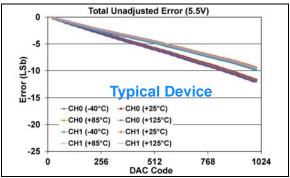
FIGURE 1-326: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{RFF} Unbuffered)$, Gx = '0' (1x)).

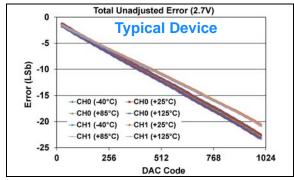




FIGURE 1-327: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.


10-bit: $VRxB:VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = V_{DD}, Gx = '0' (1x)$


FIGURE 1-328: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**) $(10\text{-bit}: V_{DD} = 5.5\text{V}, V_{REF} = V_{DD}, VRxB:VRxA = '11' (V_{REF} \text{ Buffered}), Gx = '0' (1x)).$


FIGURE 1-329: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**) $(10\text{-bit}: V_{DD} = 2.7\text{V}, V_{REF} = V_{DD}, VRxB:VRxA = '11' (V_{REF} \text{ Buffered}), Gx = '0' (1x)).$

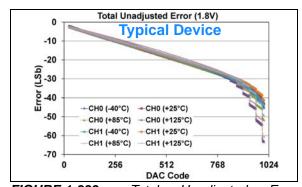

FIGURE 1-330: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**) $(10\text{-bit}: V_{DD} = 1.8V, V_{REF} = V_{DD}, VRXB:VRXA = '11' (V_{REF} Buffered), GX = '0' (1x)), (see$ **Appendix B.4**for additional information).

FIGURE 1-331: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**) $(10\text{-bit}: V_{DD} = 5.5V, V_{REF} = V_{DD}, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '0' (1x)).$

FIGURE 1-332: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**) $(10\text{-bit}: V_{DD} = 2.7V, V_{REF} = V_{DD}, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '0' (1x)).$

FIGURE 1-333: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**) $(10\text{-bit}: V_{DD} = 1.8V, V_{REF} = V_{DD}, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '0' (1x)), (see$ **Appendix B.4**for additional information).

10-bit: $VRxB:VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = V_{DD}, Gx = '0' (1x)$

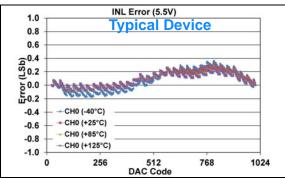
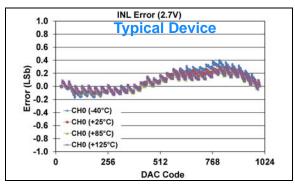
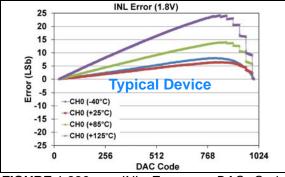




FIGURE 1-334: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

FIGURE 1-335: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

FIGURE 1-336: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 1.8V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x), (see **Appendix B.4** for additional information).

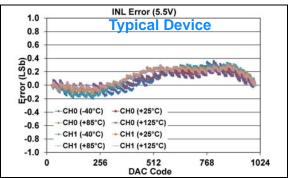


FIGURE 1-337: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

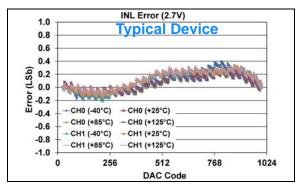
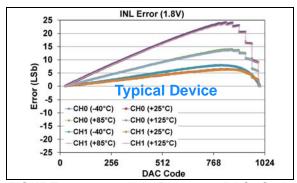



FIGURE 1-338: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{RFF} Buffered)$, Gx = '0' (1x)).

FIGURE 1-339: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 1.8V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)), (see **Appendix B.4** for additional information).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.

10-bit: $VRxB:VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = V_{DD}, Gx = '0' (1x)$

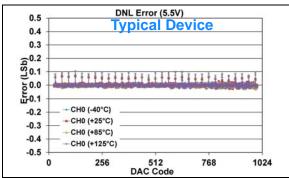


FIGURE 1-340: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

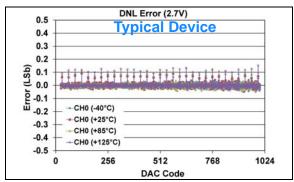
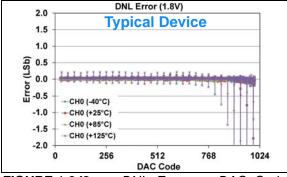
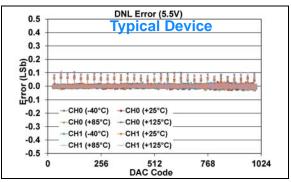




FIGURE 1-341: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

FIGURE 1-342: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 1.8V$, $V_{REF} = V_{DD}$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '0' (1x)), (see **Appendix B.4** for additional information).

FIGURE 1-343: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

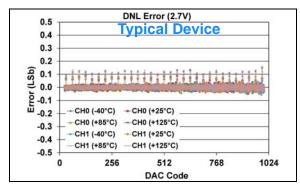
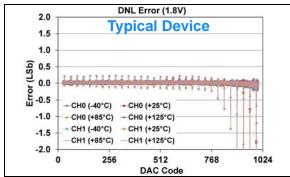
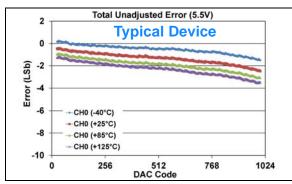




FIGURE 1-344: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{RFF} Buffered)$, Gx = '0' (1x)).

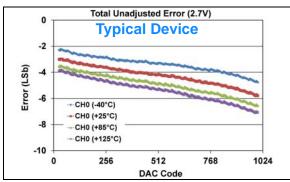
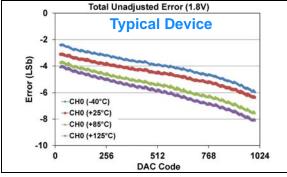
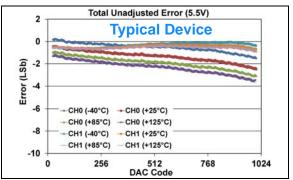
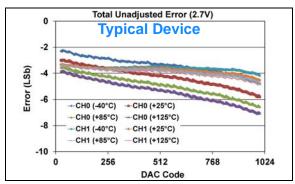


FIGURE 1-345: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 1.8V$, $V_{REF} = V_{DD}$, VRXB:VRXA = '11' (V_{REF} Buffered), GX = '0' (1x)), (see **Appendix B.4** for additional information).


10-bit: $VRxB:VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = 1V, Gx = '0' (1x)$


FIGURE 1-346: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**) $(10\text{-bit}: V_{DD} = 5.5V, V_{REF} = 1V, VRxB:VRxA = '11' (V_{RFF} Buffered), <math>Gx = '0' (1x)$).


FIGURE 1-347: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**) $(10\text{-bit}: V_{DD} = 2.7V, V_{REF} = 1V, VRxB:VRxA = '11' <math>(V_{REF} \text{ Buffered}), Gx = '0' (1x)).$

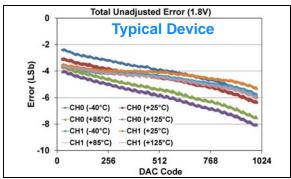

FIGURE 1-348: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '11'$ (V_{RFF} Buffered), $G_{X} = '0'$ (I_{X}).

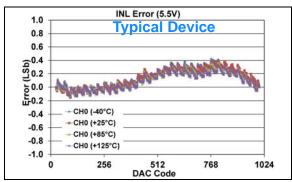
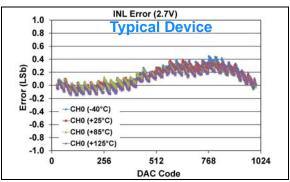
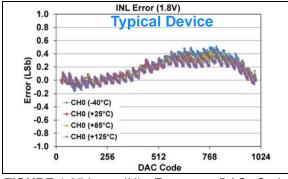
FIGURE 1-349: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{RFF} Buffered), Gx = '0' (1x)).

FIGURE 1-350: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '0' (1x)).

FIGURE 1-351: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**) $(10\text{-bit: }V_{DD} = 1.8V, V_{REF} = 1V, VRxB:VRxA = '11' (V_{RFF} Buffered), <math>Gx = '0' (1x)$).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.

10-bit: $VRxB: VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = 1V, Gx = '0' (1x)$

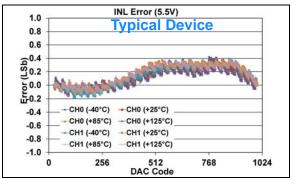

FIGURE 1-352: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{RFF} Buffered), Gx = '0' (1x)).

FIGURE 1-353: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '0' (1x)).

FIGURE 1-354: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '0' (1x)).

FIGURE 1-355: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRXB:VRXA = '11' (V_{RFF} Buffered), GX = '0' (1x)).

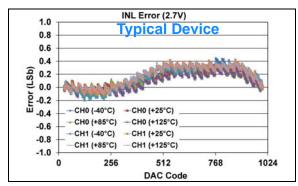


FIGURE 1-356: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{RFF} Buffered), Gx = '0' (1x)).

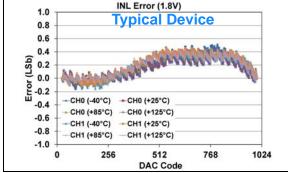
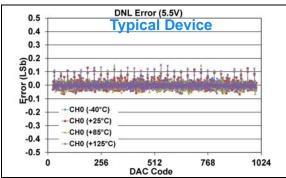
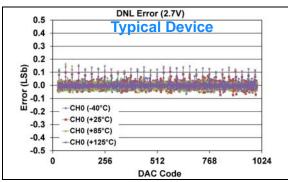
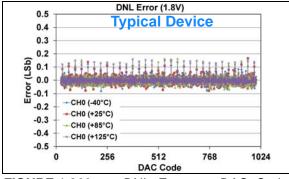
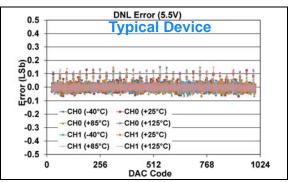
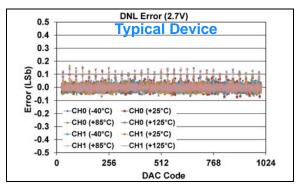


FIGURE 1-357: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '0' (1x)).

10-bit: $VRxB:VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = 1V, Gx = '0' (1x)$


FIGURE 1-358: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '11'$ (V_{RFF} Buffered), $G_{X} = '0'$ (1x)).


FIGURE 1-359: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '11'$ (V_{RFF} Buffered), $G_{X} = '0'$ (1x)).

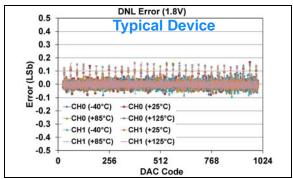
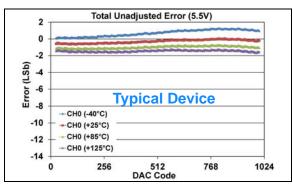
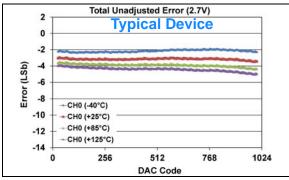
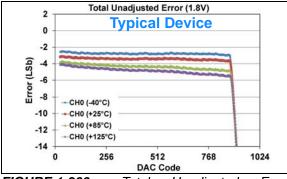

FIGURE 1-360: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '11'$ (V_{REF} Buffered), $G_{X} = '0'$ (1x)).

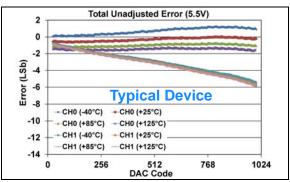
FIGURE 1-361: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '11'$ (V_{REF} Buffered), $G_{X} = '0'$ (1x)).

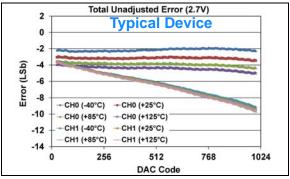

FIGURE 1-362: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{RFF} Buffered), Gx = '0' (1x)).


FIGURE 1-363: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '0' (1x)).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.


10-bit: $VRxB: VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = 1V, Gx = '1' (2x)$


FIGURE 1-364: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**) $(10\text{-bit}: V_{DD} = 5.5\text{V}, V_{REF} = 1\text{V}, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '1' (2x)).$


FIGURE 1-365: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**) $(10\text{-bit}: V_{DD} = 2.7V, V_{REF} = 1V, VRxB:VRxA = '11' <math>(V_{RFF} \text{ Buffered}), Gx = '1' (2x)).$

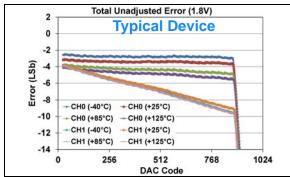

FIGURE 1-366: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**) $(10\text{-bit}: V_{DD} = 1.8V, V_{REF} = 1V, VRxB:VRxA = '11' <math>(V_{REF} \text{ Buffered}), Gx = '1' (2x)),$ (see **Appendix B.5** for additional information).

FIGURE 1-367: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**) $(10\text{-bit}: V_{DD} = 5.5V, V_{REF} = 1V, VRxB:VRxA = '11' <math>(V_{RFF} \text{ Buffered}), Gx = '1' (2x)).$

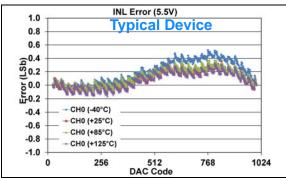


FIGURE 1-368: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**) $(10\text{-bit}: V_{DD} = 2.7V, V_{REF} = 1V, VRxB:VRxA = '11' <math>(V_{REF} \text{ Buffered}), Gx = '1' (2x)).$

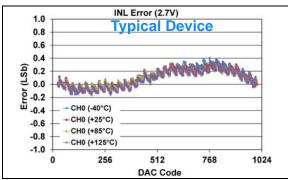
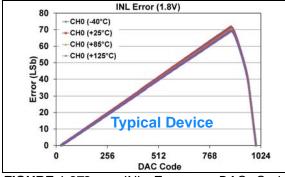


FIGURE 1-369: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '1' (2x), (see **Appendix B.5** for additional information).


10-bit: $VRxB: VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = 1V, Gx = '1' (2x)$

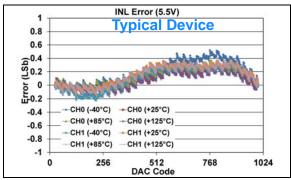

FIGURE 1-370: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{RFF} Buffered), Gx = '1' (2x)).

FIGURE 1-371: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '11'$ (V_{REF} Buffered), $G_{X} = '1'$ (Z_{X}).

FIGURE 1-372: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '11'$ (V_{REF} Buffered), $G_{X} = '1'$ (Z_{X}), (see **Appendix B.5** for additional information).

FIGURE 1-373: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '11'$ (V_{REF} Buffered), $G_{X} = '1'$ (Z_{X}).

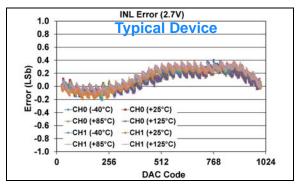
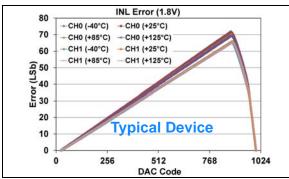
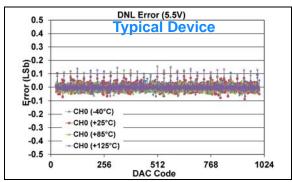
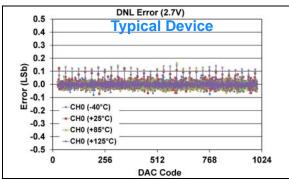
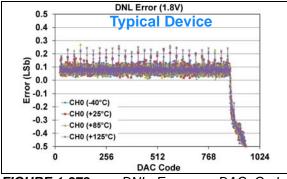



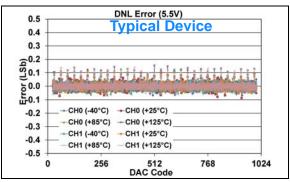
FIGURE 1-374: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{RFF} Buffered), Gx = '1' (2x).

FIGURE 1-375: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '1' (2x)), (see **Appendix B.5** for additional information).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.

10-bit: $VRxB: VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = 1V, Gx = '1' (2x)$


FIGURE 1-376: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{RFF} Buffered), Gx = '1' (2x).

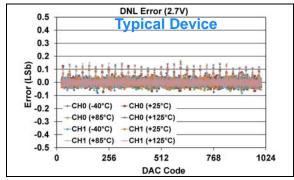

FIGURE 1-377: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '11'$ (V_{RFF} Buffered), $G_{X} = '1'$ (Z_{X}).

FIGURE 1-378: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '1' (Zx), (see **Appendix B.5** for additional information).

FIGURE 1-379: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{RFF} Buffered), Gx = '1' (2x)).

FIGURE 1-380: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{RFF} Buffered), Gx = '1' (2x).

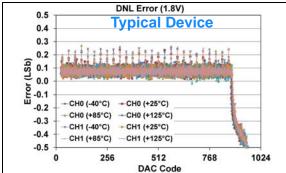
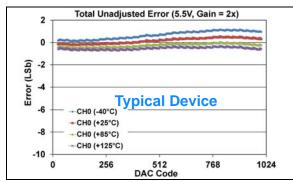
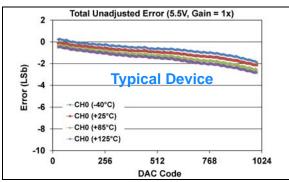
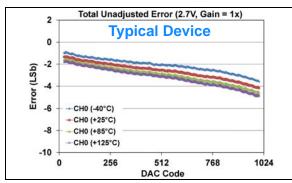
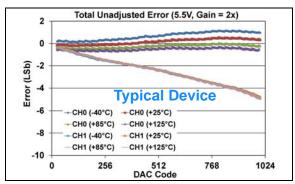
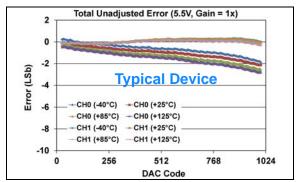




FIGURE 1-381: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '1' (Zx), (see Appendix B.5 for additional information).


10-bit: VRxB: VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = 2.048V


FIGURE 1-382: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**) $(10\text{-bit}: V_{DD} = 5.5V, V_{REF} = 2.048V, VRxB:VRxA = '11' <math>(V_{REF} \text{ Buffered}), Gx = '1' (2x)).$


FIGURE 1-383: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**) $(10\text{-bit}: V_{DD} = 5.5V, V_{REF} = 2.048V, VRxB:VRxA = '11' <math>(V_{REF} \text{ Buffered}), Gx = '0' (1x)).$

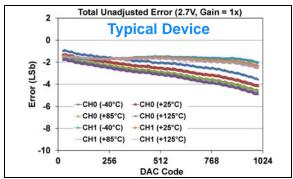

FIGURE 1-384: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB11**) $(10\text{-bit}: V_{DD} = 2.7V, V_{REF} = 2.048V, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '0' (1x)).$

FIGURE 1-385: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{RFF} Buffered)$, Gx = '1' (2x)).

FIGURE 1-386: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**) $(10\text{-bit}: V_{DD} = 5.5V, V_{REF} = 2.048V, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '0' (1x)).$

FIGURE 1-387: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB12**) $(10\text{-bit}: V_{DD} = 2.7V, V_{REF} = 2.048V, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '0' (1x)).$

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.

10-bit: $VRxB:VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = 2.048V$

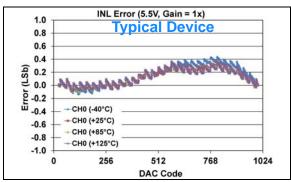



FIGURE 1-388: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '1' (2x)).

FIGURE 1-389: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

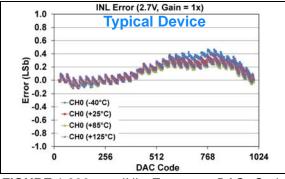


FIGURE 1-390: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

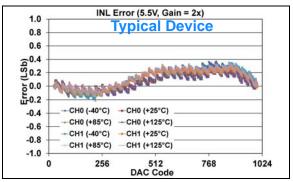


FIGURE 1-391: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '1' (2x)).

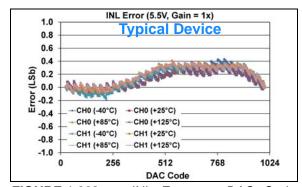


FIGURE 1-392: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

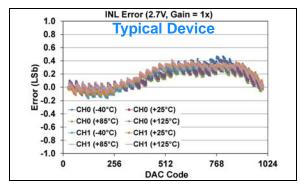
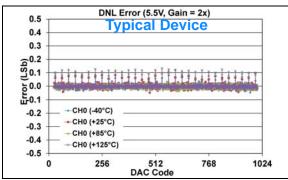
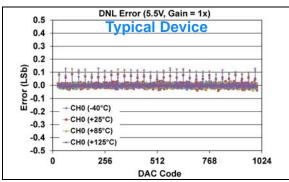
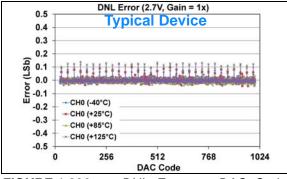


FIGURE 1-393: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

10-bit: VRxB: VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = 2.048V

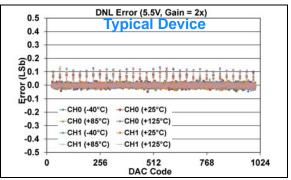

FIGURE 1-394: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '1' (2x)).

FIGURE 1-395: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

FIGURE 1-396: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - **MCP48FXB11**) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

FIGURE 1-397: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '1' (2x)).

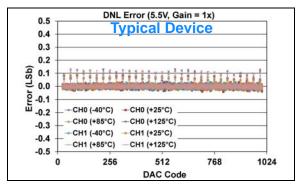
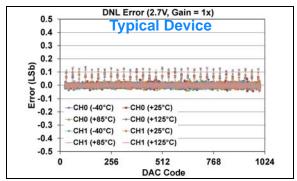
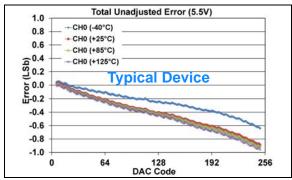




FIGURE 1-398: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{RFF} Buffered)$, Gx = '0' (1x)).

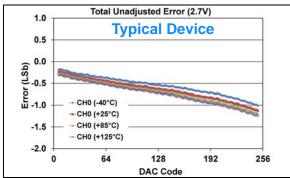
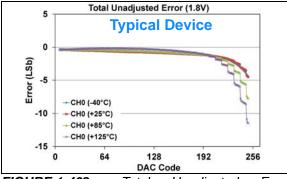
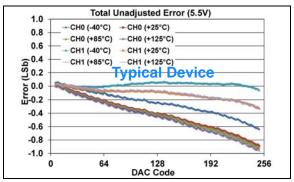
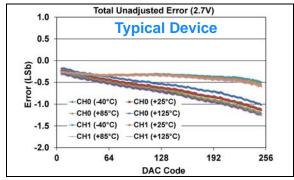


FIGURE 1-399: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - **MCP48FXB12**) (10-bit: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).


Note: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = 5.5V$. **8-bit:** $VRxB:VRxA = '00' (V_{DD} Mode)$, Gx = '0' (1x)


FIGURE 1-400: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) $(8\text{-bit}: V_{DD} = 5.5V, VRxB: VRxA = '00' (V_{DD}), Gx = '0' (1x)).$


FIGURE 1-401: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) $(8\text{-bit}: V_{DD} = 2.7V, VRxB: VRxA = '00' (V_{DD}), Gx = '0' (1x)).$

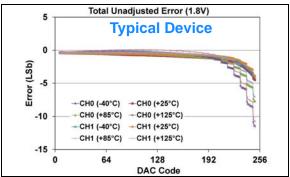

FIGURE 1-402: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) $(8\text{-bit}: V_{DD} = 1.8V, VRxB:VRxA = '00' (V_{DD}), Gx = '0' (1x)),$ (see **Appendix B.1** for additional information).

FIGURE 1-403: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 5.5V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)).

FIGURE 1-404: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 2.7V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)).

FIGURE 1-405: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 1.8V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)), (see **Appendix B.1** for additional information).

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = 5.5V$. **8-bit:** $VRxB:VRxA = '00' (V_{DD} Mode)$, Gx = '0' (1x)

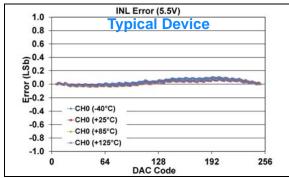


FIGURE 1-406: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: $V_{DD} = 5.5V$, $V_{RXB}:V_{RXA} = '00' (V_{DD})$, $G_{X} = '0' (1x)$).

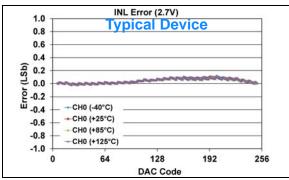
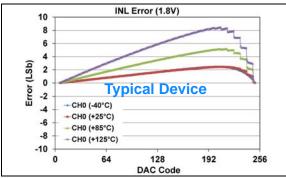
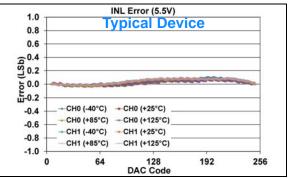




FIGURE 1-407: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: $V_{DD} = 2.7V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)).

FIGURE 1-408: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 1.8V$, $V_{RXB}:V_{RXA} = '00' (V_{DD})$, $G_{X} = '0' (1x)$), (see **Appendix B.1** for additional information).

FIGURE 1-409: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 5.5V$, $V_{RXB}:V_{RXA} = '00' (V_{DD})$, $G_{X} = '0' (1x)$).

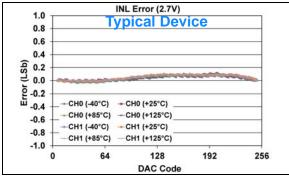
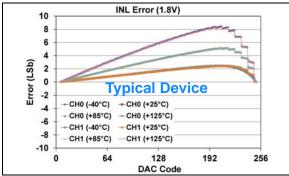
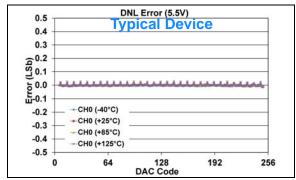
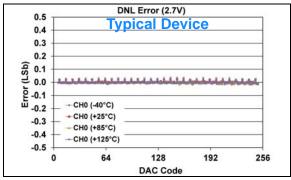
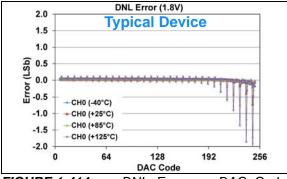



FIGURE 1-410: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: $V_{DD} = 2.7V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)).

FIGURE 1-411: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 1.8V$, $V_{RXB}:V_{RXA} = '00' (V_{DD})$, $G_{X} = '0' (1x)$), (see **Appendix B.1** for additional information).

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = 5.5V$. **8-bit:** $VRxB:VRxA = '00' (V_{DD} Mode)$, Gx = '0' (1x)

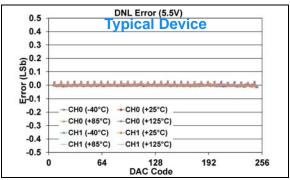

FIGURE 1-412: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: $V_{DD} = 5.5V$, $V_{DD} = 5.5V$,

FIGURE 1-413: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 2.7V$, $V_{RXB}:V_{RXA} = '00' (V_{DD})$, $G_{X} = '0' (1x)$).

FIGURE 1-414: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 1.8V$, $V_{RXB}:V_{RXA} = '00' (V_{DD})$, $G_{X} = '0' (1x)$), (see **Appendix B.1** for additional information).

FIGURE 1-415: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 5.5V$, $V_{RXB}:V_{RXA} = '00' (V_{DD})$, $G_{X} = '0' (1x)$).

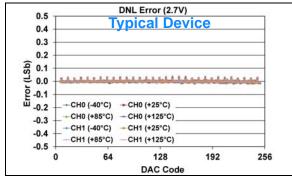
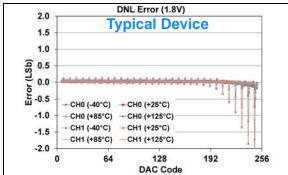
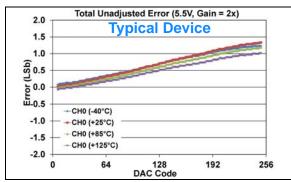




FIGURE 1-416: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: $V_{DD} = 2.7V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)).

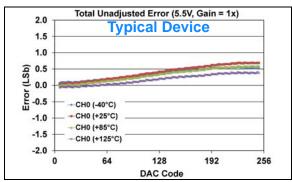
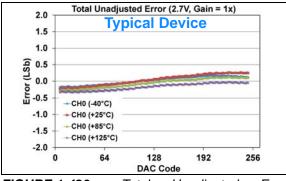
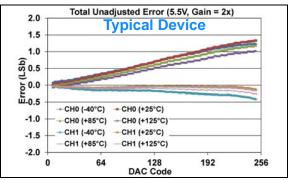
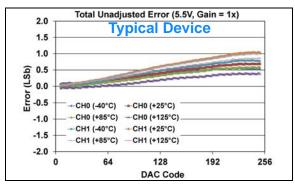


FIGURE 1-417: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 1.8V$, $VRxB:VRxA = '00' (V_{DD})$, Gx = '0' (1x)), (see **Appendix B.1** for additional information).


8-bit: VRxB:VRxA = '01' (Bandgap Mode)


FIGURE 1-418: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '1' (2x)).


FIGURE 1-419: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

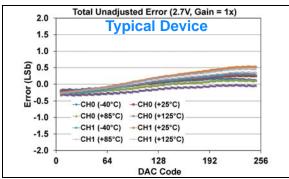

FIGURE 1-420: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 2.7V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

FIGURE 1-421: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '1' (2x)).

FIGURE 1-422: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

FIGURE 1-423: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 2.7V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.

8-bit: VRxB:VRxA = '01' (Bandgap Mode)

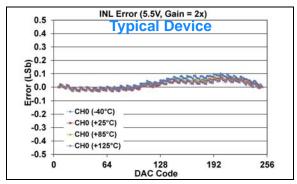


FIGURE 1-424: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '1' (2x)).

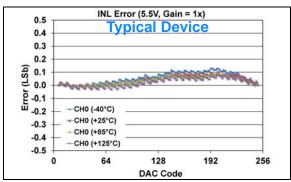
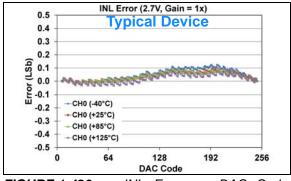
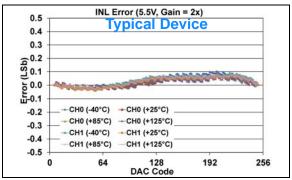




FIGURE 1-425: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

FIGURE 1-426: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 2.7V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

FIGURE 1-427: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '1' (2x)).

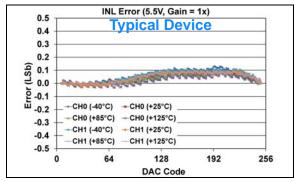
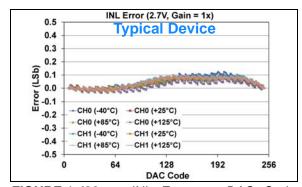
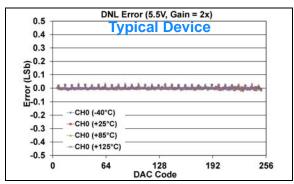
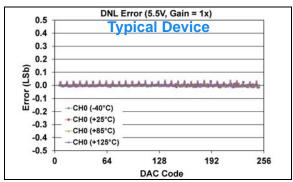
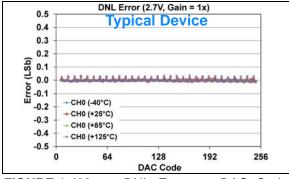



FIGURE 1-428: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

FIGURE 1-429: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 2.7V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

8-bit. VRxB:VRxA = '01' (Bandgap Mode)

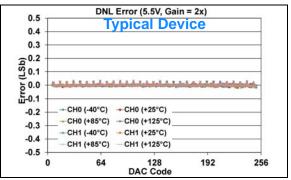

FIGURE 1-430: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '1' (2x)).

FIGURE 1-431: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

FIGURE 1-432: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 2.7V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

FIGURE 1-433: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '1' (2x)).

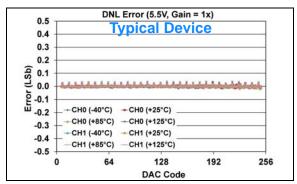


FIGURE 1-434: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: $V_{DD} = 5.5V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).

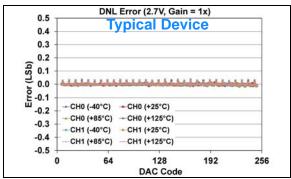
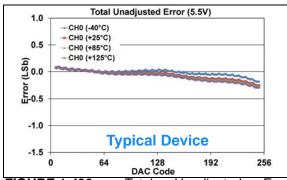
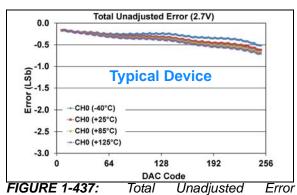



FIGURE 1-435: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: $V_{DD} = 2.7V$, VRxB:VRxA = '01' (Bandgap), Gx = '0' (1x)).


Note: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = 5.5V$.

8-bit: VRxB:VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = V_{DD}, Gx = '0' (1x)

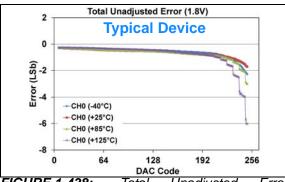
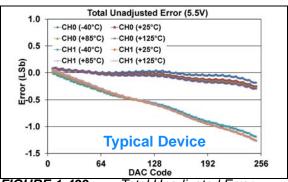
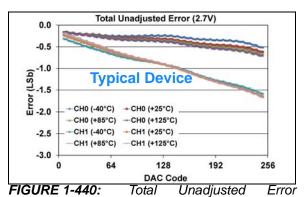


FIGURE 1-436: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) $(8\text{-bit}: V_{DD} = 5.5V, V_{REF} = V_{DD},$


 $VRxB:VRxA = '10' (V_{RFF} Unbuffered), Gx = '0' (1x)).$


 (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$. $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

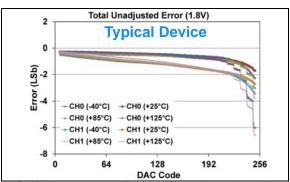

FIGURE 1-438: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) $(8\text{-bit}: V_{DD} = 1.8V, V_{REF} = V_{DD}, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '0' (1x)), (see$ **Appendix B.2**for additional information).

FIGURE 1-439: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) $(8\text{-bit}: V_{DD} = 5.5V, V_{REF} = V_{DD}, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '0' (1x)).$

 (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{RFF} Unbuffered)$, Gx = '0' (1x)).

FIGURE 1-441: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = V_{DD}$, $VRXB:VRXA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x), (see **Appendix B.2** for additional information).

8-bit: $VRxB: VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = V_{DD}, Gx = '0' (1x)$

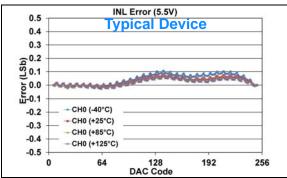
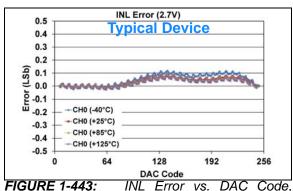
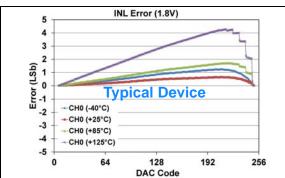




FIGURE 1-442: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01)

(8-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{RFF} Unbuffered)$, Gx = '0' (1x)).

FIGURE 1-444: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)), (see **Appendix B.2** for additional information).

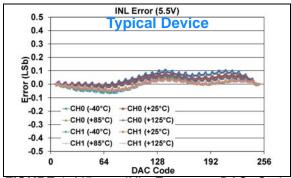
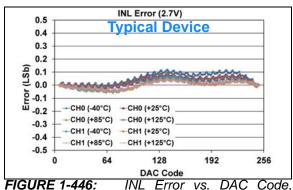
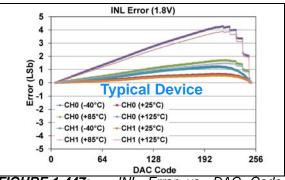




FIGURE 1-445: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02)

(8-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

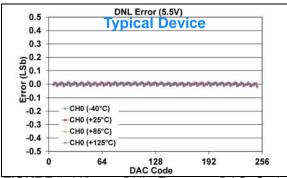
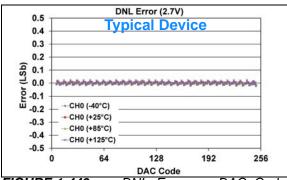
FIGURE 1-446: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{RFF} Unbuffered)$, Gx = '0' (1x)).

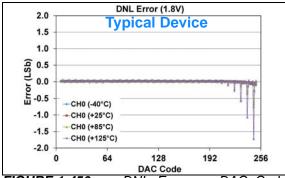
FIGURE 1-447: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)),

(see Appendix B.2 for additional information).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.

8-bit: VRxB:VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = V_{DD}, Gx = '0' (1x)


FIGURE 1-448: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01)

(8-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{RFF} Unbuffered)$, Gx = '0' (1x)).

FIGURE 1-449: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$,

 $VRxB:VRxA = '10' (V_{RFF} Unbuffered), Gx = '0' (1x)).$

FIGURE 1-450: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)),

(see Appendix B.2 for additional information).

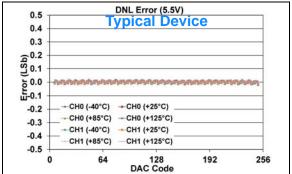
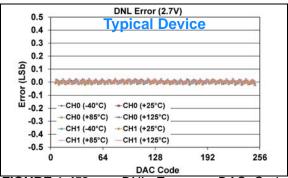



FIGURE 1-451: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02)

(8-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

FIGURE 1-452: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$,

 $egin{array}{lll} (8\mbox{-bit}: & V_{DD} &=& 2.7 \mbox{V}, & V_{REF} &=& V_{DD}, \mbox{VRxB:VRxA} &=& `10' (V_{REF} \mbox{Unbuffered}), \mbox{Gx} &=& `0' (1x)). \end{array}$

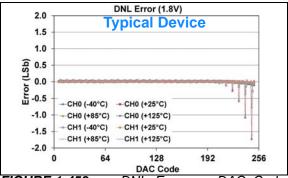
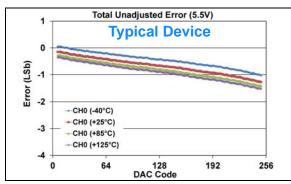
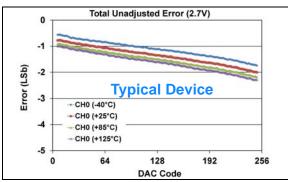
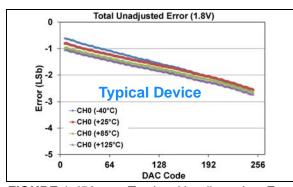
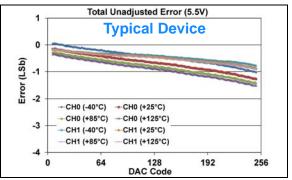
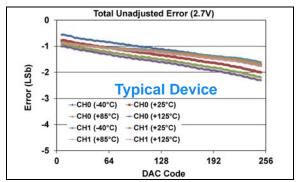




FIGURE 1-453: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x), (see Appendix B.2 for additional information).


8-bit: $VRxB: VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = 1V, Gx = '0' (1x)$


FIGURE 1-454: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '10'$ (V_{RFF} Unbuffered), $G_{X} = '0'$ (1x)).


FIGURE 1-455: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '10'$ (V_{REF} Unbuffered), $G_{X} = '0' (1x)$).

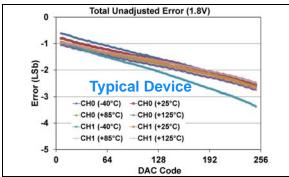

FIGURE 1-456: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '10'$ (V_{REF} Unbuffered), $G_{X} = '0'$ (1x)).

FIGURE 1-457: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '10'$ (V_{RFF} Unbuffered), $G_{X} = '0'$ (1x)).

FIGURE 1-458: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{RFF} Unbuffered), Gx = '0' (1x)).

FIGURE 1-459: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '10' $(V_{REF}$ Unbuffered), Gx = '0' (1x)).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.

8-bit: $VRxB:VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = 1V, Gx = '0' (1x)$

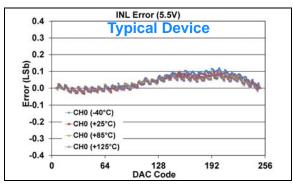
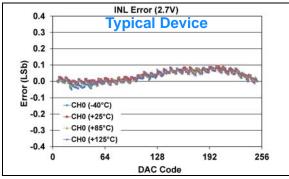



FIGURE 1-460: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{RFF} Unbuffered), Gx = '0' (1x)).

FIGURE 1-461: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '10'$ (V_{REF} Unbuffered), $G_{X} = '0'$ (1x)).

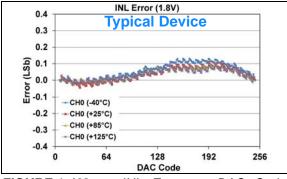
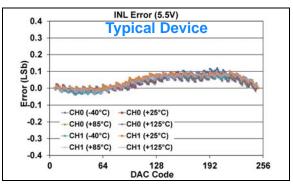



FIGURE 1-462: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '10'$ (V_{REF} Unbuffered), $G_{X} = '0'$ (1x)).

FIGURE 1-463: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '10'$ (V_{RFF} Unbuffered), $G_{X} = '0'$ (1x)).

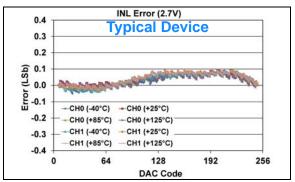
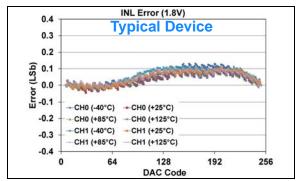
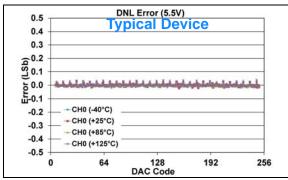




FIGURE 1-464: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{RFF} Unbuffered), Gx = '0' (1x)).

FIGURE 1-465: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '10'$ (V_{REF} Unbuffered), $G_{X} = '0'$ (1x)).

8-bit: $VRxB: VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = 1V, Gx = '0' (1x)$

FIGURE 1-466: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '10'$ (V_{RFF} Unbuffered), $G_{X} = '0'$ (1x)).

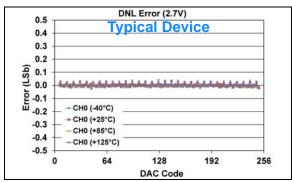


FIGURE 1-467: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '0' (1x)).

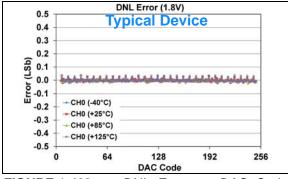
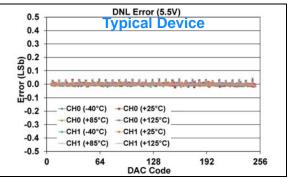



FIGURE 1-468: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '10'$ (V_{REF} Unbuffered), $G_{X} = '0'$ (1x)).

FIGURE 1-469: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '10'$ (V_{REF} Unbuffered), $G_{X} = '0'$ (1x)).

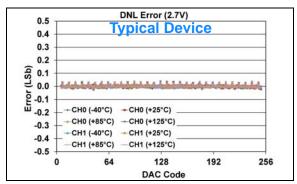
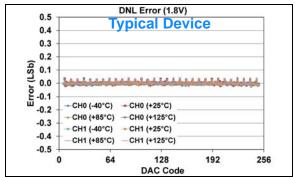
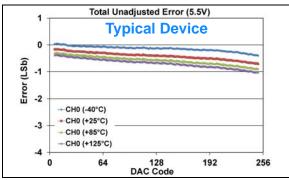
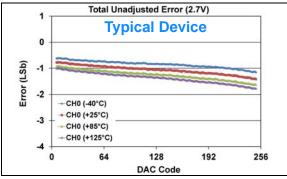
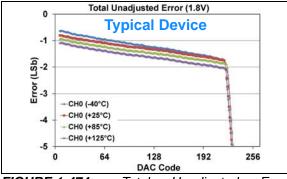


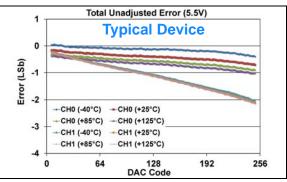
FIGURE 1-470: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{RFF} Unbuffered), Gx = '0' (1x)).

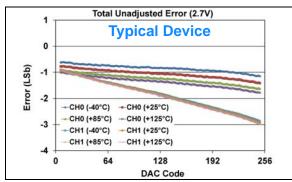




FIGURE 1-471: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{RFF} Unbuffered), Gx = '0' (1x)).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.


8-bit: $VRxB:VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = 1V, Gx = '1' (2x)$


FIGURE 1-472: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '10'$ (V_{REF} Unbuffered), $G_{X} = '1'$ (Z_{X}).


FIGURE 1-473: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '1'(2x)).

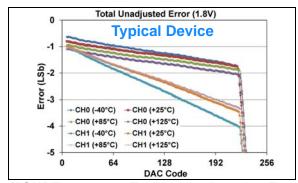

FIGURE 1-474: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '10'$ (V_{REF} Unbuffered), $G_{X} = '1'$ (2x)), (see **Appendix B.3** for additional information).

FIGURE 1-475: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '10'$ (V_{REF} Unbuffered), $G_{X} = '1'$ (Z_{X}).

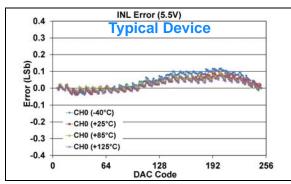


FIGURE 1-476: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '10' $(V_{REF}$ Unbuffered), Gx = '1' (2x)).

FIGURE 1-477: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '1' (2x)), (see **Appendix B.3** for additional information).

8-bit: $VRxB:VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = 1V, Gx = '1' (2x)$

FIGURE 1-478: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '10'$ (V_{REF} Unbuffered), $G_{X} = '1'$ (2x)).

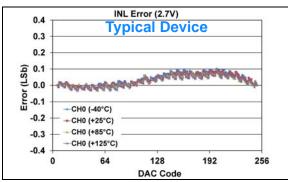
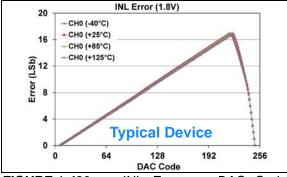
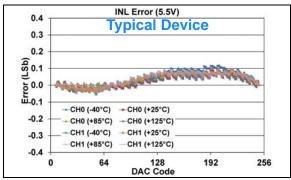




FIGURE 1-479: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '1' (2x).

FIGURE 1-480: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '10'$ (V_{REF} Unbuffered), $G_{X} = '1'$ (2x)), (see **Appendix B.3** for additional information).

FIGURE 1-481: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '10'$ (V_{RFF} Unbuffered), $G_{X} = '1'$ (2x)).

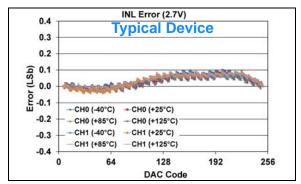
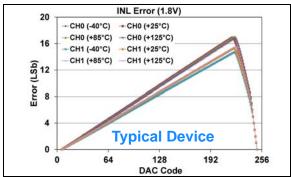



FIGURE 1-482: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{RFF} Unbuffered), Gx = '1'(2x)).

FIGURE 1-483: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '10'$ (V_{REF} Unbuffered), $G_{X} = '1'(2x)$), (see **Appendix B.3** for additional information).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.

8-bit: $VRxB:VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = 1V, Gx = '1' (2x)$

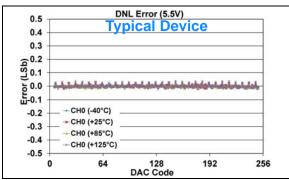
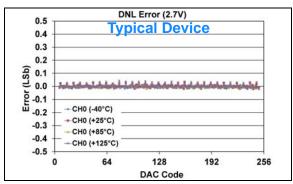
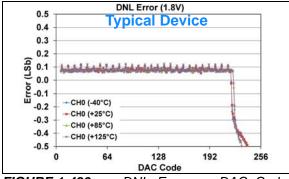




FIGURE 1-484: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '1' (2x).

FIGURE 1-485: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '10'$ (V_{REF} Unbuffered), $G_{X} = '1'$ (Z_{X}).

FIGURE 1-486: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '10'$ (V_{REF} Unbuffered), $G_{X} = '1'(2x)$), (see **Appendix B.3** for additional information).

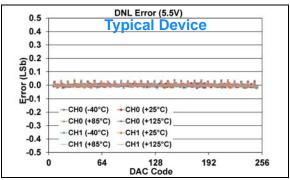


FIGURE 1-487: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{RFF} Unbuffered), Gx = '1'(2x)).

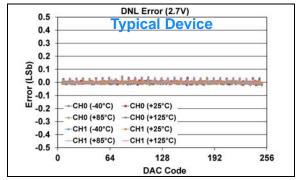


FIGURE 1-488: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '10' (V_{REF} Unbuffered), Gx = '1' (2x)).

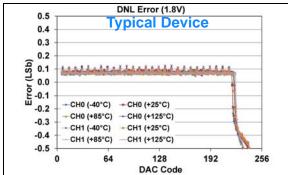
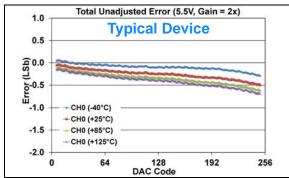
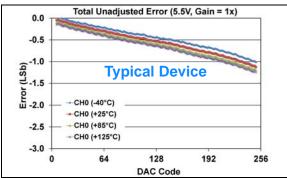
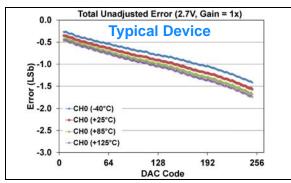
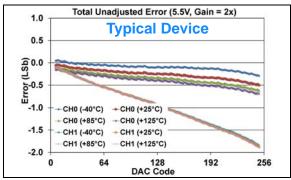
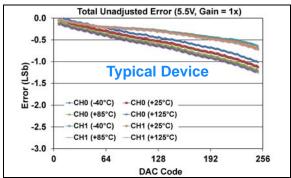




FIGURE 1-489: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '10'$ (V_{REF} Unbuffered), $G_{X} = '1'$ (2x)), (see Appendix B.3 for additional information).


8-bit: $VRxB:VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = 2.048V$


FIGURE 1-490: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '1' (2x)).


FIGURE 1-491: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

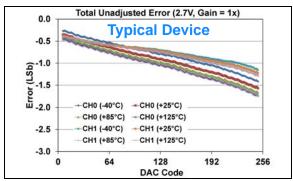

FIGURE 1-492: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

FIGURE 1-493: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '1' (2x)).

FIGURE 1-494: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

FIGURE 1-495: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.

8-bit: VRxB:VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = 2.048V

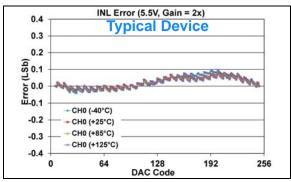
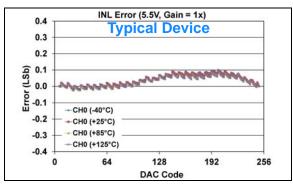
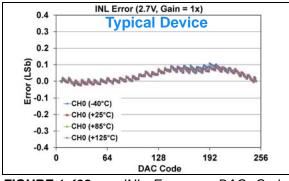




FIGURE 1-496: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '1' (2x)).

FIGURE 1-497: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

FIGURE 1-498: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

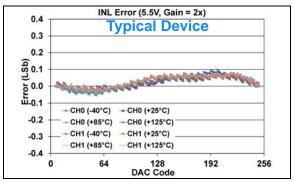


FIGURE 1-499: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '1' (2x)).

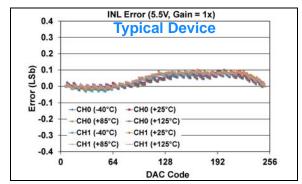


FIGURE 1-500: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{RFF} Unbuffered)$, Gx = '0' (1x)).

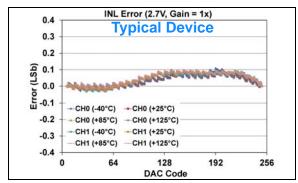


FIGURE 1-501: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

8-bit: VRxB:VRxA = '10' (V_{REF} Unbuffered Mode), V_{REF} = 2.048V

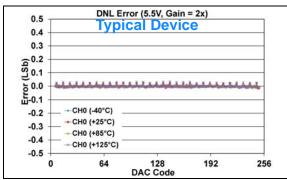
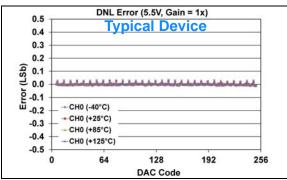



FIGURE 1-502: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '1' (2x)).

FIGURE 1-503: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

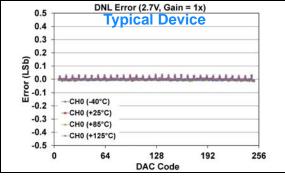
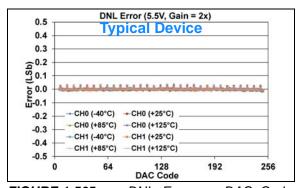
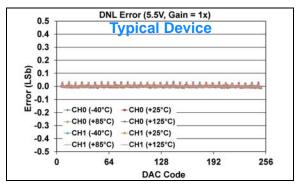
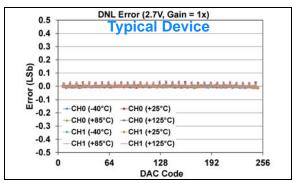
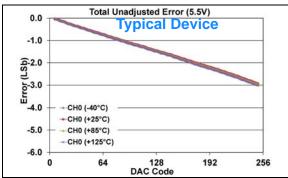
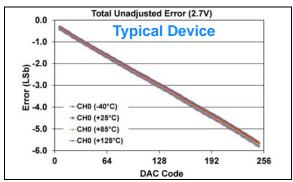



FIGURE 1-504: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

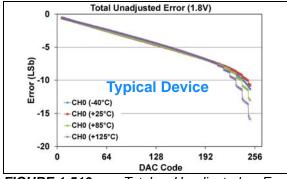
FIGURE 1-505: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '1' (2x)).

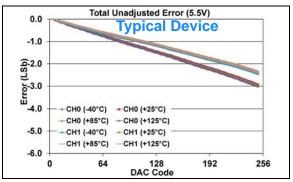



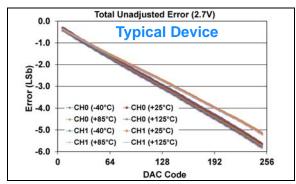

FIGURE 1-506: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{RFF} Unbuffered)$, Gx = '0' (1x)).


FIGURE 1-507: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '10' (V_{REF} Unbuffered)$, Gx = '0' (1x)).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.


8-bit: $VRxB: VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = V_{DD}, Gx = '0' (1x)$


FIGURE 1-508: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).


FIGURE 1-509: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

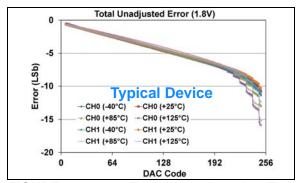
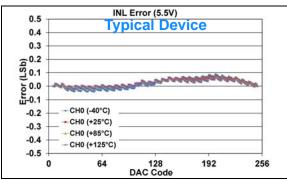
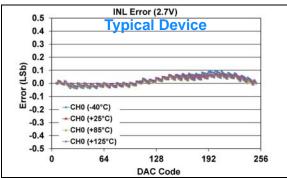
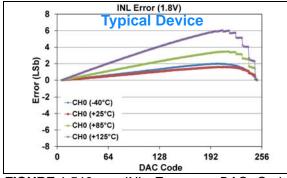

FIGURE 1-510: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)), (see **Appendix B.4** for additional information).

FIGURE 1-511: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

FIGURE 1-512: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

FIGURE 1-513: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 1.8$ V, $V_{REF} = V_{DD}$, $VRXB:VRXA = '11' (V_{REF} Buffered)$, GX = '0' (1x)), (see **Appendix B.4** for additional information).

8-bit: $VRxB: VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = V_{DD}, Gx = '0' (1x)$

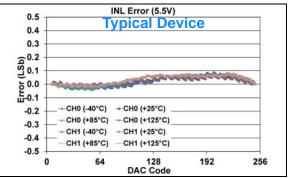

FIGURE 1-514: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

FIGURE 1-515: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

FIGURE 1-516: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)), (see **Appendix B.4** for additional information).

FIGURE 1-517: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

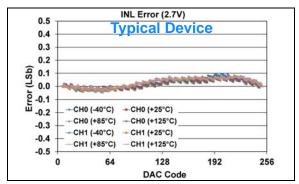
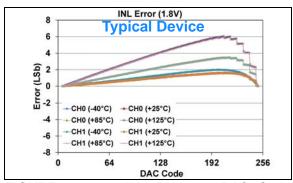



FIGURE 1-518: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$, $VRXB:VRXA = '11' (V_{REF} Buffered)$, GX = '0' (1x)).

FIGURE 1-519: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)), (see **Appendix B.4** for additional information).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.

8-bit: $VRxB: VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = V_{DD}, Gx = '0' (1x)$

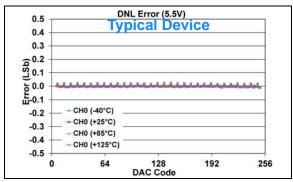


FIGURE 1-520: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

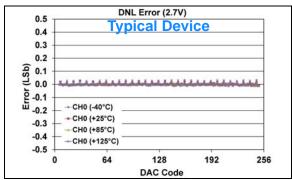
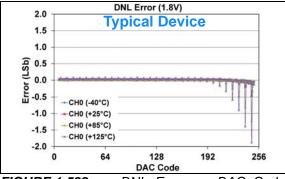



FIGURE 1-521: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{RFF} Buffered)$, Gx = '0' (1x)).

FIGURE 1-522: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = V_{DD}$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '0' (1x)), (see **Appendix B.4** for additional information).

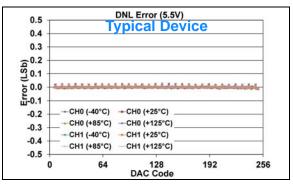


FIGURE 1-523: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

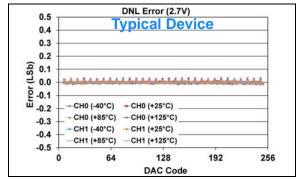
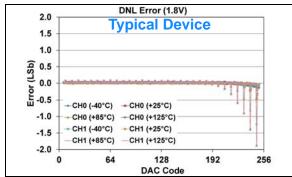
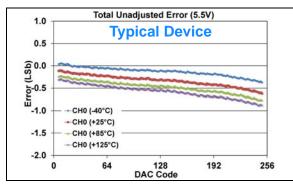




FIGURE 1-524: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = V_{DD}$, $VRxB:VRxA = '11' (V_{RFF} Buffered)$, Gx = '0' (1x)).

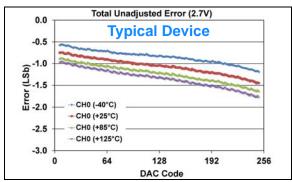
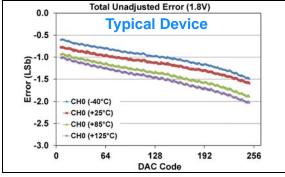
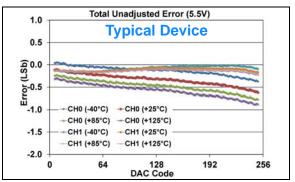
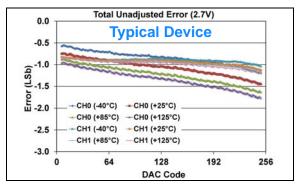


FIGURE 1-525: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = V_{DD}$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '0' (1x)), (see **Appendix B.4** for additional information).


8-bit: $VRxB:VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = 1V, Gx = '0' (1x)$


FIGURE 1-526: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{RFF} Buffered), Gx = '0' (1x)).


FIGURE 1-527: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '11' $(V_{RFF} Buffered)$, Gx = '0' (1x)).

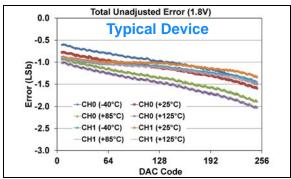

FIGURE 1-528: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '11' $(V_{RFF} Buffered)$, Gx = '0' (1x)).

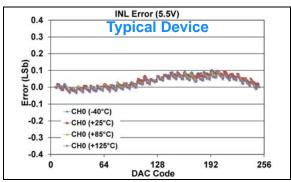
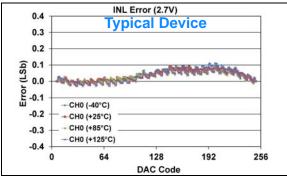
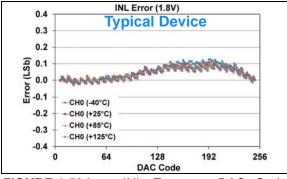
FIGURE 1-529: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '11' $(V_{RFF}$ Buffered), Gx = '0' (1x)).

FIGURE 1-530: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '11' $(V_{REF} Buffered)$, Gx = '0' (1x)).

FIGURE 1-531: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '11' $(V_{REF}$ Buffered), Gx = '0' (1x).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.

8-bit: $VRxB: VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = 1V, Gx = '0' (1x)$

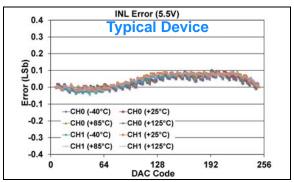

FIGURE 1-532: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '0' (1x)).

FIGURE 1-533: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '11'$ (V_{REF} Buffered), $G_{X} = '0'$ (1x)).

FIGURE 1-534: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '11'$ (V_{REF} Buffered), $G_{X} = '0'$ (1x)).

FIGURE 1-535: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{RFF} Buffered), Gx = '0' (1x)).

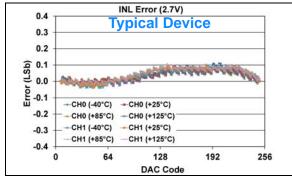
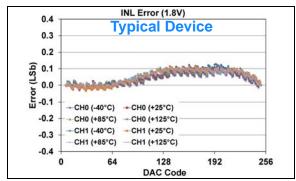



FIGURE 1-536: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '0' (1x)).

FIGURE 1-537: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '11'$ (V_{REF} Buffered), $G_{X} = '0'$ (1x)).

8-bit: $VRxB: VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = 1V, Gx = '0' (1x)$

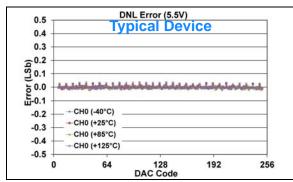
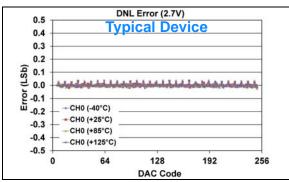



FIGURE 1-538: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '11'$ (V_{REF} Buffered), $G_{X} = '0'$ (1x)).

FIGURE 1-539: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '11'$ (V_{REF} Buffered), $G_{X} = '0'$ (1x)).

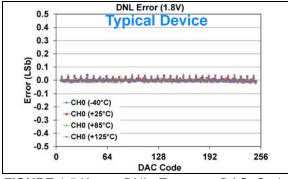
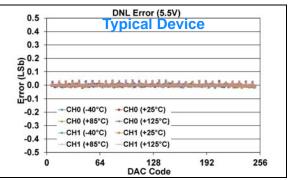
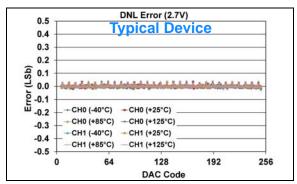
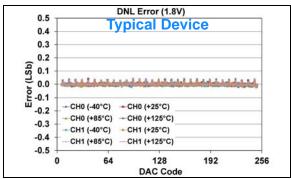
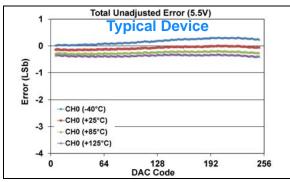
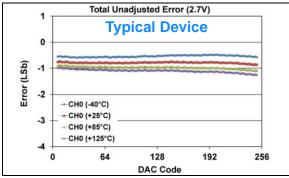



FIGURE 1-540: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '11'$ (V_{REF} Buffered), $G_{X} = '0'$ (1x)).

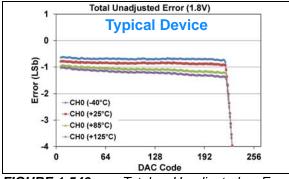
FIGURE 1-541: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '11'$ (V_{RFF} Buffered), $G_{X} = '0'$ (1x)).

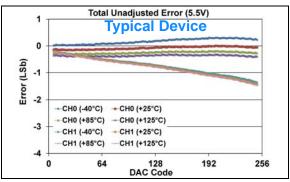



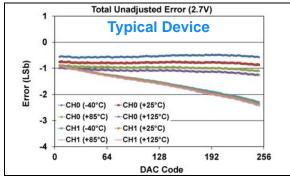

FIGURE 1-542: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{RFF} Buffered), Gx = '0' (1x)).


FIGURE 1-543: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '11'$ (V_{REF} Buffered), $G_{X} = '0'$ (1x)).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.


8-bit: $VRxB: VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = 1V, Gx = '1' (2x)$


FIGURE 1-544: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '11'$ (V_{RFF} Buffered), $G_{X} = '1'$ (Z_{X}).


FIGURE 1-545: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '11'$ (V_{REF} Buffered), $G_{X} = '1'$ (Z_{X}).

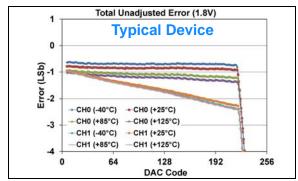

FIGURE 1-546: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '11'$ (V_{REF} Buffered), $G_{X} = '1'$ ($V_{X} = V_{X} = V$

FIGURE 1-547: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '11'$ $(V_{REF} Buffered)$, $G_{X} = '1'$ (2x)).

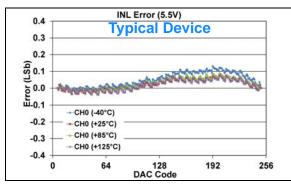
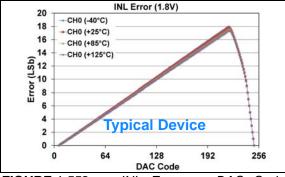


FIGURE 1-548: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '1' (2x).

FIGURE 1-549: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '1'(2x)), (see **Appendix B.5** for additional information).


8-bit: $VRxB:VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = 1V, Gx = '1' (2x)$

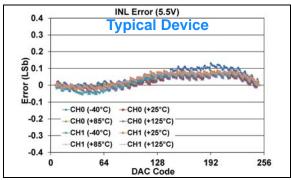
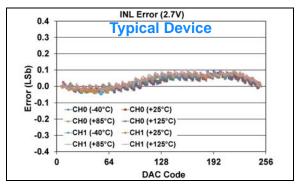
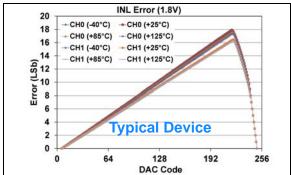
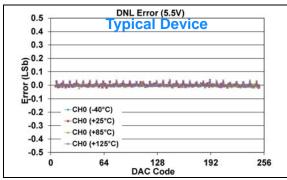

FIGURE 1-550: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '11'$ (V_{REF} Buffered), $G_{X} = '1'$ (Z_{X}).

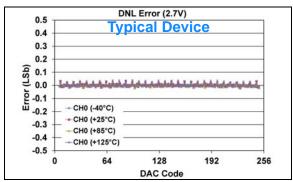
FIGURE 1-551: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{RFF} Buffered), Gx = '1' (2x).

FIGURE 1-552: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '11'$ (V_{REF} Buffered), $G_{X} = '1'$ (2x)), (see **Appendix B.5** for additional information).

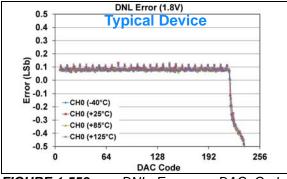
FIGURE 1-553: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '11'$ (V_{REF} Buffered), $G_{X} = '1'$ (Z_{X}).


FIGURE 1-554: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{RFF} Buffered), Gx = '1'(2x)).


FIGURE 1-555: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '11'$ (V_{REF} Buffered), $G_{X} = '1'$ (Z_{X}), (see **Appendix B.5** for additional information).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.


8-bit: $VRxB: VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = 1V, Gx = '1' (2x)$

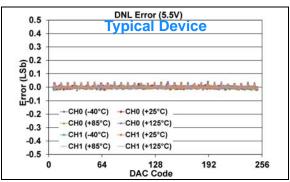

FIGURE 1-556: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '11'$ (V_{REF} Buffered), $G_{X} = '1'$ (Z_{X}).

FIGURE 1-557: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '11'$ (V_{REF} Buffered), $G_{X} = '1'$ (Z_{X}).

FIGURE 1-558: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '11'$ (V_{REF} Buffered), $G_{X} = '1'$ (2x)), (see **Appendix B.5** for additional information).

FIGURE 1-559: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 1V$, $V_{RXB}:V_{RXA} = '11'$ (V_{REF} Buffered), $G_{X} = '1'$ (Z_{X}).

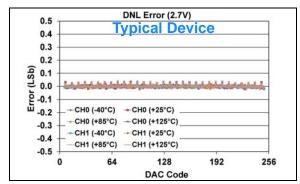
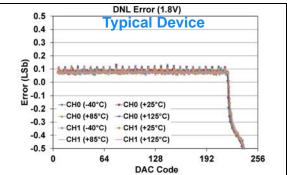
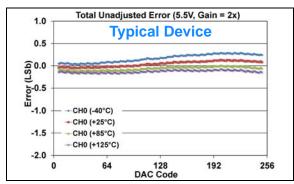




FIGURE 1-560: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 1V$, V_{RXB} : $V_{RXA} = '11'$ (V_{REF} Buffered), $G_{X} = '1'$ (V_{REF} Buffered).

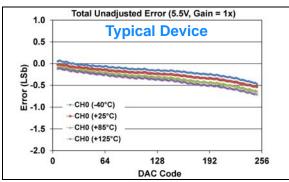
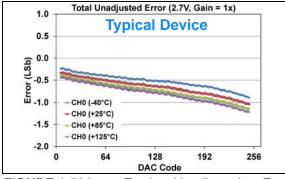
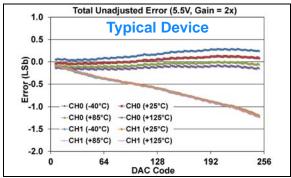
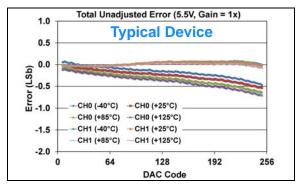


FIGURE 1-561: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 1.8V$, $V_{REF} = 1V$, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '1' (2x)), (see **Appendix B.5** for additional information).


8-bit: $VRxB:VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = 2.048V$


FIGURE 1-562: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '1' (2x)).


FIGURE 1-563: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

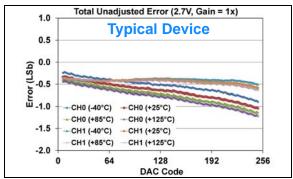

FIGURE 1-564: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Single Channel - **MCP48FXB01**) $(8\text{-bit}: V_{DD} = 2.7V, V_{REF} = 2.048V, VRxB:VRxA = '11' (V_{REF} Buffered), Gx = '0' (1x)).$

FIGURE 1-565: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '1' (2x)).

FIGURE 1-566: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

FIGURE 1-567: Total Unadjusted Error (V_{OUT}) vs. DAC Code, and Temperature (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

Note: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = 5.5$ V.

8-bit: VRxB:VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = 2.048V

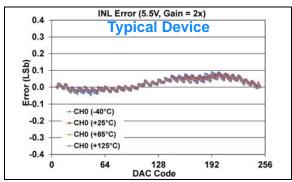
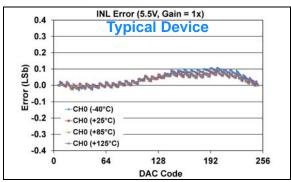



FIGURE 1-568: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '1' (2x)).

FIGURE 1-569: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

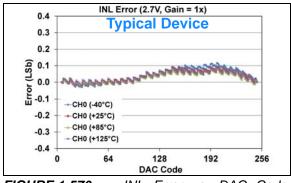


FIGURE 1-570: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

FIGURE 1-571: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '1' (2x)).

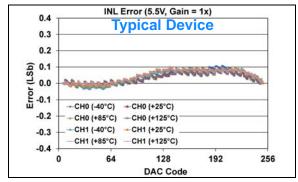


FIGURE 1-572: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{RFF} Buffered)$, Gx = '0' (1x)).

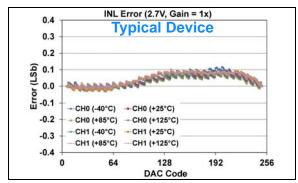


FIGURE 1-573: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

8-bit: $VRxB:VRxA = '11' (V_{REF} Buffered Mode), V_{REF} = 2.048V$

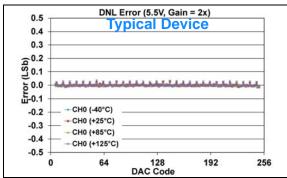


FIGURE 1-574: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '1' (2x)).

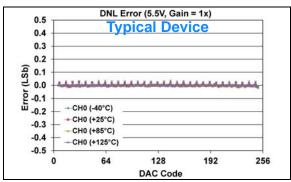
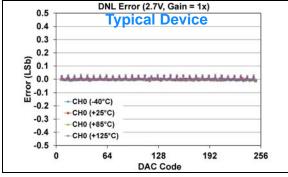
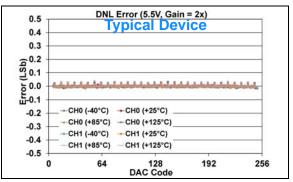




FIGURE 1-575: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

FIGURE 1-576: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - **MCP48FXB01**) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

FIGURE 1-577: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - **MCP48FXB02**) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '1' (2x)).

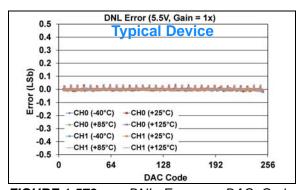


FIGURE 1-578: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: $V_{DD} = 5.5V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{RFF} Buffered)$, Gx = '0' (1x)).

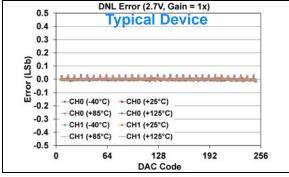


FIGURE 1-579: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: $V_{DD} = 2.7V$, $V_{REF} = 2.048V$, $VRxB:VRxA = '11' (V_{REF} Buffered)$, Gx = '0' (1x)).

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (September 2015)

· Original Release of this Document.

APPENDIX B: CHARACTERIZATION GRAPH PERFORMANCE INSIGHTS

This Appendix discusses some of the device's operational performance reflected in the supplied device performance graphs.

The device's performance is calibrated in a single configuration. This factory calibration is in the V_{DD} mode (VRxB:VRxA = '00') at 5V.

An example of this is the observed device performance differences between V_{DD} mode, V_{REF} Unbuffered mode with $V_{REF} = V_{DD},$ and V_{REF} Buffered mode with $V_{REF} = V_{DD}.$ In an ideal implementation, the performance would be identical. Due to device circuit implementation differences, there are performance differences that occur. Looking at the Total Unadjusted Error graphs for each mode gives an indication of where the output buffer is no longer operating in the linear region. If this occurs before code 4000, the INL and DNL graphs will reflect this nonlinearity. INL data would be good if calculations were based on an upper code value that is in the linear range.

Note: If output nonlinearity occurs before DAC code 4000, which is indicated by the Total Unadjusted Error curve changing from a straight line, the INL and DNL graphs will reflect this in their graphs as well.

B.1 V_{DD} Mode at $V_{DD} = 1.8V$

At low device voltages (such as 1.8V), the output buffer's performance is degraded. That is, for high DAC register codes, the output voltage is no longer linear. This is shown in the Total Unadjusted Error graph.

Since INL is determined by the measured voltages at code 100 and code 4000, with code 4000 having significant error, the INL graph also reflects that error. If the INL for this data set is calculated with a high code still in the linear region, INL would look similar to the graph at 2.7V.

The device's DNL is also affected once the output buffer is no longer in its linear range.

B.2 V_{REF} Unbuffered Mode with $V_{REF} = V_{DD}$ and a Gain of 1x at $V_{DD} = 1.8V$

At low device voltages (such as 1.8V), the output buffer's performance is degraded. That is, for high DAC register codes, the output voltage is no longer linear. This is shown in the Total Unadjusted Error graph.

Since INL is determined by the measured voltages at code 100 and code 4000, with code 4000 having significant error, the INL graph also reflects that error. If the INL for this data set is calculated with a high code still in the linear region, INL would look similar to the graph at 2.7V.

The device's DNL is also affected once the output buffer is no longer in its linear range.

B.3 V_{REF} Unbuffered Mode with V_{REF} = 1V and a Gain of 2x at V_{DD} = 1.8V

With a V_{REF} of 1V and a Gain of 2x, theoretically, the output would go to 2V. But since V_{DD} is at 1.8V, the output is "clipped". This clipping impacts the graphs for Total Unadjusted Error, INL and DNL. If the INL for this data set is calculated with an upper point that was in the linear region (lower than code 4000), the INL graph would look similar to the 1.8V graph where Gain was set to 1x (in the calculated code range).

B.4 V_{REF} Buffered Mode with $V_{REF} = V_{DD}$ and a Gain of 1x at $V_{DD} = 1.8V$

Due to the V_{REF} input voltage being equal to the device V_{DD} voltage, the V_{REF} input buffer is saturated and the voltage on the resistor ladder is lower than either the V_{DD} mode or the V_{REF} Unbuffered mode.

At low device voltages (such as 1.8V), the output buffer's performance is degraded. That is, for high DAC register codes, the output voltage is no longer linear. This is shown in the Total Unadjusted Error graph.

Due to this decline in the voltage on the resistor ladder, the following occurs:

- Total Unadjusted Error is worse than V_{DD} mode
- The output buffer saturates at a higher code than V_{DD} mode

Since INL is determined by the measured voltages at code 100 and code 4000, with code 4000 having significant error, the INL graph also reflects that error. If the INL for this data set is calculated with a high code still in the linear region, INL would look similar to the graph at 2.7V.

The device's DNL is also affected once the output buffer is no longer in its linear range.

If the widest DAC code range for better INL performance is required, then evaluate this device configuration, but in most cases the V_{DD} mode (VRxB:VRxA = '00') is the suggested device configuration.

B.5 V_{REF} Buffered Mode with $V_{REF} = 1V$ and a Gain of 2x at $V_{DD} = 1.8V$

With a V_{REF} of 1V and a Gain of 2x, theoretically, the output would go to 2V. But since V_{DD} is at 1.8V, the output is "clipped". This clipping impacts the graphs for Total Unadjusted Error, INL and DNL. If the INL for this data set is calculated with an upper point that was in the linear region (lower than code 4000), the INL graph would look similar to the 1.8V graph where Gain was set to 1x (in the calculated code range).

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
 intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63277-825-3

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/

support Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis

Noblesville, IN Tel: 317-773-8323

Fax: 317-773-5453 Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Harbour City, Kowloon

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000

Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829

Fax: 86-24-2334-2393
China - Shenzhen

Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300

Fax: 86-27-5980-5118 China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040

Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631

Fax: 91-11-4160-8632 **India - Pune**

Tel: 91-20-3019-1500 Japan - Osaka

Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065

Fax: 63-2-634-9069 Singapore

Tel: 65-6334-8870

Fax: 65-6334-8850 **Taiwan - Hsin Chu**

Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399

Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

07/14/15