

RF & MICROWAVE TRANSISTORS AVIONICS APPLICATIONS

Features

- DESIGNED FOR HIGH POWER PULSED IFF, DME, AND TACAN APPLICATIONS
- 350 W (typ.) IFF 1030 1090 MHz
- 300 W (min.) DME 1025 1150 MHz
- 290 W (typ.) TACAN 960 1215 MHz
- 960 1215 MHz
- GOLD METALLIZATION
- **P**_{OUT} = 300W MINIMUM
- $G_P = 6.3 \text{ dB MINIMUM}$
- INFINITE VSWR CAPABILITY @ RATED CONDITIONS
- EMITTER BALLASTED
- COMMON BASE

DESCRIPTION:

The MS2421 is a gold metallized silicon, NPN power transistor designed for applications requiring high peak power and low duty cycles such as IFF, DME, and TACAN. The MS2421 is designed with internal input/output matching resulting in improved broadband performance and low thermal resistance.

ABSOLUTE MAXIMUM RATINGS (Tcase = 25°C)

Symbol	Parameter	Value	Unit	
P _{DISS}	Power Dissipation	875	W	
V _{CES}	Collector-Emitter Voltage	65	V	
V _{CBO}	Collector-Base Voltage	65	V	
V _{EBO}	Emitter-Base Voltage	3.5	V	
TJ	Junction Temperature	200	° C	
Ι _c	Device Current	22	Α	
Т _{stg}	Storage Temperature	-65 to +200	° C	

Thermal Data

R _{TH(J-C)} Junction-case Thermal Resistance	0.20	°C/W
---	------	------

.400 x .400 2LFL (M103) epoxy sealed

MS2421

MS2421

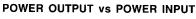
ELECTRICAL SPECIFICATIONS (Tcase = 25°C) STATIC

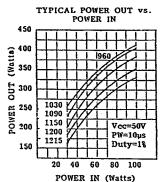
Symbol	Test Conditions			Value		
			Min.	Тур.	Max.	Unit
BV _{CBO}	I _c = 10 mA	l _E = 0 mA	65			V
BV _{EBO}	I _E = 5.0 mA	I _c = 0 mA	3.5			V
I _{CES}	V _{CE} = 50 V				25	mA
HFE	$V_{CE} = 5 V$	I _C = 500mA	10		200	mA

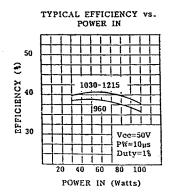
DYNAMIC

Symbol	Test Conditions			Value			Unit
Symbol				Min.	Тур.	Max.	Onit
Ρουτ	f =1025 - 1150 MHz P _{IN} =	= 70W V _c	_E =50V	300			W
G₽	f =1025 - 1150 MHz P _{IN} =	= 70W V _c	_E =50V	6.3			dB
ης	f =1025 - 1150 MHz P _{IN} =	= 70W V _c	_E =50V	35			%
Conditions	Pulse Width = 10 μ s Duty	v Cycle = 1%					

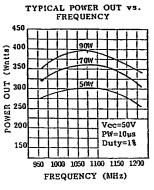
IMPEDANCE DATA


FREQ	Z _{IN} (Ω)	$Z_{CL}(\Omega)$		
960 MHz	2.6 + j6.0	2.5 – j6.0		
1090 MHz	7.4 + j4.4	2.4 – j6.2		
1215 MHz	4.3 + j1.1	2.5 – j4.9		

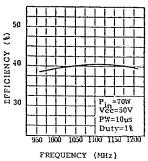

Pin = 70W Vce = 50V


MS2421

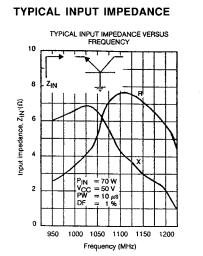
TYPICAL PERFORMANCE



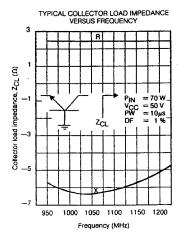
EFFICIENCY vs POWER INPUT



POWER OUTPUT vs FREQUENCY

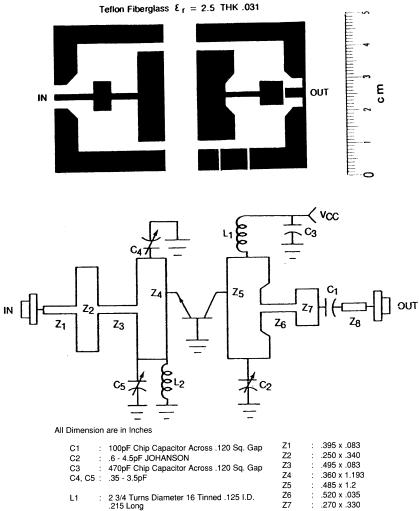


EFFICIENCY vs FREQUENCY


TYPICAL EFFICIENCY vs. FREQUENCY

IMPEDANCE DATA

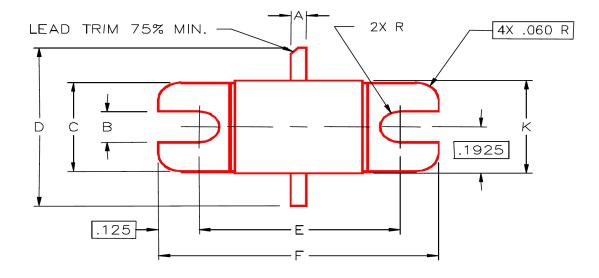
TYPICAL COLLECTOR LOAD IMPEDANCE



Advanced Power Technology reserves the right to change, without notice, the specifications and information contained herein Visit our website at **WWW.ADVANCEDPOWER.COM** or contact our factory direct.

MS2421

TEST CIRCUIT


- L1
- 2 3/4 Turns Diameter 16 Tinned .125 I.D. .215 Long
 2 3/4 Turns Diameter 20 Tinned .090 I.D. .220 Long Z8 .270 x .110 L2

MS2421

PACKAGE MECHANICAL DATA

PACKAGE STYLE M103

	MINIMUM	MAXIMUM	Π		MINIMUM	MAXIMUM
	INCHES/MM	INCHES/MM			INCHES/MM	INCHES/MM
А	.045/1,14	.055/1,40		Ι	.110/2,79	.130/3,30
В	.130/	/3,30		C	.190/4,83	.215/5,46
С	.380/9,65	.390/9,91		К	.390/9,91	.410/10,41
D	.880/22,35	.920/23,37				
Ε	.645/16,38	.655/16,64				
F	.890/22,61	.910/23,11	Π			
G	.002/0,05	.006/0,15	Π			
Н	.055/1,40	.065/1,65				