

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

November 2016

FSA646 2:1 MIPI D-PHY (2.5Gbps) 4-Data Lane Switch

Features

Switch Type: SPDT(10x)

Signal Types:MIPI, D-PHY

■ V_{CC}: 1.5 to 5.0 V

Input Signals: 0 to 1.3 V

R_{ON}:

- 6 Ω Typical HS MIPI

- 6 Ω Typical LP MIPI

ΔR_{ON}: 0.1 Ω Typical LP & HS MIPI

R_{ON FLAT}: 0.9 Ω Typical LP & HS MIPI

I_{CCZ}:1 μA Maximum
 I_{CC}: 32 μA Typical
 O_{IRR}: -24 dB Typical

Bandwidth: 2500 MHz Minimum

Xtalk: -30 dB TypicalC_{ON}: 1.5 pF Typical

Skew of Opposite Transitions of the Same Output:

6 ps Typical

Description

The FSA646 is a four-data-lane MIPI, D-PHY switch. This single-pole, double-throw (SPDT) switch is optimized for switching between two high-speed or low-power MIPI sources. The FSA646 is designed for the MIPI specification and allows connection to a CSI or DSI module.

Applications

- Cellular Phones, Smart phones
- Tablets
- Laptops
- Displays

Ordering Information

Part Number	Operating Temperature Range	Package	Top Mark
FSA646UCX	-40 to +85°C	36-Ball WLCSP, Non-JEDEC 2.43 mm x 2.43 mm, 0.4 mm Pitch	GS

Typical Application

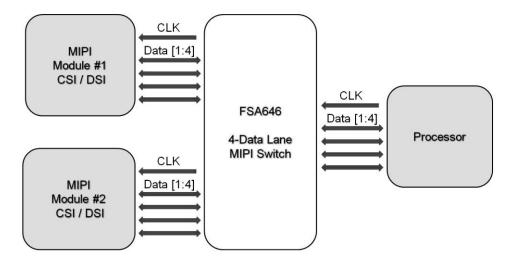
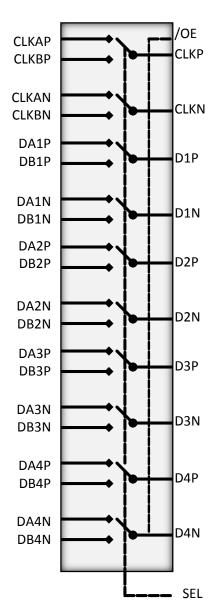
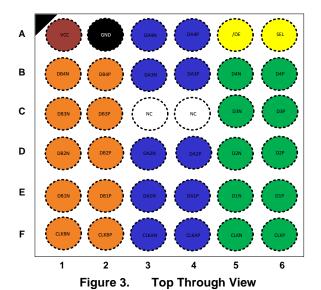



Figure 1. Typical Application


Pin Descriptions

Γ	T				
Pin Name		I	Description		
CLKBP/N	B Side Clo	B Side Clock Path			
DB1P/N	B Side Da	ta Path 1			
DB2P/N	B Side Da	ta Path 2			
DB3P/N	B Side Da	ta Path 3			
DB4P/N	B Side Dat	ta Path 4			
CLKAP/N	A Side Clo	ck Path			
DA1P/N	A Side Dat	ta Path 1			
DA2P/N	A Side Date	ta Path 2			
DA3P/N	A Side Dat	ta Path 3			
DA4P/N	A Side Date	ta Path 4			
CLKP/N	Common (Clock Path			
D1P/N	Common [Data Path	1		
D2P/N	Common [Data Path	2		
D3P/N	Common [Data Path	3		
D4P/N	Common [Data Path	4		
/OE	Output En	able			
SFI	Control	SEL=0	CLKP/N=CLKAP/N, DnP/N=DAnP/N		
SEL	Pin	SEL=1	CLKP/N=CLKBP/N, DnP/N=DBnP/N		
VCC	Power				
GND	Ground				
NC	No Conne	No Connect			

Figure 2. Analog Symbol

Pin Definitions

A3	DA4N
A4	DA4P
A5	/OE
A6	SEL
B1	DB4N
B2	DB4P
В3	DA3N
B4	DA3P
B5	D4N
B6	D4P
C1	DB3N
C2	DB3P
C3	NC
C4	NC
C5	D3N
C6	D3P
D1	DB2N
D2	DB2P
D3	DA2N
D4	DA2P
D5	D2N
D6	D2P
E1	DB1N
E2	DB1P
E3	DA1N
E4	DA1P
E5	D1N
E6	D1P
F1	CLKBN
F2	CLKBP
F3	CLKAN
i	ì

CLKAP

CLKN

CLKP

F4 F5

F6

Pin Name

 V_{CC}

GND

Ball A1

A2

Table 1. Ball-to-Pin Mappings

Truth Table

SEL	/OE Function	
LOW	LOW	$CLK_P=CLKA_P$, $CLK_N=CLKA_N$, $Dn(P/N)=DAn(P/N)$
HIGH	LOW	$CLK_P=CLKB_P$, $CLK_N=CLKB_N$, $Dn(P/N)=DBn(P/N)$
X	HIGH	Clock and Data Ports High Impedance

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter			Min.	Max.	Unit
V _{CC}	Supply Voltage			-0.5	6.0	V
V_{CNTRL}	DC Input Voltage (/OE, SEL) ⁽¹⁾			-0.5	V_{CC}	V
V_{SW}	DC Switch I/O Voltage ^(1,2)			-0.3	1.8	V
I _{IK}	DC Input Diode Current			-50		mA
I _{OUT}	DC Output Current				25	mA
T _{STG}	Storage Temperature			-65	+150	Ŝ
	Human Body Model, JEDEC: J	ESD22-A114	All Pins	2.0		
ESD	Charged Device Model, JEDEC: JESD22-C101			1.0		kV
200	IFC 64000 4.2 System	Contact		8.0		I. V
	IEC 61000-4-2 System Air Gap			15.0		

Notes:

- 1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.
- 2. V_{SW} refers to analog data switch paths.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter		Min.	Max.	Unit
Vcc	Supply Voltage	1.5	5.0	V	
V _{CNTRL}	Control Input Voltage (SEL, /OE)(3)	0	V _{CC}	V	
V	Switch I/O Voltage	– HS Mode	0	0.3	V
V _{SW}	(CLKn, Dn, CLKAn, CLKBn, DAn, DBn)	– LP Mode	0	1.3	V
T _A	Operating Temperature	-40	+85	°C	

Note:

3. The control inputs must be held HIGH or LOW; they must not float.

DC and Transient Characteristics

All typical values are at T_A=25°C unless otherwise specified.

Symbol	Parameter	Conditions	V _{cc} (V)	T _A =- 40°C t +85°C			Unit
				Min.	Тур.	Max.	
V _{IK}	Clamp Diode Voltage (/OE, SEL)	I _{IN} = -18 mA	1.5	-1.2		-0.6	V
V _{IH}	Input Voltage High	SEL, /OE	1.5 to 5	1.3			٧
V _{IL}	Input Voltage Low	SEL, /OE	1.5 to 5			0.5	V
I _{IN}	Control Input Leakage (SEL, /OE)	V _{CNTRL} = 0 to V _{CC}	5	-0.5		0.5	μΑ
I _{NO(OFF)} I _{NC(OFF)}	Off Leakage Current of Port CLKAn,DAn, CLKBn and DBn	V _{SW} = 0.0 ≤ DATA ≤ 1.3 V	5	-0.5		0.5	μΑ
I _{A(ON)}	On Leakage Current of Common Ports (CLKn, Dn)	V _{SW} = 0.0 ≤ DATA ≤ 1.3 V	5	-0.5		0.5	μΑ
I _{OFF}	Power-Off Leakage Current (All I/O Ports)	V _{SW} = -0.0 or 1.3 V	0	-0.5		0.5	μA
l _{oz}	Off-State Leakage	V _{SW} = 0.0 ≤ DATA ≤ 1.3 V, /OE = High	5	-0.5		0.5	μΑ
R _{ON_MIPI_HS}	Switch On Resistance for HS MIPI Applications ⁽⁴⁾	I_{ON} = -8 mA, /OE = 0 V, SEL = V_{CC} or 0 V, CLKA,CLKB, DB _N or DA _N = 0.2 V	1.5 2.5 3.3 5		6		Ω
R _{ON_MIPI_LP}	Switch On Resistance for LP MIPI Applications ⁽⁴⁾	I_{ON} = -8 mA, /OE = 0 V, SEL = V_{CC} or 0 V, CLKA,CLKB, DB _N or DA _N = 1.2 V	1.5 2.5 3.3 5	-	6		Ω
ΔR _{ON_MIPI_HS}	On Resistance Matching Between HS MIPI Channels ⁽⁴⁾	I_{ON} = -8 mA, /OE = 0 V, SEL = V_{CC} or 0 V, CLKA,CLKB, DB _N or DA _N = 0.2 V	1.5 2.5 3.3 5	-	0.1		Ω
$\Delta R_{ON_MIPI_LP}$	On Resistance Matching Between LP MIPI Channels ⁽⁴⁾	I_{ON} = -8 mA, /OE = 0 V, SEL = V_{CC} or 0 V, CLKA,CLKB, DB _N or DA _N = 1.2 V	1.5 2.5 3.3 5	-	0.1		Ω
R _{ON_FLAT_MIPI_}	On Resistance Flatness for HS MIPI Signals ⁽⁴⁾	I_{ON} = -8 mA, /OE = 0 V, SEL = V_{CC} or 0 V, CLKA,CLKB, DB _N or DA _N = 0 to 0.3 V	1.5 2.5 3.3 5	-	0.9		Ω

Continued on the following page...

DC and Transient Characteristics (Continued)

Symbol	Parameter Conditions		V _{cc} (V)		40°C +85°C		Unit
				Min.	Тур.	Max.	
			1.5				
RON_FLAT_MIPI_	R _{ON_FLAT_MIPI_} On Resistance Flatness for LP MIPI Signals ⁽⁴⁾	$I_{ON} = -8 \text{ mA}$, $OE = 0 \text{ V}$, $SEL = V_{CC}$	2.5		0.9		Ω
LP		or 0 V, CLKA, CLKB, DB _N or DA _N = 0 to 1.3 V	3.3		0.9		12
			5				
Icc	Quiescent Supply Current (Includes Charge Pump)	$V_{SEL} = 0$ or V_{CC} , $I_{OUT} = 0$, $/OE = 0$ V	5			30	μΑ
I _{CCZ}	Quiescent Supply Current (High Impedance)	$V_{SEL} = 0$ or V_{CC} , $I_{OUT} = 0$, $OE = V_{CC}$	5			1	μΑ
Ісст	Increase in I _{CC} Current Per Control Voltage and V _{CC}	V_{SEL} = 0 or V_{CC} , /OE = 1.5 V	5		1		μΑ

Note:

4. Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltage on the two (A or B ports).

AC Electrical Characteristics

All typical value are for V_{CC} =3.3 V and T_A =25°C unless otherwise specified.

Cymahal	Deservator	Canditions	V 00	T _A =- 40°C to +85°C			Unito	
Symbol	Parameter	Conditions	V _{cc} (V)	Min.	Тур.	Max.	Units	
t _{INIT}	Initialization Time V _{CC} to Output ⁽⁵⁾	$R_L = 50 \Omega$, $C_L = 0 pF$, $V_{SW} = 0.6 V$	1.5 to 5		60		μs	
t _{EN}	Enable Time /OE to Output	R_L =50 Ω , C_L = 0 pF, V_{SW} = 0.6 V	1.5 to 5		60	150	μs	
t _{DIS}	Disable Time /OE to Output	R_L =50 Ω , C_L = 0 pF, V_{SW} =0.6 V	1.5 to 5		35	250	ns	
t _{ON}	Turn-On Time SEL to Output	$R_L = 50 \Omega$, $C_L = 0 pF$, $V_{SW} = 0.6 V$	1.5 to 5		350	1100	ns	
t _{OFF}	Turn-Off Time SEL to Output		1.5 to 5		125	800	ns	
t _{BBM}	Break-Before-Make Time	$R_L = 50 \Omega, C_L = 0 pF, V_{SW} = 0.6 V$	1.5 to 5	50		450	ns	
t _{PD}	Propagation Delay ⁽⁵⁾	$C_L = 0$ pF, $R_L = 50 \Omega$	1.5 to 5		0.25		ns	
O _{IRR}	Off Isolation for MIPI ⁽⁵⁾	R_L = 50 Ω , f = 1250 MHz, /OE = HIGH, V_{SW} = 0.2 V_{PP}	1.5 to 5		-24		dB	
Y	Crosstalk for MIPI ⁽⁵⁾	R_L = 50 Ω , f = 1250 MHz, SEL = High, V_{SW} = 0.2 V_{PP}	1.5 to 5		-30	-25	dB	
X _{TALK}	Crosstalk for MIPI	R_L = 50 Ω , f = 1250 MHz, SEL = Low, V_{SW} = 0.2 V_{PP}	1.0 10 5		-30	-25	uБ	
BW(Insertion Loss)	-3db Bandwidth ⁽⁵⁾	$R_L = 50 \ \Omega, \ C_L = 0 \ pF,$ $V_{SW} = 0.2 \ V_{PP}$	1.5 to 5	2500			MHz	

Note:

5. Guaranteed by characterization.

High-Speed-Related AC Electrical Characteristics

Symbol	Parameter	Conditions	V _{cc} (V)	T _A =- 40°C to +85°C			Unit
Syllibol	Faranietei	Conditions	VCC (V)	Min.	Тур.	Max.	Onit
t _{SK(P)}	HS Mode Skew of Opposite Transitions of the Same Output ⁽⁶⁾	$R_L=50 \Omega, C_L=0 pF, V_{SW}=0.3 V$	1.5 to 5		6		ps

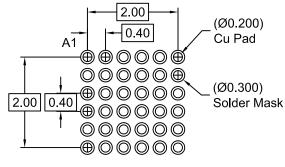
Notes:

6. Guaranteed by characterization.

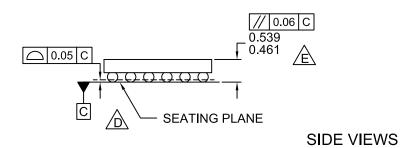
Capacitance

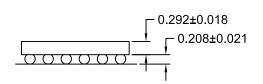
Symbol	Darameter	Canditions	T _A =- 40	0°C to +85°C		Unit
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Uill
C _{IN}	Control Pin Input Capacitance ⁽⁷⁾	V _{CC} = 0 V, f = 1 MHz		2.1		
C _{ON}	On Capacitance ⁽⁷⁾	V _{CC} = 3.3 V, /OE = 0 V, f = 1250 MHz (In HS common value)		1.5		pF
C _{OFF}	Off Capacitance ⁽⁷⁾	V _{CC} and /OE = 3.3 V, f = 1250 MHz (Both sides in HS common value)		0.9		

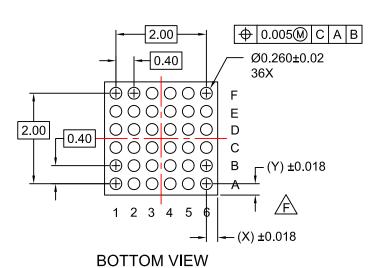
Note:


7. Guaranteed by characterization.

The table below pertains to the Packaging information on the following page.


Product Specific Dimensions


D	E	X	Y
2.43 mm	2.43 mm	0.215 mm	0.215 mm



RECOMMENDED LAND PATTERN (NSMD PAD TYPE)

NOTES

- A. NO JEDEC REGISTRATION APPLIES.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCE PER ASMEY14.5M, 1994.
- D. DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.
- PACKAGE NOMINAL HEIGHT IS 500 ± 39 MICRONS (461-539 MICRONS).
- FOR DIMENSIONS D, E, X, AND Y SEE PRODUCT DATASHEET.
 - G. DRAWING FILNAME: MKT-UC036AArev1.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative