
© Freescale Semiconductor, Inc., 2012. All rights reserved.

Freescale Semiconductor MPC5510RM
Rev. 1.1, 04/2012

This is the MPC5510 Reference Manual set consisting of the following files:

• MPC5510 Reference Manual Addendum, Rev 1

• MPC5510 Reference Manual, Rev 1

MPC5510 Reference Manual

Freescale Semiconductor
Reference Manual Addendum

MPC5510RMAD
Rev. 1, 04/2012

Table of Contents

MPC5510 Reference Manual
Addendum

Addendum for Revision 1.0. 2
Revision History . 5
This addendum document describes corrections to the
MPC5510 Microcontroller Reference Manual, order
number MPC5510RM. For convenience, the addenda
items are grouped by revision. Please check our website
at http://www.freescale.com/powerarchitecture for the
latest updates.

The current version available of the MPC5510
Microcontroller Reference Manual is Revision 1.0.

1
2

© Freescale Semiconductor, Inc., 2012. All rights reserved.

Addendum for Revision 1.0
1 Addendum for Revision 1.0
Table 1. MPC5510RM Rev 1.0 Addendum

Location Description

Section 2.2
“Signal Properties

Summary”

 Added a note just above “MPC5510 Signal Properties” table:
“Please note that analog input pins (ANx) are directly connected to the eQADC and that they are not routed
through the PCRx register; thus, changes in the PCR register does not affect these inputs.”

Section 3.3
“System Clock

Architecture Block
Diagram”

Updated the paragraph:

To optimize system power consumption, the MPC5510 supports system-level clock dividers, static clock
gating using peripheral-level module disable (MDIS) bits and a system-level halt mechanism. Figure 3-2
shows the device-level clock gating mechanism for the MPC5510. Figure 3-3 shows a more detailed
implementation of the MDIS and halt mechanism connections for a given peripheral. These features are
detailed in subsequent sections.

Added a new NOTE:
While combining DMA with peripheral modules (for example eSCI), the user has to use LPCLKDIVx = 0
(no divide) to ensure that the DMA.DONE (same as DMA ACK) is correctly acknowledged by the
peripheral. Otherwise, DMA.DONE may not be sampled correctly, leading to data loss. In the case of eSCI
peripheral, BERR flag will be set and the peripheral behavior will be unexpected if LPCLKDIV4 > 0.
MPC5510 Reference Manual Addendum, Rev. 1

Freescale Semiconductor2

Addendum for Revision 1.0
Section 3.3
“System Clock

Architecture Block
Diagram”

Updated Figure 3-2 ”System Clock Architecture”.

Table 1. MPC5510RM Rev 1.0 Addendum

Location Description

Protocol clock
Oscillator clock

Module clock

MCKOMCKO
divider

CLK_SRC

MDIS

FlexRAY

Protocol clock

CLK_SRC

MDIS

FlexCAN_A

LPCLKDIV0

MDIS

DSPI_A

MDIS

ESCI_A,IIC_A,PIT

(RTI)

Protocol clock

CLK_SRC

MDIS

FlexCAN_B-F

LPCLKDIV2

CLKOUT
CLKOUT

divider

MDIS

DSPI_B-D

MDIS

ESCI_B-H

MDIS

eMIOS

MDIS

MLB

Cores INTC, DMA, SIU, RAM
Flash, BAM, AIPS, AXBS,

LPCLKDIV3

LPCLKDIV4

LPCLKDIV5

LPCLKDIV6

LPCLKDIV1

Switcher
and

divider
Nexus

EBI

NPC

Module clock

DIV/2

PLL

IRC

XOSC

Bypass clock

System clock

Module clock

MCM, eQADC
MPC5510 Reference Manual Addendum, Rev. 1

Freescale Semiconductor 3

Addendum for Revision 1.0
Section 3.5.2
“Halt Clock Gating”

Added a note:
SIU_HLT is not delayed by any pending interrupt for specific modules to be serviced. If any interrupt is
raised after the SIU_HLT request, it may cause the interrupt to hang. To avoid this, it is advised that all
interrupts are disabled before entering the SIU_HLT state and then, re-enabled once SIU_HLT is exited.
The result is that any interrupt will be flagged, but not triggered within its specific interrupt service routine.
Once the SIU_HLT has been enabled, any pending interrupt will be taken as normal. In the case of STOP
mode exit, an external interrupt may be required. In this case, the specific exit interrupt may be enabled,
but software must ensure the interrupt does not occur simultaneously with SIU_HLT being enabled.

Section 5.3.2
”Low-power Mode

Entry”

Updated “The system clock source should be set to the 16 MHz IRC prior to ...” to “The system clock source
needs be set to the 16 MHz IRC (with the default divide by 1 system clock configuration) prior to ...”.

Section 6.3.2.2
“Reset Status

Register
(SIU_RSR)”

Updated point 1. The updated text is as follows:
“If any reset request has negated and the device is still in the resulting reset, and then an external reset is
requested, both the original reset type and external reset status bits will be set. In this case, the device
started the reset sequence due to a non-external reset request but ended the reset sequence after an
external reset request.”
Updated figure note 3 of Figure 6-3, “Reset Status Register (SIU_RSR”. The updated text is as follows:
“The ERS bit is also set if the RESET pin is held low to extend the reset sequence.”

Section 6.3.2.25
“System Clock

Register
(SIU_SYSCLK)”

Aligned table 6-27 “LPCLKDIV Module Groups”, as mentioned below.

Section 24.1.1
“Block Diagram”

Added a figure note for peripheral clock in the “eSCI Block Diagram” figure:
Refer to Section 3.3, “ System Clock Architecture Block Diagram”.

Section 24.3.2.3
“eSCI Data

Register
(ESCIx_DR)”

Added a note:
eSCI transmission delay will depend on the actual Tx load into the Data Register referenced with the
internal clock, if the load occurs before 45% of a bit time has passed, the Tx load will be transmitted in less
than a bit time. Otherwise, the Tx will take up to 1.5 of a bit time.

Table 1. MPC5510RM Rev 1.0 Addendum

Location Description

Table 6-27: LPCLKDIV Module Groups

LPCLKDIVn Modules

LPCLKDIV0 FlexCAN_A, DSPI_A

LPCLKDIV1 ESCI_A, I2C_A, PIT

LPCLKDIV2 FlexCAN_B-F

LPCLKDIV3 DSPI_B-D

LPCLKDIV4 ESCI_B-H

LPCLKDIV5 eMIOS

LPCLKDIV6 MLB

LPCLKDIV7 Reserved
MPC5510 Reference Manual Addendum, Rev. 1

Freescale Semiconductor4

Revision History
2 Revision History
Table 2 provides a revision history for this document.

Section 31.4.3.3
”External Trigger

Input Multiplexing”

 • Updated the title from “External Trigger from eTPU to eMIOS Channels“ to “External Trigger Input
Multiplexing”.

 • Updated the text of this section to:
The four eQADC external trigger inputs can be connected to two different external pins or one of two PIT
channels. The input source for each eQADC external trigger is individually specified in the IMUX Select
Register 0 (SIU_ISEL0). Figure 6-50 gives an example of the multiplexing of an eQADC external trigger
input. As shown in the figure, the ETRIG[0] input of the eQADC can be connected to the PC4 pin, the PG4
pin, the PIT7 channel, or the PIT8 channel. Remaining ETRIG inputs are multiplexed in the same manner.

The eQADC trigger numbers specified by SIU_ETISR[TSEL(0-3)] correspond to CFIFO numbers 0-3. To
calculate the CFIFO number that each trigger is connected to, divide the eDMA channel number by 2.

Table 2. Revision History Table

Rev. Number Substantive Changes Date of Release

1.0 First release. 04/2012

Table 1. MPC5510RM Rev 1.0 Addendum

Location Description
MPC5510 Reference Manual Addendum, Rev. 1

Freescale Semiconductor 5

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property
of their respective owners.© Freescale Semiconductor, Inc. 2012. All rights
reserved.

MPC5510RMAD
Rev. 1
04/2012

MPC5510 Microcontroller Family
Reference Manual

Devices Supported:
MPC5517G/E/S
MPC5516G/E/S

MPC5515S
MPC5514G/E

Document Number: MPC5510RM
Rev. 1

06/2008

PRELIMINARY

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. The Power Architecture and Power.org word marks and
the Power and Power.org logos and related marks are trademarks and service
marks licensed by Power.org.

All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2007, 2008. All rights reserved.

MPC5510RM
Rev. 1
06/2008

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor i
 Preliminary

Chapter 1
Overview

1.1 Introduction . 1-1
1.2 Block Diagram . 1-2
1.3 MPC5510 Family Comparison . 1-3

1.3.1 Family Feature Set Scaling . 1-5
1.4 Chip-Level Features . 1-6
1.5 Low-Power Operation . 1-7
1.6 Memory Map . 1-7

Chapter 2
Signal Descriptions

2.1 Introduction . 2-1
2.2 Signal Properties Summary . 2-1
2.3 Power and Ground Supply Summary . 2-12
2.4 Pinout – 144 LQFP . 2-14
2.5 Pinout – 176 LQFP . 2-15
2.6 Pinout – 208 BGA . 2-16
2.7 Detailed External Signal Descriptions . 2-16

2.7.1 Port A Pins . 2-16
2.7.2 Port B Pins . 2-17
2.7.3 Port C Pins . 2-19
2.7.4 Port D Pins . 2-21
2.7.5 Port E Pins . 2-24
2.7.6 Port F Pins . 2-25
2.7.7 Port G Pins . 2-28
2.7.8 Port H Pins . 2-30
2.7.9 Port J Pins . 2-32
2.7.10 Port K Pins . 2-33
2.7.11 Miscellaneous Pins . 2-33
2.7.12 Power and Ground Pins . 2-34

Chapter 3
System Clock Description

3.1 Introduction . 3-1
3.2 Clock Sources . 3-1

3.2.1 External High-Frequency Crystal (XOSC) . 3-2
3.2.2 External Low-Frequency Crystal (32kXOSC) . 3-3
3.2.3 Internal High-Frequency RC Oscillator (IRC) . 3-3
3.2.4 Internal Low-Frequency RC Oscillator (32kRC) . 3-3

3.3 System Clock Architecture Block Diagram . 3-4
3.4 Clock Dividers . 3-5

3.4.1 System Clock Select . 3-5
3.4.2 System Clock Dividers . 3-5

MPC5510 Microcontroller Family Reference Manual, Rev. 1

ii Freescale Semiconductor
 Preliminary

3.4.3 External Bus Clock (CLKOUT) Divider . 3-5
3.4.4 Nexus Message Clock (MCKO) Divider . 3-5
3.4.5 Peripheral Clock Dividers . 3-5

3.5 Software-Controlled Power Management . 3-6
3.5.1 Module Disable (MDIS) Clock Gating . 3-6
3.5.2 Halt Clock Gating . 3-7
3.5.3 Core WAIT Clock Gating . 3-7

3.6 Alternate Module Clock Domains . 3-8
3.6.1 FlexCAN Clock Domains . 3-8
3.6.2 FlexRay Clock Domains . 3-8
3.6.3 RTC Clock Domain . 3-9
3.6.4 SWT Clock Domain . 3-9

Chapter 4
Frequency Modulated Phase Locked Loop (FMPLL)

4.1 Introduction . 4-1
4.1.1 Block Diagram . 4-1
4.1.2 Features . 4-2
4.1.3 Modes of Operation . 4-2

4.2 External Signal Description . 4-2
4.3 Memory Map and Registers . 4-2

4.3.1 Module Memory Map . 4-3
4.3.2 Register Descriptions . 4-3

4.4 Functional Description . 4-11
4.4.1 General . 4-11
4.4.2 PLL Off Mode . 4-11
4.4.3 Normal Mode . 4-11

4.5 Resets . 4-18
4.5.1 Clock Mode Selection . 4-18
4.5.2 PLL Loss-of-Lock Reset . 4-19
4.5.3 PLL Loss-of-Clock Reset . 4-19

4.6 Interrupts . 4-19
4.6.1 Loss-of-Lock Interrupt Request . 4-19
4.6.2 Loss-of-Clock Interrupt Request . 4-19

Chapter 5
Clock, Reset, and Power Control (CRP)

5.1 Introduction . 5-1
5.1.1 Block Diagram . 5-1
5.1.2 Features . 5-3
5.1.3 Modes of Operation . 5-3

5.2 Memory Map and Registers . 5-4
5.2.1 Module Memory Map . 5-4
5.2.2 Register Descriptions . 5-4

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor iii
 Preliminary

5.3 Functional Description . 5-16
5.3.1 Low-Power Modes . 5-16
5.3.2 Low-Power Mode Entry . 5-17
5.3.3 Low-Power Operation . 5-18
5.3.4 Low-Power Wakeup . 5-24

5.4 Real-Time Counter (RTC) . 5-28
5.4.1 RTC Features . 5-28
5.4.2 RTC Functional Description . 5-29
5.4.3 Register Description . 5-31

5.5 Power Supply Monitors . 5-32
5.5.1 Power-On Reset (POR) . 5-32
5.5.2 Low-Voltage Monitors (LVI) . 5-32

5.6 Low-Voltage Operation . 5-32

Chapter 6
System Integration Unit (SIU)

6.1 Introduction . 6-1
6.1.1 Block Diagram . 6-1
6.1.2 Features . 6-2
6.1.3 Modes of Operation . 6-3

6.2 External Signal Description . 6-4
6.2.1 Detailed Signal Descriptions . 6-4

6.3 Memory Map and Registers . 6-5
6.3.1 Module Memory Map . 6-5
6.3.2 Register Descriptions . 6-11

6.4 Functional Description . 6-49
6.4.1 System Configuration . 6-49
6.4.2 Reset Control . 6-50
6.4.3 External Interrupt . 6-50
6.4.4 GPIO Operation . 6-51
6.4.5 Internal Multiplexing . 6-51

Chapter 7
Reset

7.1 Introduction . 7-1
7.2 External Signal Description. . 7-1

7.2.1 Reset (RESET) . 7-2
7.2.2 Boot Configuration (BOOTCFG) . 7-2

7.3 Functional Description . 7-2
7.3.1 Z1, Z0 Cores Reset Vectors . 7-2
7.3.2 Reset Sources . 7-3

7.4 Reset Configuration . 7-4
7.4.1 Reset Configuration Timing . 7-4

MPC5510 Microcontroller Family Reference Manual, Rev. 1

iv Freescale Semiconductor
 Preliminary

Chapter 8
Interrupts

8.1 Introduction . 8-1
8.2 Interrupt Vectors . 8-2

8.2.1 Core Interrupts . 8-2
8.2.2 External Input: Software Vector Mode . 8-3
8.2.3 External Input: Hardware Vector Mode . 8-3
8.2.4 Critical Input . 8-4

8.3 Interrupt Sources . 8-5
8.3.1 Interrupt Source Summary Table . 8-5

8.4 Interrupt Operation . 8-19
8.4.1 Software Vector Mode . 8-19
8.4.2 Hardware Vector Mode . 8-19
8.4.3 Non Maskable Interrupt (NMI) . 8-19
8.4.4 Dynamic Priority Elevation . 8-20

Chapter 9
Interrupt Controller (INTC)

9.1 Introduction . 9-1
9.1.1 Features . 9-1
9.1.2 Block Diagram . 9-2
9.1.3 Modes of Operation . 9-4

9.2 Signal Description . 9-5
9.3 Memory Map and Registers . 9-5

9.3.1 Module Memory Map . 9-5
9.3.2 Register Descriptions . 9-6

9.4 Functional Description . 9-15
9.4.1 Interrupt Request Sources . 9-15
9.4.2 Priority Management . 9-16
9.4.3 Handshaking with Processor . 9-17

9.5 Initialization/Application Information . 9-20
9.5.1 Initialization Flow . 9-20
9.5.2 Interrupt Exception Handler . 9-20
9.5.3 ISR, RTOS, and Task Hierarchy . 9-22
9.5.4 Order of Execution . 9-22
9.5.5 Priority Ceiling Protocol . 9-23
9.5.6 Selecting Priorities According to Request Rates and Deadlines 9-24
9.5.7 Software Settable Interrupt Requests . 9-25
9.5.8 Lowering Priority Within an ISR . 9-26
9.5.9 Negating an Interrupt Request Outside of its ISR . 9-26
9.5.10 Examining LIFO contents . 9-27

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor v
 Preliminary

Chapter 10
e200z1 Core (Z1)

10.1 Introduction . 10-1
10.1.1 Features . 10-1

10.2 Microarchitecture Summary . 10-2
10.2.1 Instruction Unit Features . 10-3
10.2.2 Integer Unit Features . 10-4
10.2.3 Load/Store Unit Features . 10-4
10.2.4 e200z1 System Bus Features . 10-4
10.2.5 MMU Features . 10-4

10.3 Core Registers and Programmer’s Model . 10-5
10.3.1 Power Architecture Book E Registers . 10-8
10.3.2 e200-Specific Special Purpose Registers . 10-11
10.3.3 e200z1 Core Complex Features Not Supported on the MPC5510 10-13

10.4 e200z1 Memory Management Unit . 10-13
10.4.1 Effective to Real Address Translation . 10-13
10.4.2 Translation Lookaside Buffer . 10-17
10.4.3 MMU Assist Registers (MAS) . 10-18

10.5 Interrupt Types . 10-23
10.6 Bus Interface Unit (BIU) . 10-25

Chapter 11
e200z0 Core (Z0)

11.1 Introduction . 11-1
11.1.1 Features . 11-1

11.2 Microarchitecture Summary . 11-2
11.2.1 Instruction Unit Features . 11-3
11.2.2 Integer Unit Features . 11-3
11.2.3 Load/Store Unit Features . 11-4
11.2.4 e200z0 System Bus Features . 11-4

11.3 Core Registers and Programmer’s Model . 11-4
11.3.1 Power Architecture Book E Registers . 11-7
11.3.2 e200-Specific Special Purpose Registers . 11-9
11.3.3 e200z0 Core Complex Features Not Supported on the MPC5510 11-11

11.4 Interrupt Types .11-11
11.5 Bus Interface Unit (BIU) . 11-12

Chapter 12
Enhanced Direct Memory Access (eDMA)

12.1 Introduction . 12-1
12.1.1 Block Diagram . 12-1
12.1.2 Features . 12-2
12.1.3 Modes of Operation . 12-3

12.2 External Signal Description . 12-3

MPC5510 Microcontroller Family Reference Manual, Rev. 1

vi Freescale Semiconductor
 Preliminary

12.3 Memory Map and Registers . 12-3
12.3.1 Module Memory Map . 12-3
12.3.2 Register Descriptions . 12-7

12.4 Functional Description . 12-24
12.4.1 eDMA Basic Data Flow . 12-26

12.5 Initialization / Application Information . 12-29
12.5.1 eDMA Initialization . 12-29
12.5.2 DMA Programming Errors . 12-31
12.5.3 DMA Request Assignments . 12-32
12.5.4 DMA Arbitration Mode Considerations . 12-32
12.5.5 DMA Transfer . 12-33
12.5.6 TCD Status . 12-36
12.5.7 Channel Linking . 12-37
12.5.8 Dynamic Programming . 12-38

Chapter 13
DMA Channel Mux (DMA_MUX)

13.1 Introduction . 13-1
13.1.1 Block Diagram . 13-1
13.1.2 Features . 13-2
13.1.3 Modes of Operation . 13-2

13.2 External Signal Description . 13-2
13.3 Memory Map and Registers . 13-2

13.3.1 Module Memory Map . 13-2
13.3.2 Register Descriptions . 13-3

13.4 Functional Description . 13-7
13.4.1 DMA Channels 0–7 . 13-7
13.4.2 DMA Channels 8–15 . 13-9
13.4.3 Always Enabled DMA Sources . 13-10

13.5 Initialization/Application Information . 13-11
13.5.1 Reset . 13-11
13.5.2 Enabling and Configuring Sources . 13-11

13.6 Interrupts . 13-14

Chapter 14
Peripheral Bridge (AIPS-lite)

14.1 Introduction . 14-1
14.1.1 Terminology . 14-1
14.1.2 Block Diagram . 14-1
14.1.3 Features . 14-2
14.1.4 Modes of Operation . 14-2

14.2 External Signal Description . 14-2
14.3 Memory Map and Registers . 14-2
14.4 Functional Description . 14-2

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor vii
 Preliminary

14.4.1 Read Cycles . 14-3
14.4.2 Write Cycles . 14-3

Chapter 15
Crossbar Switch (XBAR)

15.1 Introduction . 15-1
15.1.1 Block Diagram . 15-1
15.1.2 Features . 15-2
15.1.3 Modes of Operation . 15-3

15.2 Signal Description . 15-3
15.3 Memory Map and Registers . 15-3
15.4 Functional Description . 15-3

15.4.1 Master Ports . 15-4
15.4.2 Slave Ports . 15-4
15.4.3 Arbitration . 15-4
15.4.4 Slave Port State Machine . 15-6

15.5 DMA Requests . 15-8
15.6 Interrupt Requests . 15-8

Chapter 16
Miscellaneous Control Module (MCM)

16.1 Introduction . 16-1
16.1.1 Features . 16-1

16.2 Memory Map and Registers . 16-2
16.2.1 Module Memory Map . 16-2
16.2.2 Register Descriptions . 16-4

16.3 Functional Description . 16-17
16.3.1 High-Priority Enables . 16-17

Chapter 17
Memory Protection Unit (MPU)

17.1 Introduction . 17-1
17.1.1 Block Diagram . 17-1
17.1.2 Features . 17-2
17.1.3 Modes of Operation . 17-3

17.2 Signal Description . 17-3
17.3 Memory Map and Registers . 17-3

17.3.1 Module Memory Map . 17-3
17.3.2 Register Descriptions . 17-5

17.4 Functional Description . 17-14
17.4.1 Access Evaluation Macro . 17-14
17.4.2 Putting It All Together and AHB Error Terminations . 17-16

17.5 Initialization Information . 17-16
17.6 Application Information . 17-17

MPC5510 Microcontroller Family Reference Manual, Rev. 1

viii Freescale Semiconductor
 Preliminary

Chapter 18
Semaphores

18.1 Introduction . 18-1
18.1.1 Block Diagram . 18-1
18.1.2 Features . 18-2
18.1.3 Modes of Operation . 18-3

18.2 Signal Description . 18-3
18.3 Memory Map and Registers . 18-3

18.3.1 Module Memory Map . 18-3
18.3.2 Register Descriptions . 18-4

18.4 Functional Description . 18-10
18.4.1 Semaphore Usage . 18-11

18.5 Initialization Information . 18-12
18.6 Application Information . 18-12
18.7 DMA Requests . 18-13
18.8 Interrupt Requests . 18-13

Chapter 19
IEEE 1149.1 Test Access Port Controller (JTAGC)

19.1 Introduction . 19-1
19.1.1 Block Diagram . 19-1
19.1.2 Features . 19-2
19.1.3 Modes of Operation . 19-2

19.2 External Signal Description . 19-4
19.3 Memory Map and Registers . 19-4

19.3.1 Instruction Register . 19-4
19.3.2 Bypass Register . 19-4
19.3.3 Device Identification Register . 19-5
19.3.4 Boundary Scan Register . 19-5

19.4 Functional Description . 19-5
19.4.1 JTAGC Reset Configuration . 19-5
19.4.2 IEEE 1149.1-2001 (JTAG) Test Access Port . 19-6
19.4.3 TAP Controller State Machine . 19-6
19.4.4 JTAGC Instructions . 19-8
19.4.5 Boundary Scan . 19-10

19.5 e200z0 and e200z1 OnCE Controllers . 19-11
19.5.1 e200z0 OnCE Controller Block Diagram . 19-11
19.5.2 e200z0 OnCE Controller Functional Description . 19-11
19.5.3 e200z0 OnCE Controller Register Descriptions . 19-12

19.6 Initialization/Application Information . 19-14

Chapter 20
Nexus Development Interface (NDI)

20.1 Introduction . 20-1

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor ix
 Preliminary

20.2 Block Diagram . 20-2
20.2.1 Features . 20-3
20.2.2 Modes of Operation . 20-4

20.3 External Signal Description . 20-6
20.3.1 Nexus Signal Reset States . 20-6

20.4 Memory Map and Registers . 20-6
20.4.1 Nexus Debug Interface Registers . 20-6
20.4.2 Register Descriptions . 20-7

20.5 Functional Description . 20-16
20.5.1 Enabling Nexus Clients for TAP Access . 20-16
20.5.2 Configuring the NDI for Nexus Messaging . 20-17
20.5.3 Switching Ownership of Nexus2+ . 20-18
20.5.4 Programmable MCKO Frequency . 20-18
20.5.5 Nexus Messaging . 20-19
20.5.6 EVTO Sharing . 20-19
20.5.7 Nexus2+ DMA Control . 20-19
20.5.8 Debug Mode Control . 20-19
20.5.9 Nexus Reset Control . 20-22

Chapter 21
Internal Static RAM (SRAM)

21.1 Introduction . 21-1
21.1.1 Block Diagram . 21-1
21.1.2 Features . 21-2
21.1.3 Modes of Operation . 21-3

21.2 External Signal Description . 21-3
21.3 Memory Map and Registers . 21-3

21.3.1 Array Memory Map . 21-3
21.3.2 Register Descriptions . 21-4

21.4 Functional Description . 21-4
21.4.1 Access Timing . 21-4
21.4.2 Reset Operation . 21-5

21.5 DMA Requests . 21-5
21.6 Interrupt Requests . 21-5
21.7 Initialization/Application Information . 21-5

21.7.1 Example Code . 21-6

Chapter 22
Flash Array and Control

22.1 Introduction . 22-1
22.2 Block Diagram . 22-2

22.2.1 Features . 22-3
22.2.2 Modes of Operation . 22-3

22.3 External Signal Description . 22-3

MPC5510 Microcontroller Family Reference Manual, Rev. 1

x Freescale Semiconductor
 Preliminary

22.4 Memory Map and Registers . 22-4
22.4.1 Module Memory Map . 22-4
22.4.2 Register Descriptions . 22-5

22.5 Functional Description . 22-18
22.5.1 Flash User Mode . 22-18
22.5.2 Flash Read and Write . 22-18
22.5.3 Read While Write (RWW) . 22-19
22.5.4 Flash Programming . 22-19
22.5.5 Flash Erase . 22-22
22.5.6 Flash Shadow Block . 22-25
22.5.7 Flash Stop Mode . 22-26
22.5.8 Flash Reset . 22-26

22.6 DMA Requests . 22-26
22.7 Interrupt Requests . 22-27

Chapter 23
Deserial Serial Peripheral Interface (DSPI)

23.1 Introduction . 23-1
23.1.1 Block Diagram . 23-1
23.1.2 Features . 23-2
23.1.3 Modes of Operation . 23-4

23.2 External Signal Description . 23-4
23.3 Memory Map and Registers . 23-4

23.3.1 Module Memory Map . 23-4
23.3.2 Register Descriptions . 23-5

23.4 Functional Description . 23-29
23.4.1 Modes of Operation . 23-30
23.4.2 Start and Stop of DSPI Transfers . 23-31
23.4.3 Serial Peripheral Interface (SPI) Configuration . 23-32
23.4.4 Deserial Serial Interface (DSI) Configuration . 23-35
23.4.5 Combined Serial Interface (CSI) Configuration . 23-41
23.4.6 Buffered SPI Operation . 23-44
23.4.7 DSPI Baud Rate and Clock Delay Generation . 23-44
23.4.8 Transfer Formats . 23-47
23.4.9 Continuous Serial Communications Clock . 23-53
23.4.10Peripheral Chip Select Expansion and Deglitching . 23-54
23.4.11DMA and Interrupt Conditions . 23-55
23.4.12Power Saving Features . 23-56

23.5 Initialization/Application Information . 23-57
23.5.1 How to Change Queues . 23-57
23.5.2 Baud Rate Settings . 23-58
23.5.3 Delay Settings . 23-59
23.5.4 Calculation of FIFO Pointer Addresses . 23-60

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor xi
 Preliminary

Chapter 24
Enhanced Serial Communication Interface (eSCI)

24.1 Introduction . 24-1
24.1.1 Block Diagram . 24-1
24.1.2 Features . 24-2
24.1.3 Modes of Operation . 24-2

24.2 External Signal Description . 24-2
24.3 Memory Map and Registers . 24-2

24.3.1 Module Memory Map . 24-3
24.3.2 Register Descriptions . 24-3

24.4 Functional Description . 24-16
24.4.1 Data Format . 24-17
24.4.2 Baud Rate Generation . 24-18
24.4.3 Transmitter . 24-19
24.4.4 Receiver . 24-23
24.4.5 Single-Wire Operation . 24-29
24.4.6 Loop Operation . 24-30
24.4.7 Disabling the eSCI . 24-30
24.4.8 Interrupt Operation . 24-31
24.4.9 Using the LIN Hardware . 24-34

Chapter 25
Controller Area Network (FlexCAN)

25.1 Introduction . 25-1
25.1.1 Block Diagram . 25-1
25.1.2 Features . 25-2
25.1.3 Modes of Operation . 25-3

25.2 External Signal Description . 25-4
25.3 Memory Map and Registers . 25-4

25.3.1 Module Memory Map . 25-4
25.3.2 Message Buffer Structure . 25-6
25.3.3 Rx FIFO Structure . 25-9
25.3.4 Register Descriptions . 25-11

25.4 Functional Description . 25-28
25.4.1 Transmit Process . 25-29
25.4.2 Arbitration Process . 25-29
25.4.3 Receive Process . 25-30
25.4.4 Matching Process . 25-31
25.4.5 Data Coherence . 25-33
25.4.6 Rx FIFO . 25-35
25.4.7 CAN Protocol Related Features . 25-36
25.4.8 Modes of Operation Details . 25-39
25.4.9 Interrupts . 25-41
25.4.10Bus Interface . 25-41

MPC5510 Microcontroller Family Reference Manual, Rev. 1

xii Freescale Semiconductor
 Preliminary

25.5 Initialization and Application Information . 25-41
25.5.1 FlexCAN Initialization Sequence . 25-42

Chapter 26
Enhanced Modular I/O Subsystem (eMIOS200)

26.1 Introduction . 26-1
26.1.1 Block Diagram . 26-1
26.1.2 Features . 26-2
26.1.3 Modes of Operation . 26-3
26.1.4 Channel Types . 26-3

26.2 External Signal Description . 26-4
26.2.1 eMIOS[n] . 26-4
26.2.2 Output Disable Input — eMIOS200 Output Disable Input Signal 26-5

26.3 Memory Map and Registers . 26-5
26.3.1 Module Memory Map . 26-5

26.4 Register Descriptions . 26-6
26.4.1 eMIOS200 Module Configuration Register (EMIOS_MCR) 26-6
26.4.2 eMIOS200 Global FLAG Register (EMIOS_GFR) . 26-8
26.4.3 eMIOS200 Output Update Disable (EMIOS_OUDR) . 26-8
26.4.4 eMIOS200 Disable Channel (EMIOSUCDIS) . 26-9
26.4.5 eMIOS200 A Register (EMIOS_CADR[n]) . 26-9
26.4.6 eMIOS200 B Register (EMIOS_CBDR[n]) . 26-10
26.4.7 eMIOS200 Counter Register (EMIOS_CCNTR[n]) . 26-11
26.4.8 eMIOS200 Control Register (EMIOS_CCR[n]) . 26-11
26.4.9 eMIOS200 Status Register (EMIOS_CSR[n]) . 26-16

26.5 Functional Description . 26-16
26.5.1 Unified Channel (UC) . 26-16
26.5.2 IP Bus Interface Unit (BIU) . 26-43
26.5.3 Global Clock Prescaler Submodule (GCP) . 26-43

26.6 Reset . 26-43
26.7 Interrupts . 26-44
26.8 DMA Requests . 26-44
26.9 Initialization/Application Information . 26-44

26.9.1 Considerations . 26-44
26.9.2 Application Information . 26-44
26.9.3 Coherent Accesses . 26-45

Chapter 27
Inter-Integrated Circuit Bus Controller Module (I2C)

27.1 Introduction . 27-1
27.1.1 Block Diagram . 27-1
27.1.2 DMA Interface . 27-2
27.1.3 Features . 27-3
27.1.4 Modes of Operation . 27-4

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor xiii
 Preliminary

27.2 External Signal Description . 27-4
27.3 Memory Map and Registers . 27-4

27.3.1 Module Memory Map . 27-4
27.3.2 Register Descriptions . 27-5

27.4 Functional Description . 27-11
27.4.1 I-Bus Protocol . 27-11
27.4.2 Interrupts . 27-15

27.5 Initialization/Application Information . 27-16
27.5.1 I2C Programming Examples . 27-16
27.5.2 DMA Application Information . 27-20

Chapter 28
Periodic Interrupt Timer and Real Time Interrupt (PIT_RTI)

28.1 Introduction . 28-1
28.1.1 Block Diagram . 28-1
28.1.2 Features . 28-2
28.1.3 Modes of Operation . 28-3

28.2 Signal Description . 28-3
28.2.1 External Signal Description . 28-3

28.3 Memory Map and Registers . 28-3
28.3.1 Module Memory Map . 28-3
28.3.2 Register Descriptions . 28-4

28.4 Functional Description . 28-9
28.4.1 Timer / RTI . 28-9
28.4.2 Debug Mode . 28-10
28.4.3 Interrupts . 28-10

28.5 Initialization and Application Information . 28-11
28.5.1 Example Configuration . 28-11

Chapter 29
External Bus Interface (EBI)

29.1 Introduction . 29-1
29.1.1 Block Diagram . 29-1
29.1.2 Features . 29-2
29.1.3 Modes of Operation . 29-3

29.2 Signal Description . 29-5
29.2.1 External Signal Description . 29-5
29.2.2 Signal Function and Direction by Mode . 29-7
29.2.3 Signal Pad Configuration by Mode . 29-8

29.3 Memory Map and Registers . 29-8
29.3.1 Module Memory Map . 29-8
29.3.2 Register Descriptions . 29-9

29.4 Functional Description . 29-16
29.4.1 External Bus Interface Features . 29-16

MPC5510 Microcontroller Family Reference Manual, Rev. 1

xiv Freescale Semiconductor
 Preliminary

29.4.2 External Bus Operations . 29-22
29.5 Initialization/Application Information . 29-48

29.5.1 Booting from External Memory (for Factory Test only) 29-48
29.5.2 Running with Single Data Rate (SDR) Burst Memories 29-48
29.5.3 Running with Asynchronous Memories . 29-48
29.5.4 Connecting an MCU to Multiple Memories . 29-50
29.5.5 Dual-MCU Operation with Reduced Pinout MCUs . 29-51

Chapter 30 FlexRay Communication Controller (FLEXRAY)
30.1 Introduction . 30-1

30.1.1 Reference . 30-1
30.1.2 Glossary . 30-1
30.1.3 Color Coding . 30-2
30.1.4 Overview . 30-2
30.1.5 Features . 30-4
30.1.6 Modes of Operation . 30-5

30.2 External Signal Description . 30-6
30.2.1 Detailed Signal Descriptions . 30-6

30.3 Controller Host Interface Clocking . 30-7
30.4 Protocol Engine Clocking . 30-7

30.4.1 Oscillator Clocking . 30-8
30.4.2 PLL Clocking . 30-8

30.5 Memory Map and Register Description . 30-8
30.5.1 Memory Map . 30-8
30.5.2 Register Descriptions . 30-11

30.6 Functional Description . 30-78
30.6.1 Message Buffer Concept . 30-78
30.6.2 Physical Message Buffer . 30-78
30.6.3 Message Buffer Types . 30-79
30.6.4 FlexRay Memory Layout . 30-84
30.6.5 Physical Message Buffer Description . 30-86
30.6.6 Individual Message Buffer Functional Description . 30-95
30.6.7 Individual Message Buffer Search . 30-119
30.6.8 Individual Message Buffer Reconfiguration . 30-122
30.6.9 Receive FIFO . 30-123
30.6.10Channel Device Modes . 30-127
30.6.11External Clock Synchronization . 30-129
30.6.12Sync Frame ID and Sync Frame Deviation Tables . 30-129
30.6.13MTS Generation . 30-132
30.6.14Sync Frame and Startup Frame Transmission . 30-133
30.6.15Sync Frame Filtering . 30-134
30.6.16Strobe Signal Support . 30-135
30.6.17Timer Support . 30-136
30.6.18Slot Status Monitoring . 30-137
30.6.19Interrupt Support . 30-140

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor xv
 Preliminary

30.6.20Lower Bit Rate Support . 30-144
30.7 Application Information . 30-145

30.7.1 Initialization Sequence . 30-145
30.7.2 Shut Down Sequence . 30-146
30.7.3 Number of Usable Message Buffers . 30-146
30.7.4 Protocol Control Command Execution . 30-147
30.7.5 Protocol Reset Command . 30-148
30.7.6 Message Buffer Search on Simple Message Buffer Configuration 30-149

Chapter 31
Enhanced Queued Analog-to-Digital Converter (eQADC)

31.1 Introduction . 31-1
31.1.1 Block Diagram . 31-2
31.1.2 Features . 31-3
31.1.3 Modes of Operation . 31-4
31.1.4 Normal Mode . 31-4
31.1.5 Debug Mode . 31-4

31.2 External Signal Description . 31-5
31.3 Memory Map and Registers . 31-5

31.3.1 Module Memory Map . 31-6
31.3.2 Register Descriptions . 31-9
31.3.3 eQADC Register Descriptions . 31-9
31.3.4 On-Chip ADC Registers . 31-25

31.4 Functional Description . 31-31
31.4.1 Data Flow in the eQADC . 31-32
31.4.2 Command/Result Queues . 31-41
31.4.3 eQADC Command FIFOs . 31-41
31.4.4 Result FIFOs . 31-56
31.4.5 On-Chip ADC Configuration and Control . 31-59
31.4.6 Internal/External Multiplexing . 31-65
31.4.7 eQADC eDMA/Interrupt Request . 31-70
31.4.8 Analog Submodule . 31-71

31.5 Initialization/Application Information . 31-74
31.5.1 Multiple Queues Control Setup Example . 31-74
31.5.2 eQADC/eDMA Controller Interface . 31-77
31.5.3 Sending Immediate Command Setup Example . 31-78
31.5.4 Modifying Queues . 31-79
31.5.5 Command Queue and Result Queue Usage . 31-80
31.5.6 ADC Result Calibration . 31-81

Chapter 32
Boot Assist Module (BAM)

32.1 Introduction . 32-1
32.1.1 Features . 32-1

MPC5510 Microcontroller Family Reference Manual, Rev. 1

xvi Freescale Semiconductor
 Preliminary

32.1.2 Modes of Operation . 32-2
32.1.3 Normal Mode . 32-2
32.1.4 Debug Mode . 32-2
32.1.5 Internal Boot Mode . 32-2
32.1.6 Serial Boot Mode . 32-2

32.2 Memory Map and Registers . 32-2
32.2.1 Module Memory Map . 32-2
32.2.2 Register Descriptions . 32-3

32.3 Functional Description . 32-3
32.3.1 BAM Program Resources . 32-3
32.3.2 BAM Program Operation . 32-3
32.3.3 Features . 32-5

Chapter 33
Media Local Bus (MLB)

33.1 Introduction . 33-1
33.1.1 Block Diagram . 33-1
33.1.2 Features . 33-2
33.1.3 Modes of Operation . 33-2

33.2 External Signal Description . 33-3
33.3 Memory Map and Registers . 33-4

33.3.1 Register Descriptions . 33-5
33.4 Functional Description . 33-18

33.4.1 SoftMLB Interface Logic Description . 33-21
33.4.2 SoftMLB Interface Logic Signal Description . 33-22

Appendix A
Revision History

A.1 Changes Between Revisions 0 and 1 . A-1

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 1-1
 Preliminary

Chapter 1
Overview

1.1 Introduction
The MPC5510 is a family of next generation microcontrollers built on the Power Architecture™ embedded
category. This document describes the proposed features of the family and potential options available
within the planned family members, and highlights the important electrical and physical characteristics of
the device. This is a preliminary document for a product family that is still in development. Its purpose is
to communicate information on the intended features of the family members. Information contained within
this document is subject to change without notice.

NOTE: Bit and Field Numbering Conventions
In this reference manual, register bits and fields are generally numbered
according to the convention used in the Power Architecture standard
(MSB=0); however, in some instances the bit/field numbering may appear
to be reversed. This is due to the fact that some of the modules were
designed for use on devices that use either the MSB=0 numbering
convention or the alternative convention (LSB=0), for example, the HC12
and 68K families, and simple reversing of bit/field numbers is not possible.

In the Nexus standard, register bits are numbered according to the
alternative convention (LSB=0). As the CPU core on the MPC5510 family
cannot access Nexus registers directly (they are accessed thought external
tools), register bits are numbered according to the LSB=0 convention in the
Nexus chapter.

The MPC5510 family of 32-bit microcontrollers is Freescale Semiconductor’s latest achievement in
integrated automotive application controllers. It belongs to an expanding family of automotive-focused
products designed to address the next wave of central body and gateway applications within the vehicle.
Freescale’s advanced and cost-efficient host processor core of the MPC5510 automotive controller family
is compatible with the Power Architecture Book E architecture. It operates at speeds of up to 80 MHz and
offers high-performance processing optimized for low-power consumption. It capitalizes on the available
development infrastructure of the current Power Architecture devices and will be supported with software
drivers, operating systems, and configuration code to assist with user implementations.

The MPC5510 platform has a single level of memory hierarchy and can support up to 80 KB of on-chip
static random access memory (SRAM) and 1.5 MB of internal flash memory. Refer to Table 1-1 for
specific memory and feature sets of the proposed roadmap product members.

Overview

MPC5510 Microcontroller Family Reference Manual, Rev. 1

1-2 Freescale Semiconductor
 Preliminary

1.2 Block Diagram
Figure 1-1 illustrates the functionality and interdependence of major blocks of the MPC5516.

Figure 1-1. MPC5516 Block Diagram

32-bit
Private
Instruction Bus

Port 0

Port 1

Data Bus

1.5-Mbyte
Flash
Array

80-Kbyte
SRAM

Instruction Bus

32-bit

Clocks
Bus Clocks

CRP
8x

eSCI
6x

FlexCAN

Interrupt
Request

Test Controller

Nexus Port
Controller

32-bit

32-bit

4x
DSPI I2C BAM

DMA
Mux

eMIOS
200

PIT/
RTI eQADC

AMUX

FlexRay

External Interrupt
Request

Reset Controller

IMUX

Interrupt
Requests

from
Peripheral

Blocks

DMA
Requests

from
Peripheral

Blocks

SIU

32-bit

32-bit

Mx = AXBS Master Port #
Sx = AXBS Slave Port #

EBI

32-bit

S3 S0

M4 M0 M3 M5 M2 M1

Nexus Port

JTAG Port

32-bit

32-bit

GPIO and Pad Control

I/O

32-bit

32-bit

32-bit

e200z1 Core

Integer
Execution

Unit

Multiply
Unit

Instruction
Unit

PPC and VLE

General Purpose
Registers

(32x 32-bit)

Timers

Memory
Management

Unit

Load/Store
Unit

Branch Unit

Flash
Control

SRAM
Control

AIPS-lite Peripheral Bridge

Peripherals
Flash Configuration

Misc. Control Module
Semaphores

Port Splitter

Interrupt
Controller

eDMA

6x2 32-bit AXBS-lite

16 Region MPU

Nexus 2+

e200z0

Note: The e200z1 is called Processor 0, and the e200z0 is called Processor 1 throughout this document

MLB

32-bit

(FMPLL)
(16 MHz IRC)

Overview

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 1-3
 Preliminary

1.3 MPC5510 Family Comparison
Table 1-1 provides a summary of the different members of the MPC5510 family and their proposed
features. This information is intended to provide an understanding of the range of functionality offered by
this family.

M
P

C
5510 M

icro
co

n
tro

ller Fam
ily R

eferen
ce M

an
u

al, R
ev. 1

1-4
Freescale S

em
iconductor

 P
relim

inary

O
verview

Table 1-1. MPC5510 Family Comparison, Maximum Feature Set1

1 Maximum feature set displayed for each family member. Feature set depends on selected peripheral multiplexing.

Feature MPC5517G MPC5517E MPC5517S MPC5516G MPC5516E MPC5516S MPC5515S MPC5514G MPC5514E

Package 208-BGA 144-LQFP 208-BGA/
176-LQFP

144-LQFP 208-BGA/
176-LQFP

144-LQFP 208-BGA 144-LQFP 208-BGA/
176-LQFP

144-LQFP 176-LQFP 144-LQFP 176-LQFP 144-LQFP 144-LQFP

Main CPU e200z1

Maximum
Execution Speed2

2 Maximum speed is 66 MHz on 144-LQFP and 176-LQFP package options.

80 MHz at Ta=105C
75 MHz at Ta=125C

80 MHz at Ta=105C
75 MHz at Ta=125C 66 MHz 80 MHz at Ta=105C

75 MHz at Ta=125C
80 MHz at Ta=105C
75 MHz at Ta=125C 66 MHz 66 MHz 66 MHz 66 MHz

Flash3

3 EEPROM emulation supported by small flash blocks with read-while-write operation as part of main array space.

1.5 MB 1.5 MB 1.5 MB 1 MB 1 MB 1 MB 768 KB 512 KB 512 KB

RAM 80 KB 80 KB 64 KB 64 KB 64 KB 48 KB 48 KB 64 KB 32 KB

I/O Processor e200z0 e200z0 — e200z0 e200z0 — — e200z0 e200z0

DMA Yes Yes Yes Yes Yes Yes Yes Yes Yes

MPU 16 entry 16 entry 8 entry 16 entry 16 entry 8 entry 8 entry 16 entry 16 entry

ADC4

4 ADC channel accuracy greater for input-only channel, bidirectional channels offer the ability for unused channels to be used as outputs.

40 channels, 12-bit
(16 channels input only; 24 channels bidirectional)

Total Timed I/O5

eMIOS200

5 IC—input capture; O/C—output compare; PWM—pulse-width modulation.

24 channels, 16-bit
(8 channels IC/OC; 16 channels PWM, IC/OC)

Real-Time Clock ext 32 KHz Crystal ext 32 KHz Crystal — ext 32 KHz Crystal ext 32 KHz Crystal — — ext 32 KHz Crystal ext 32 KHz Crystal

SCI 6x eSCI 6x eSCI 8x eSCI 6x eSCI 6x eSCI 6x eSCI 8x eSCI 6x eSCI 6x eSCI 6x eSCI 6x eSCI

SPI 4x DSPI 4x DSPI 4x DSPI 4x DSPI 4x DSPI 3x DSPI 3x DSPI 3x DSPI 4x DSPI

SPI Chip Selects 24 236

6 For devices with four DSPI modules, in the 144-pin package, it is not possible to bring out all 24 DSPI chip selects. Hence, three modules can have six chip selects, but one module can have only five.

24 236 24 236 24 236 24 18 18 18 236

CAN 6x
FlexCAN

5x
FlexCAN

4x
FlexCAN

5x
FlexCAN

6x
FlexCAN

5x
FlexCAN

4x
FlexCAN

5x
FlexCAN

4x
FlexCAN

5x
FlexCAN

6x
FlexCAN

5x
FlexCAN

FlexRay Yes — — Yes — — — Yes —

MLB7

7 MLB is emulated in software and requires the following resources: I/O Processor, 2xDSPI, 4x eDMA channels, RAM, SoftMLB Interface Logic.

Yes Yes — Yes Yes — — Yes Yes

I2C 1

EBI8

8 In the 208-pin package, there can be up to 24 address bits with 32-bit data and four chip selects. In the 144-pin and 176-pin packages, there are 24 address bits with 16-bit data and four chip selects.

Yes9

9 16-bit or 32-bit multiplexed data bus supported. EBI multiplexed with other functions shown as available.

Yes10

10 16-bit multiplexed data bus supported. EBI multiplexed with other functions shown as available.

Yes9 Yes10 Yes9 Yes10 Yes9 Yes10 Yes9 — — Yes10 Yes10

GPIO11

11 Estimated I/O count for proposed packages based on multiplexing with peripherals.

144 111 144/137 111 144/137 111 144/137 111 144/137 111 137 111 137 111 111

Overview

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 1-5
 Preliminary

1.3.1 Family Feature Set Scaling

The MPC5510 family supports multiple functions on most of the pins. This allows flexibility in the
positioning and the availability of device features. It is the user’s choice what trade-offs are made between
the feature set used for the available pin count through this device pin multiplexing. The available features
implemented on silicon will be incrementally added as the family functionality increases. Table 1-2
provides a summary of the flash array address space supported by the different device memory sizes.
Table 1-3 provides a summary of the RAM array address space supported by the different device memory
sizes. Table 1-4 provides a summary of the available peripheral functionality of each family member.

Evaluation of the pin list for each device will be necessary as it may not be possible to retain all modules
sequentially, depending on the selected pin multiplexing trade-offs on each device.

NOTE
The RAppID™ initialization tool provides a pin allocation wizard that
allows users to graphically configure I/O to meet the requirements of the
peripheral functions. More information on this tool can be found at
http://www.freescale.com/mpc55xx.

Table 1-2. Flash Memory Scaling Table 1-3. RAM Memory Scaling

Memory Size Start Address End Address Memory Size Start Address End Address

1.5 MB 0x0000_0000 0x0017_FFFF 80 KB 0x4000_0000 0x4001_3FFF

1 MB 0x0000_0000 0x000F_FFFF 64 KB 0x4000_0000 0x4000_FFFF

768 KB 0x0000_0000 0x000B_FFFF 48 KB 0x4000_0000 0x4000_BFFF

512 KB 0x0000_0000 0x0007_FFFF 32 KB 0x4000_0000 0x4000_7FFF

Table 1-4. Peripheral Scaling

MPC5517 MPC5516 MPC5515 MPC5514

G E S G E S S G E

Package 208 144 176/
208

144 176 144/208 144 176/
208

144 176 144 176 144 144

MPU Regions 16 16 16 8 8 16 16 16 8 8 8 8 16 16

SCI Number 6 6 8 6 6 6 6 8 6 6 6 6 6 6

Module A,B,C,D,
E,F

A,B,C,D,
E,F

A,B,C,D,
E,F,G,H

A,B,C,D,
E,F

A,B,C,D,
E,F

A,B,C,D,
E,F

A,B,C,D,
E,F

A,B,C,D,
E,F,G,H

A,B,C,D,
E,F

A,B,C,D,
E,F

A,B,C,D,
E,F

A,B,C,D,
E,F

A,B,C,D,
E,F

A,B,C,D,
E,F

SPI Number 4 4 4 4 4 4 4 4 3 3 3 3 3 4

Module A,B,C,D A,B,C,D A,B,C,D A,B,C,D A,B,C,D A,B,C,D A,B,C,D A,B,C,D A,B,C A,B,C A,B,C A,B,C A,B,C A,B,C,D

CAN Number 6 5 5 4 5 6 5 5 4 5 4 5 6 5

Module A,B,C,D,
E,F

A,C,D,E,
F

A,C,D,E,
F

A,C,D,E A,C,D,E,
F

A,B,C,D,
E,F

A,C,D,E,
F

A,C,D,E,
F

A,C,D,E A,C,D,E,
F

A,C,D,E A,C,D,E,
F

A,B,C,D,
E,F

A,C,D,E,
F

http://www.freescale.com/mpc55xx
http://www.freescale.com/mpc55xx
http://www.freescale.com/mpc55xx

Overview

MPC5510 Microcontroller Family Reference Manual, Rev. 1

1-6 Freescale Semiconductor
 Preliminary

1.4 Chip-Level Features
On-chip modules available within the family include the following features:

• Single issue, 32-bit CPU core complex (e200z1)

— Compliant with the Power Architecture embedded category

— Includes an instruction set enhancement allowing variable length encoding (VLE) for code size
footprint reduction. With the optional encoding of mixed 16-bit and 32-bit instructions, it is
possible to achieve significant code-size footprint reduction.

• Up to 1.5 MB of on-chip flash with flash control unit (FCU)

• Up to 80 KB on-chip SRAM

• Memory protection unit (MPU) with up to 16 region descriptors and 32-byte region granularity

• Interrupt controller (INTC) capable of handling selectable-priority interrupt sources

• Frequency modulated Phase-locked loop (FMPLL)

• Crossbar switch architecture for concurrent access to peripherals, flash, or RAM from multiple bus
masters

• A 16-channel enhanced direct memory access controller (eDMA)

• Boot assist module (BAM) supports internal flash programming via a serial link (CAN or SCI)

• Timer supports input/output channels providing a range of 16-bit input capture, output compare,
and pulse-width modulation functions (eMIOS200)

• A 12-bit analog-to-digital converter (ADC)

• Up to four serial peripheral interface (DSPI) modules

• Media Local Bus (MLB) emulation logic which works in conjunction with two DSPI, the e200z0,
the eDMA, and system RAM to create a 3-pin or 5-pin 256Fs Media Local Bus interface

• Up to eight serial communication interface (eSCI) modules

• Up to six enhanced full CAN (FlexCAN) modules with configurable buffers

• One inter IC communication interface (I2C) module

• Up to 144 configurable general-purpose pins supporting input and input/output operations

• Real-time counter (RTC_API) with clock source from external 32 kHz crystal oscillator, internal
32 kHz or 16 MHz oscillator and supporting wakeup with selectable 1 sec. resolution and >1 hour
timeout, or 1 mS resolution with max timeout of 1 sec.

• Up to eight periodic interrupt timers (PIT) with 32-bit counter resolution

• Nexus development interface (NDI) per IEEE-ISTO 5001-2003 Class Two Plus standard

• Device/board test support per joint test action group (JTAG) of IEEE (IEEE 1149.1)

• On-chip voltage regulator (VREG) regulation of input supply for all internal levels

• Optional e200z0, second I/O processor built on Power Architecture technology with VLE
instruction set

• Optional FlexRay controller

• Optional external bus interface (EBI) module

Overview

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 1-7
 Preliminary

1.5 Low-Power Operation
The MPC5510 has two dynamic-power modes and three static-power modes:

• Low-power modes use clock gating to halt the clock for all or part of the device.

• The lowest power modes also use power gating to automatically turn off the power supply to parts
of the device to minimize leakage.

• Dynamic-power mode is RUN:

— RUN mode is the main full performance operating mode where the entire device is powered
and clocked. The user can configure the device operating speed through selection of the clock
source and the phase-locked loop (FMPLL) frequency. Clock gating can be performed on a
peripheral by peripheral basis to select which device features have their clock halted to save
power. When implemented, the I/O processor can optionally be enabled, allowing execution of
code and access to the memory and peripherals of the device.

• Static-power modes are STOP and SLEEP:

— STOP mode maintains power to the entire device allowing the retention of all on-chip registers
and memory, and providing a fast recovery low-power mode with no need to reconfigure the
device. The clocks are halted to the cores and peripherals, with the exception of the RTC, and
can be optionally stopped to the oscillator or FMPLL at the expense of a slower start-up time.

STOP is entered from RUN mode. On exiting STOP mode the device returns to the RUN mode.

— SLEEP mode halts the clock to the entire device, with the exception of the RTC, and turns off
the power to the majority of the chip to offer the lowest power consumption modes of the
MPC5510. SLEEP mode retains the output levels on the pins, but power gating means that the
contents of the cores, on-chip peripheral registers, and some of the volatile memory are not
held. The device can be awakened from selected I/O pins, a reset, or from a periodic wakeup
using a low-power oscillator. If required by the user, it is possible to enable the internal 16 MHz
or 32 kHz RC oscillator or external 32 kHz oscillator. The user can select the desired level of
RAM to be retained as the following: full contents of the on-chip SRAM, 64K, 32K, 16K, 8K,
no RAM retained.

— Fast wake-up using the on-chip 16 MHz internal RC oscillator allowing rapid execution on exit
from low-power modes.

• 16 MHz internal RC oscillator supports low-speed code execution and clocking of peripherals

1.6 Memory Map

Table 1-5. Detailed MPC5510 Family Memory Map

Address Range1 Allocated Size1

(bytes)
Use

0x0000_0000–0x0017_FFFF 1.5 M Flash Memory Array

0x0018_0000–0x00FF_7FFF 14.5 M – 32K Reserved

0x00FF_8000–0x00FF_FFFF 32 K Flash Shadow Row

0x0100_0000–0x1FFF_FFFF 496 M Emulation mapping of Flash Array

Overview

MPC5510 Microcontroller Family Reference Manual, Rev. 1

1-8 Freescale Semiconductor
 Preliminary

0x2000_0000–0x3FFF_FFFF 512 M External Memory

0x4000_0000–0x4000_1FFF 8 K Internal SRAM Array. Powered during Sleep when
CRP_PSCR[RAMSEL] = 1 to 7

0x4000_2000–0x4000_3FFF 8 K Internal SRAM Array. Powered during Sleep when
CRP_PSCR[RAMSEL] = 2 to 7

0x4000_4000–0x4000_7FFF 16 K Internal SRAM Array. Powered during Sleep when
CRP_PSCR[RAMSEL] = 3 to 7

0x4000_8000–0x4000_FFFF 32 K Internal SRAM Array. Powered during Sleep when
CRP_PSCR[RAMSEL] = 6 to 7

0x4001_0000–0x4001_3FFF 16 K Internal SRAM Array. Powered during Sleep when
CRP_PSCR[RAMSEL] = 7

0x4001_4000–0xDFFF_FFFF 2560 M – 80 K Reserved

 Peripherals

0xE000_0000–0xFBFF_FFFF 512 M – 64 M Reserved

0xFC00_0000–0xFFF0_FFFF 63 M + 64 K Reserved

0xFFF1_0000–0xFFF1_3FFF 16 K Semaphores

0xFFF1_4000–0xFFF1_7FFF 16 K Memory Protection Unit (MPU)

0xFFF1_8000–0xFFF3_FFFF 160 K Reserved

0xFFF4_0000–0xFFF4_3FFF 16 K Miscellaneous Control Module (MCM)

0xFFF4_4000–0xFFF4_7FFF 16 K Enhanced Direct Memory Access Controller (eDMA)

0xFFF4_8000–0xFFF4_BFFF 16 K Interrupt Controller (INTC)

0xFFF4_C000–0xFFF7_FFFF 208 K Reserved

0xFFF8_0000–0xFFF8_3FFF 16 K Enhanced Queued Analog-to-Digital Converter
(eQADC)

0xFFF8_4000–0xFFF8_7FFF 16 K SoftMLB Interface Logic

0xFFF8_8000–0xFFF8_BFFF 16 K I2C Controller (I2C_A)

0xFFF8_C000–0xFFF8_FFFF 16 K Reserved

0xFFF9_0000–0xFFF9_3FFF 16 K Deserial Serial Peripheral Interface (DSPI_A)

0xFFF9_4000–0xFFF9_7FFF 16 K Deserial Serial Peripheral Interface (DSPI_B)

0xFFF9_8000–0xFFF9_BFFF 16 K Deserial Serial Peripheral Interface (DSPI_C)

0xFFF9_C000–0xFFF9_FFFF 16 K Deserial Serial Peripheral Interface (DSPI_D)

0xFFFA_0000–0xFFFA_3FFF 16 K Serial Communications Interface (eSCI_A)

0xFFFA_4000–0xFFFA_7FFF 16 K Serial Communications Interface (eSCI_B)

0xFFFA_8000–0xFFFA_BFFF 16 K Serial Communications Interface (eSCI_C)

0xFFFA_C000–0xFFFA_FFFF 16 K Serial Communications Interface (eSCI_D)

0xFFFB_0000–0xFFFB_3FFF 16 K Serial Communications Interface (eSCI_E)

Table 1-5. Detailed MPC5510 Family Memory Map (continued)

Address Range1 Allocated Size1

(bytes)
Use

Overview

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 1-9
 Preliminary

0xFFFB_4000–0xFFFB_7FFF 16 K Serial Communications Interface (eSCI_F)

0xFFFB_8000–0xFFFB_FFFF 16 K Serial Communications Interface (eSCI_G)

0xFFFB_C000–0xFFFB_FFFF 16 K Serial Communications Interface (eSCI_H)

0xFFFC_0000–0xFFFC_3FFF 16 K Controller Area Network (FlexCAN_A)

0xFFFC_4000–0xFFFC_7FFF 16 K Controller Area Network (FlexCAN_B)

0xFFFC_8000–0xFFFC_BFFF 16 K Controller Area Network (FlexCAN_C)

0xFFFC_C000–0xFFFC_FFFF 16 K Controller Area Network (FlexCAN_D)

0xFFFD_0000–0xFFFD_3FFF 16 K Controller Area Network (FlexCAN_E)

0xFFFD_4000–0xFFFD_7FFF 16 K Controller Area Network (FlexCAN_F)

0xFFFD_8000–0xFFFD_BFFF 16 K FlexRay Controller (FlexRay)

0xFFFD_C000–0xFFFD_FFFF 16 K DMA Multiplexer (DMA_MUX)

0xFFFE_0000–0xFFFE_3FFF 16 K Programmable Interrupt / Real Time Interrupt (PIT_RTI)

0xFFFE_4000–0xFFFE_7FFF 16 K Enhanced Modular I/O Subsystem (eMIOS200)

0xFFFE_8000–0xFFFE_BFFF 16K System Integration Unit (SIU)

0xFFFE_C000–0xFFFE_FFFF 16 K Clocks, Reset and Power (CRP)

0xFFFF_0000–0xFFFF_3FFF 16 K FMPLL Registers (FMPLL)

0xFFFF_4000–0xFFFF_7FFF 16 K External Bus Interface Configuration Registers (EBI)

0xFFFF_8000–0xFFFF_BFFF 16 K Flash Configuration Registers (FLASH)

0xFFFF_C000–0xFFFF_FFFF 16 K Boot Assist Module (BAM)

1 Refer to the individual module chapters for a description of how the allocated size is used.

Table 1-5. Detailed MPC5510 Family Memory Map (continued)

Address Range1 Allocated Size1

(bytes)
Use

Overview

MPC5510 Microcontroller Family Reference Manual, Rev. 1

1-10 Freescale Semiconductor
 Preliminary

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 2-1
 Preliminary

Chapter 2
Signal Descriptions

2.1 Introduction
This chapter describes signals that connect off-chip. It includes a signal properties summary, power and
ground segmentation summary, package pinouts, and detailed descriptions of signals. Because the
MPC5510 comes in multiple packages, some signals will not be available on every package. Refer to the
MPC5510 Microcontroller Family Data Sheet for electrical characteristics.

2.2 Signal Properties Summary
Table 2-1 shows the signals properties for each pin on MPC5510. For all port pins, which have an
associated SIU_PCRx register to control its pin properties, the supported functions column lists the
functions associated with the programming of the SIU_PCRx[PA] bit in the order: general-purpose
input/output (GPIO), function 1, function 2, and function 3. If fewer than three functions and GPIO is
supported by a given pin, then the unused functions begin with function 3, then function 2, then function 1
(see Figure 2-1).

Figure 2-1. Supported Functions Example

Table 2-1. MPC5510 Signal Properties

Pin
Name

GPIO
(PCR)
Num1

Supported
Functions2 Description

I/O
Type

Voltage3 Pad
Type

Status
During
Reset4

Status
After

Reset4

Package Pin
Locations

144 176 208

Port A (16) (Section/Page: 2.7.1/2-16)

PA0 0
PA[0]
AN[0]

GPI
eQADC Analog Input

I
I

VDDA AE + IH — — 9 9 E3

PA1 1
PA[1]
AN[1]

GPI
eQADC Analog Input

I
I

VDDA AE + IH — — 8 8 E2

PA2 2
PA[2]
AN[2]

GPI
eQADC Analog Input

I
I

VDDA AE + IH — — 7 7 E1

PA3 3
PA[3]
AN[3]

GPI
eQADC Analog Input

I
I

VDDA AE + IH — — 6 6 D3

PB[0]
AN28

eMIOS[16]
PCS_C[5]

PA[0]
AN0

GPIO

Function 1

Function 2

Function 3

GPIO

Function 1

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

2-2 Freescale Semiconductor
 Preliminary

PA4 4
PA[4]
AN[4]

GPI
eQADC Analog Input

I
I

VDDA AE + IH — — 5 5 D2

PA5 5
PA[5]
AN[5]

GPI
eQADC Analog Input

I
I

VDDA AE + IH — — 4 4 D1

PA6 6
PA[6]
AN[6]

GPI
eQADC Analog Input

I
I

VDDA AE + IH — — 3 3 C2

PA7 7
PA[7]
AN[7]

GPI
eQADC Analog Input

I
I

VDDA AE + IH — — 2 2 C1

PA8 8
PA[8]

AN[8]/ANW
GPI

eQADC Analog Input
I
I

VDDA AE + IH — — 143 175 A3

PA9 9
PA[9]

AN[9]/ANX
GPI

eQADC Analog Input
I
I

VDDA AE + IH — — 142 174 C4

PA10 10
PA[10]

AN[10]/ANY
GPI

eQADC Analog Input
I
I

VDDA AE + IH — — 140 172 D5

PA11 11
PA[11]

AN[11]/ANZ
GPI

eQADC Analog Input
I
I

VDDA AE + IH — — 139 171 C5

PA12 12
PA[12]
AN[12]

GPI
eQADC Analog Input

I
I

VDDA AE + IH — — 138 170 B5

PA13 13
PA[13]
AN[13]

GPI
eQADC Analog Input

I
I

VDDA AE + IH — — 137 169 A5

PA14 14
PA[14]
AN[14]

EXTAL325

GPI
eQADC Analog Input

32 kHz Crystal Oscillator Input

I
I
I

VDDA AE + IH — — 136 167 D6

PA15 15
PA[15]
AN[15]

XTAL325

GPI
eQADC Analog Input

32 kHz Crystal Oscillator Output

I
I
O

VDDA AE + IH — — 135 165 C6

Port B (16) (Section/Page: 2.7.2/2-17)

PB0 16

PB[0]
AN[28]

eMIOS[16]
PCS_C[5]

GPIO
eQADC Analog Input6

eMIOS Channel
DSPI_C Peripheral Chip Select

I/O
I
O
O

VDDE1 A + SH — — 134 162 C7

PB1 17

PB[1]
AN[29]

eMIOS[17]
PCS_C[4]

GPIO
eQADC Analog Input6

eMIOS Channel
DSPI_C Peripheral Chip Select

I/O
I
O
O

VDDE1 A + SH — — 133 161 D7

PB2 18

PB[2]
AN[30]

eMIOS[18]
PCS_C[3]

GPIO
eQADC Analog Input6

eMIOS Channel
DSPI_C Peripheral Chip Select

I/O
I
O
O

VDDE1 A + SH — — 132 160 A8

PB3 19
PB[3]

AN[31]
PCS_C[2]

GPIO
eQADC Analog Input6

DSPI_C Peripheral Chip Select

I/O
I
O

VDDE1 A + SH — — 131 159 B8

PB4 20
PB[4]

AN[32]
PCS_C[1]

GPIO
eQADC Analog Input6

DSPI_C Peripheral Chip Select

I/O
I
O

VDDE1 A + SH — — 130 158 C8

Table 2-1. MPC5510 Signal Properties (continued)

Pin
Name

GPIO
(PCR)
Num1

Supported
Functions2 Description

I/O
Type

Voltage3 Pad
Type

Status
During
Reset4

Status
After

Reset4

Package Pin
Locations

144 176 208

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 2-3
 Preliminary

PB5 21
PB[5]

AN[33]
PCS_C[0]

GPIO
eQADC Analog Input6

DSPI_C Peripheral Chip Select

I/O
I
O

VDDE1 A + SH — — 129 157 D8

PB6 22
PB[6]

AN[34]
SCK_C

GPIO
eQADC Analog Input6

DSPI_C Clock

I/O
I

I/O
VDDE1 A + SH — — 128 156 A9

PB7 23
PB[7]

AN[35]
SOUT_C

GPIO
eQADC Analog Input6

DSPI_C Data Output

I/O
I
O

VDDE1 A + SH — — 127 153 B9

PB8 24
PB[8]

AN[36]
SIN_C

GPIO
eQADC Analog Input6

DSPI_C Data Input

I/O
I
I

VDDE1 A + SH — — 126 152 C9

PB9 25

PB[9]
AN[37]

CNTX_D
PCS_B[4]

GPIO
eQADC Analog Input6

CAN_D Transmit
DSPI_B Peripheral Chip Select

I/O
I
O
O

VDDE1 A + SH — — 125 151 D9

PB10 26

PB[10]
AN[38]

CNRX_D
PCS_B[3]

GPIO
eQADC Analog Input6

CAN_D Receive
DSPI_B Peripheral Chip Select

I/O
I
I
O

VDDE1 A + SH — — 124 150 A10

PB11 27

PB[11]
AN[39]

eMIOS[19]
PCS_B[5]

GPIO
eQADC Analog Input6

eMIOS Channel
DSPI_B Peripheral Chip Select

I/O
I
O
O

VDDE1 A + SH — — 123 149 B10

PB12 28
PB[12]
TXD_G

PCS_B[4]

GPIO
SCI_G Transmit

DSPI_B Peripheral Chip Select

I/O
O
O

VDDE1 SH — — — 164 A7

PB13 29
PB[13]
RXD_G

PCS_B[3]

GPIO
SCI_G Receive

DSPI_B Peripheral Chip Select

I/O
I
O

VDDE1 SH — — — 163 B7

PB14 30
PB[14]
TXD_H

GPIO
SCI_H Transmit

I/O
O

VDDE1 SH — — — 148 C10

PB15 31
PB[15]
RXD_H

GPIO
SCI_H Receive

I/O
I

VDDE1 SH — — — 147 A11

Port C (16) (Section/Page: 2.7.3/2-19)

PC0 32

PC[0]
eMIOS[0]

FR_A_TX_EN
AD[24]

GPIO
eMIOS Channel

FlexRay Channel A Transmit Enable
EBI Multiplexed Address/Data

I/O
I/O
O

I/O

VDDE1 MH — — 122 146 B11

PC1 33

PC[1]
eMIOS[1]
FR_A_TX

AD[16]

GPIO
eMIOS Channel

FlexRay Channel A Transmit
EBI Multiplexed Address/Data

I/O
I/O
O

I/O

VDDE1 MH — — 121 145 C11

PC2 34

PC[2]
eMIOS[2]
FR_A_RX

TS

GPIO
eMIOS Channel

FlexRay Channel A Receive
EBI Transfer Start

I/O
I/O
I

I/O

VDDE1 MH — — 120 144 D11

Table 2-1. MPC5510 Signal Properties (continued)

Pin
Name

GPIO
(PCR)
Num1

Supported
Functions2 Description

I/O
Type

Voltage3 Pad
Type

Status
During
Reset4

Status
After

Reset4

Package Pin
Locations

144 176 208

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

2-4 Freescale Semiconductor
 Preliminary

PC3 35
PC[3]

eMIOS[3]
FR_DBG0

GPIO
eMIOS Channel
FlexRay Debug

I/O
I/O
O

VDDE1 MH — — 117 141 A12

PC4 36
PC[4]

eMIOS[4]
FR_DBG1

GPIO
eMIOS Channel
FlexRay Debug

I/O
I/O
O

VDDE1 SH — — 116 140 B12

PC5 37
PC[5]

eMIOS[5]
FR_DBG2

GPIO
eMIOS Channel
FlexRay Debug

I/O
I/O
O

VDDE1 SH — — 115 139 C12

PC6 38
PC[6]

eMIOS[6]
FR_DBG3

GPIO
eMIOS Channel
FlexRay Debug

I/O
I/O
O

VDDE1 SH — — 114 138 D12

PC7 39
PC[7]

eMIOS[7]
FR_B_RX

GPIO
eMIOS Channel

FlexRay Channel B Receive

I/O
I/O
I

VDDE1 SH — — 113 137 A13

PC8 40

PC[8]
eMIOS[8]
FR_B_TX

AD[15]

GPIO
eMIOS Channel

FlexRay Channel B Transmit
EBI Multiplexed Address/Data

I/O
I/O
O

I/O

VDDE1 MH — — 112 136 B13

PC9 41

PC[9]
eMIOS[9]

FR_B_TX_EN
AD[14]

GPIO
eMIOS Channel

FlexRay Channel B Transmit Enable
EBI Muxed Address/Data

I/O
I/O
O

I/O

VDDE1 MH — — 111 135 C13

PC10 42

PC[10]
eMIOS[10]
PCS_C[5]

SCK_D

GPIO
eMIOS Channel

DSPI_C Peripheral Chip Select
DSPI_D Clock

I/O
I/O
O

I/O

VDDE1 SH — — 110 134 A14

PC11 43

PC[11]
eMIOS[11]
PCS_C[4]
SOUT_D

GPIO
eMIOS Channel

DSPI_C Peripheral Chip Select
DSPI_D Serial Out

I/O
I/O
O
O

VDDE1 SH — — 109 133 B14

PC12 44

PC[12]
eMIOS[12]
PSC_C[3]

SIN_D

GPIO
eMIOS Channel

DSPI_C Peripheral Chip Select
DSPI_D Serial In

I/O
I/O
O
I

VDDE1 SH — — 108 132 B16

PC13 45

PC[13]
eMIOS[13]
PCS_A[5]
PCS_D[0]

GPIO
eMIOS Channel

DSPI_A Peripheral Chip Select
DSPI_D Peripheral Chip Select

I/O
I/O
O
O

VDDE1 SH — — 107 131 C15

PC14 46

PC[14]
eMIOS[14]
PCS_A[4]
PCS_D[1]

GPIO
eMIOS Channel

DSPI_A Peripheral Chip Select
DSPI_D Peripheral Chip Select

I/O
I/O
O
O

VDDE1 SH — — 106 130 C16

PC15 47

PC[15]
eMIOS[15]
PCS_A[3]
PCS_D[2]

GPIO
eMIOS Channel

DSPI_A Peripheral Chip Select
DSPI_D Peripheral Chip Select

I/O
I/O
O
O

VDDE1 SH — — 105 129 D14

Table 2-1. MPC5510 Signal Properties (continued)

Pin
Name

GPIO
(PCR)
Num1

Supported
Functions2 Description

I/O
Type

Voltage3 Pad
Type

Status
During
Reset4

Status
After

Reset4

Package Pin
Locations

144 176 208

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 2-5
 Preliminary

Port D (16) (Section/Page: 2.7.4/2-21)

PD0 48
PD[0]

CNTX_A
PCS_D[3]

GPIO
CAN_A Transmit

DSPI_D Peripheral Chip Select

I/O
O
O

VDDE1 SH — — 104 128 D15

PD1 49
PD[1]

CNRX_A
PCS_D[4]

GPIO
CAN_A Receive

DSPI_D Peripheral Chip Select

I/O
I
O

VDDE1 SH — — 103 127 D16

PD2 50

PD[2]
CNRX_B

eMIOS[10]
PCS_D[5]

BOOTCFG7

GPIO
CAN_B Receive
eMIOS Channel

DSPI_D Peripheral Chip Select
Boot Configuration

I/O
I
O
O
I

VDDE1 SH
BOOTCFG
(Pulldown)

GPI
(Pulldown)

102 126 E14

PD3 51
PD[3]

CNTX_B
eMIOS[11]

GPIO
CAN_B Transmit
eMIOS Channel

I/O
O
O

VDDE1 SH — — 101 125 E15

PD4 52
PD[4]

CNTX_C
eMIOS[12]

GPIO
CAN_C Transmit
eMIOS Channel

I/O
O
O

VDDE1 SH — — 100 124 E16

PD5 53
PD[5]

CNRX_C
eMIOS[13]

GPIO
CAN_C Receive
eMIOS Channel

I/O
I
O

VDDE1 SH — — 99 123 F13

PD6 54
PD[6]

TXD_A
eMIOS[14]

GPIO
SCI_A Transmit
eMIOS Channel

I/O
O
O

VDDE1 SH — — 98 122 F14

PD7 55
PD[7]

RXD_A
eMIOS[15]

GPIO
SCI_A Receive
eMIOS Channel

I/O
I
O

VDDE1 SH — — 97 121 F15

PD8 56
PD[8]

TXD_B
SCL_A

GPIO
SCI_B Transmit

I2C Serial Clock Line

I/O
O

I/O
VDDE1 SH — — 94 118 G13

PD9 57
PD[9]

RXD_B
SDA_A

GPIO
SCI_B Receive

I2C Serial Data Line

I/O
I

I/O
VDDE1 SH — — 93 117 F16

PD10 58

PD[10]
PCS_B[2]
CNTX_F

NMI0

GPIO
DSPI_B Peripheral Chip Select

CAN_F Transmit
NMI Input for Z1 Core

I/O
O
O
I

VDDE1 SH — — 92 116 G14

PD11 59

PD[11]
PCS_B[1]
CNRX_F

NMI1

GPIO
DSPI_B Peripheral Chip Select

CAN_F Receive
NMI Input for Z0 Core

I/O
O
I
I

VDDE1 SH — — 91 115 G15

PD12 60
PD[12]

PCS_B[0]
eMIOS[9]

GPIO
DSPI_B Peripheral Chip Select

eMIOS Channel

I/O
I/O
O

VDDE1 SH — — 90 114 H14

PD13 61
PD[13]
SCK_B

eMIOS[8]

GPIO
DSPI_B Clock

eMIOS Channel

I/O
I/O
O

VDDE1 SH — — 89 113 H15

Table 2-1. MPC5510 Signal Properties (continued)

Pin
Name

GPIO
(PCR)
Num1

Supported
Functions2 Description

I/O
Type

Voltage3 Pad
Type

Status
During
Reset4

Status
After

Reset4

Package Pin
Locations

144 176 208

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

2-6 Freescale Semiconductor
 Preliminary

PD14 62
PD[14]

SOUT_B
eMIOS[7]

GPIO
DSPI_B Data Output

eMIOS Channel

I/O
O
O

VDDE1 SH — — 88 110 J14

PD15 63
PD[15]
SIN_B

eMIOS[6]

GPIO
DSPI_B Data Input

eMIOS Channel

I/O
I
O

VDDE1 SH — — 87 107 K14

Port E (16) (Section/Page: 2.7.5/2-24)

PE0 64

PE[0]
PCS_A[2]
eMIOS[5]
MLBCLK

GPIO
DSPI_A Peripheral Chip Select

eMIOS Channel
MLB Clock

I/O
O
O
I

VDDE1 SH — — 86 106 K16

PE1 65

PE[1]
PCS_A[1]
eMIOS[4]
MLBSI /
MLBSIG

GPIO
DSPI_A Peripheral Chip Select

eMIOS Channel
MLB Signal In (5-pin) /

MLB Bidirectional Signal (3-pin)

I/O
O
O
I

I/O

VDDE1 MH — — 85 103 L14

PE2 66

PE[2]
PCS_A[0]
eMIOS[3]
MLBDI /
MLBDAT

GPIO
DSPI_A Peripheral Chip Select

eMIOS Channel
MLB Data In (5-pin) /

MLB Bidirectional Data (3-pin)

I/O
I/O
O
I

I/O

VDDE1 MH — — 84 101 L15

PE3 67

PE[3]
SCK_A

eMIOS[2]
MLBSO /

MLBSIG_BUFEN

GPIO
DSPI_A Clock

eMIOS Channel
MLB Signal Out (5-pin) /

MLB Signal Level Shifter Enable (3-pin)

I/O
I/O
O
O
O

VDDE1 MH — — 83 100 M13

PE4 68

PE[4]
SOUT_A
eMIOS[1]
MLBDO /

MLBDAT_BUFEN

GPIO
DSPI_A Data Out
eMIOS Channel

MLB Data Out (5-pin) /
MLB Data Level Shifter Enable (3-pin)

I/O
O
O
O
O

VDDE1 MH — — 82 98 N14

PE5 69

PE[5]
SIN_A

eMIOS[0]
MLB_SLOT /

MLB_SIGOBS /
MLB_DATOBS

GPIO
DSPI_A Data In
eMIOS Channel

MLB Slot Debug /
MLB Clock Adjust Observe Signal /

MLB Clock Adjust Observe Data

I/O
I
O
O
O
O

VDDE1 MH — — 81 97 M15

PE6 70
PE[6]

CLKOUT
GPIO

System Clock Output
I/O
O

VDDE3 MH — — 67 83 P13

PE7 71 PE[7] GPIO I/O VDDE1 SH — — — — H13

PE8 72 PE[8] GPIO I/O VDDE1 SH — — — — H16

PE9 72 PE[9] GPIO I/O VDDE1 SH — — — — J13

PE10 74 PE[10] GPIO I/O VDDE1 SH — — — 112 J16

PE11 75 PE[11] GPIO I/O VDDE1 SH — — — 111 J15

PE12 76 PE[12] GPIO I/O VDDE1 SH — — — 109 K13

PE13 77 PE[13] GPIO I/O VDDE1 SH — — — 108 L13

Table 2-1. MPC5510 Signal Properties (continued)

Pin
Name

GPIO
(PCR)
Num1

Supported
Functions2 Description

I/O
Type

Voltage3 Pad
Type

Status
During
Reset4

Status
After

Reset4

Package Pin
Locations

144 176 208

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 2-7
 Preliminary

PE14 78 PE[14] GPIO I/O VDDE1 SH — — — 102 L16

PE15 79 PE[15] GPIO I/O VDDE1 SH — — — 99 M14

Port F (16) (Section/Page: 2.7.6/2-25)

PF0 80
PF[0]

RD_WR
EVTI8

GPIO
EBI Read/Write
Nexus Event In

I/O
I/O
I

VDDE3 MH — — 66 82 N12

PF1 81

PF[1]
TA

MLBCLK
EVTO8

GPIO
EBI Transfer Acknowledge

MLB Clock
Nexus Event Out

I/O
I/O
I
O

VDDE3 MH — — 65 81 P12

PF2 82

PF[2]
AD[8]

ADDR[8]
MLBSI /
MLBSIG
MSEO8

GPIO
EBI Muxed Address/Data
EBI Non Muxed Address
MLB Signal In (5-pin) /

MLB Bidirectional Signal (3-pin)
Nexus Message Start/End Out

I/O
I/O
O
I

I/O
O

VDDE3 MH — — 64 80 R12

PF3 83

PF[3]
AD[9]

ADDR[9]
MLBDI /
MLBDAT
MCKO8

GPIO
EBI Muxed Address/Data
EBI Non Muxed Address

MLB Data In (5-pin) /
MLB Bidirectional Data (3-pin)

Nexus Message Clock Out

I/O
I/O
O
I

I/O
O

VDDE3 MH — — 63 79 T12

PF4 84

PF[4]
AD[10]

ADDR[10]
MLBSO /

MLBSIG_BUFEN
MDO[0]8

GPIO
EBI Muxed Address/Data
EBI Non Muxed Address
MLB Signal Out (5-pin) /

MLB Signal Level Shifter Enable (3-pin)
Nexus Message Data Out

I/O
I/O
O
O
O
O

VDDE3 MH — — 59 74 T10

PF5 85

PF[5]
AD[11]

ADDR[11]
MLBDO /

MLBDAT_BUFEN
MDO[1]8

GPIO
EBI Muxed Address/Data
EBI Non Muxed Address
MLB Data Out (5-pin) /

MLB Data Level Shifter Enable (3-pin)
Nexus Message Data Out

I/O
I/O
O
O
O
O

VDDE3 MH — — 58 72 R9

PF6 86

PF[6]
AD[12]

ADDR[12]
MLB_SLOT /

MLB_SIGOBS /
MLB_DATOBS

MDO[2]8

GPIO
EBI Muxed Address/Data
EBI Non Muxed Address

MLB Slot Debug /
MLB Clock Adjust Observe Signal /

MLB Clock Adjust Observe Data
Nexus Message Data Out

I/O
I/O
O
O
O
O
O

VDDE3 MH — — 57 68 T8

PF7 87

PF[7]
AD[13]

ADDR[13]
MDO[3]8

GPIO
EBI Muxed Address/Data
EBI Non Muxed Address
Nexus Message Data Out

I/O
I/O
O
O

VDDE3 MH — — 56 66 P8

PF8 88

PF[8]
AD[14]

ADDR[14]
MDO[4]8

GPIO
EBI Muxed Address/Data
EBI Non Muxed Address
Nexus Message Data Out

I/O
I/O
O
O

VDDE2 MH — — 55 65 N8

Table 2-1. MPC5510 Signal Properties (continued)

Pin
Name

GPIO
(PCR)
Num1

Supported
Functions2 Description

I/O
Type

Voltage3 Pad
Type

Status
During
Reset4

Status
After

Reset4

Package Pin
Locations

144 176 208

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

2-8 Freescale Semiconductor
 Preliminary

PF9 89

PF[9]
AD[15]

ADDR[15]
MDO[5]8

GPIO
EBI Muxed Address/Data
EBI Non Muxed Address
Nexus Message Data Out

I/O
I/O
O
O

VDDE2 MH — — 54 64 T7

PF10 90

PF[10]
CS[1]

TXD_C
MDO[6]8

GPIO
EBI Chip Select
SCI_C Transmit

Nexus Message Data Out

I/O
O
O
O

VDDE2 MH — — 52 62 R7

PF11 91

PF[11]
CS[0]

RXD_C
MDO[7]8

GPIO
EBI Chip Select
SCI_C Receive

Nexus Message Data Out

I/O
O
I
O

VDDE2 MH — — 51 61 P7

PF12 92

PF[12]
TS

TXD_D
ALE

GPIO
EBI Transfer Start
SCI_D Transmit

EBI Address Latch Enable

I/O
I/O
O
O

VDDE2 MH — — 50 60 N7

PF13 93
PF[13]

OE
RXD_D

GPIO
EBI Output Enable

SCI_D Receive

I/O
O
I

VDDE2 MH — — 49 59 R6

PF14 94

PF[14]
WE[0]
BDIP

CNTX_D

GPIO
EBI Write Enable

EBI Burst Data In Progress
CAN_D Transmit

I/O
O
O
O

VDDE2 MH — — 45 55 P6

PF15 95

PF[15]
WE[1]
TEA

CNRX_D

GPIO
EBI Write Enable

EBI Transfer Error Acknowledge
CAN_D Receive

I/O
O

I/O
I

VDDE2 MH — — 44 54 N6

Port G (16) (Section/Page: 2.7.7/2-28)

PG0 96
PG[0]
AD[16]

eMIOS[16]

GPIO
EBI Muxed Address/Data

eMIOS Channel

I/O
I/O
I/O

VDDE2 MH — — 43 51 P5

PG1 97

PG[1]
AD[17]

eMIOS[17]
SIN_C

GPIO
EBI Muxed Address/Data

eMIOS Channel
DSPI_C Serial In

I/O
I/O
I/O
I

VDDE2 MH — — 42 50 T4

PG2 98

PG[2]
AD[18]

eMIOS[18]
SOUT_C

GPIO
EBI Muxed Address/Data

eMIOS Channel
DSPI_C Serial Out

I/O
I/O
I/O
O

VDDE2 MH — — 41 49 R4

PG3 99

PG[3]
AD[19]

eMIOS[19]
SCK_C

GPIO
EBI Muxed Address/Data

eMIOS Channel
DSPI_C Serial Clock

I/O
I/O
I/O
I/O

VDDE2 MH — — 40 48 P4

PG4 100

PG[4]
AD[20]

eMIOS[20]
PCS_C[0]

GPIO
EBI Muxed Address/Data

eMIOS Channel
DSPI_C Peripheral Chip Select

I/O
I/O
I/O
I/O

VDDE2 MH — — 39 47 T3

Table 2-1. MPC5510 Signal Properties (continued)

Pin
Name

GPIO
(PCR)
Num1

Supported
Functions2 Description

I/O
Type

Voltage3 Pad
Type

Status
During
Reset4

Status
After

Reset4

Package Pin
Locations

144 176 208

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 2-9
 Preliminary

PG5 101
PG[5]
AD[21]

eMIOS[21]

GPIO
EBI Muxed Address/Data

eMIOS Channel

I/O
I/O
I/O

VDDE2 MH — — 38 46 R3

PG6 102
PG[6]
AD[22]

eMIOS[22]

GPIO
EBI Muxed Address/Data

eMIOS Channel

I/O
I/O
I/O

VDDE2 MH — — 37 45 T2

PG7 103

PG[7]
AD[23]

eMIOS[23]
RXD_C

GPIO
EBI Muxed Address/Data

eMIOS Channel
SCI_C Receive

I/O
I/O
I/O
I

VDDE2 MH — — 36 44 R1

PG8 104
PG[8]
AD[24]

PCS_A[4]

GPIO
EBI Muxed Address/Data

DSPI_A Peripheral Chip Select

I/O
I/O
O

VDDE2 MH — — 35 43 P2

PG9 105

PG[9]
AD[25]

PCS_A[3]
TXD_C

GPIO
EBI Muxed Address/Data

DSPI_A Peripheral Chip Select
SCI_C Transmit

I/O
I/O
O
O

VDDE2 MH — — 34 42 N3

PG10 106
PG[10]
AD[26]

PCS_A[2]

GPIO
EBI Muxed Address/Data

DSPI_A Peripheral Chip Select

I/O
I/O
O

VDDE2 MH — — 30 38 N2

PG11 107
PG[11]
AD[27]

PCS_A[1]

GPIO
EBI Muxed Address/Data

DSPI_A Peripheral Chip Select

I/O
I/O
O

VDDE2 MH — — 29 37 N1

PG12 108
PG[12]
AD[28]

PCS_A[0]

GPIO
EBI Muxed Address/Data

DSPI_A Peripheral Chip Select

I/O
I/O
I/O

VDDE2 MH — — 28 36 M4

PG13 109
PG[13]
AD[29]
SCK_A

GPIO
EBI Muxed Address/Data

DSPI_A Clock

I/O
I/O
I/O

VDDE2 MH — — 27 35 M3

PG14 110
PG[14]
AD[30]

SOUT_A

GPIO
EBI Muxed Address/Data

DSPI_A Data Out

I/O
I/O
O

VDDE2 MH — — 26 34 M2

PG15 111
PG[15]
AD[31]
SIN_A

GPIO
EBI Muxed Address/Data

DSPI_A Data In

I/O
I/O
I

VDDE2 MH — — 25 33 M1

Port H (16) (Section/Page: 2.7.8/2-30)

PH0 112

PH[0]
AN[27]

eMIOS[20]
SCL_A

GPIO
eQADC Analog Input6

eMIOS Channel
I2C_A Serial Clock

I/O
I
O

I/O

VDDE2 A + SH — — 24 32 L3

PH1 113

PH[1]
AN[26]

eMIOS[21]
SDA_A

GPIO
eQADC Analog Input6

eMIOS Channel
I2C_A Serial Data

I/O
I
O

I/O

VDDE2 A + SH — — 23 31 L2

Table 2-1. MPC5510 Signal Properties (continued)

Pin
Name

GPIO
(PCR)
Num1

Supported
Functions2 Description

I/O
Type

Voltage3 Pad
Type

Status
During
Reset4

Status
After

Reset4

Package Pin
Locations

144 176 208

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

2-10 Freescale Semiconductor
 Preliminary

PH2 114

PH[2]
AN[25]

eMIOS[22]
CS[3]

GPIO
eQADC Analog Input6

eMIOS Channel
EBI Chip Select

I/O
I
O
O

VDDE2 A + MH — — 22 30 L1

PH3 115

PH[3]
AN[24]

eMIOS[23]
CS[2]

GPIO
eQADC Analog Input6

eMIOS Channel
EBI Chip Select

I/O
I
O
O

VDDE2 A + MH — — 21 29 K4

PH4 116

PH[4]
AN[23]
TXD_E
MA[2]

GPIO
eQADC Analog Input6

SCI_E Transmit
eQADC External Mux Address

I/O
I
O
O

VDDE2 A + SH — — 20 28 K3

PH5 117

PH[5]
AN[22]
RXD_E
MA[1]

GPIO
eQADC Analog Input6

SCI_E Receive
eQADC External Mux Address

I/O
I
I
O

VDDE2 A + SH — — 19 24 J3

PH6 118
PH[6]

AN[21]
TXD_F

GPIO
eQADC Analog Input6

SCI_F Transmit

I/O
I
O

VDDE2 A + SH — — 18 23 J2

PH7 119
PH[7]

AN[20]
RXD_F

GPIO
eQADC Analog Input6

SCI_F Receive

I/O
I
I

VDDE2 A + SH — — 17 22 J1

PH8 120

PH[8]
AN[19]

CNTX_E
MA[0]

GPIO
eQADC Analog Input6

CAN_E Transmit
eQADC External Mux Address

I/O
I
O
O

VDDE2 A + SH — — 14 17 H1

PH9 121
PH[9]

AN[18]/ANT
CNRX_E

GPIO
eQADC Analog Input6

CAN_E Receive

I/O
I
I

VDDE2 A + SH — — 13 14 G2

PH10 122
PH[10]

AN[17]/ANS
CNRX_F

GPIO
eQADC Analog Input6

CAN_F Receive

I/O
I
I

VDDE2 A + SH — — 12 12 F4

PH11 123
PH[11]

AN[16]/ANR
CNTX_F

GPIO
eQADC Analog Input6

CAN_F Transmit

I/O
I
O

VDDE2 A + SH — — 11 11 F3

PH12 124
PH[12]

PCS_D[5]
GPIO

DSPI_D Peripheral Chip Select
I/O
O

VDDE2 SH — — — — F2

PH13 125 PH[13] GPIO I/O VDDE2 SH — — — — F1

PH14 126
PH[14]
WE[2]

GPIO
EBI Write Enable

I/O
O

VDDE2 MH — — — 53 T5

PH15 127
PH[15]
WE[3]

GPIO
EBI Write Enable

I/O
O

VDDE2 MH — — — 52 R5

Port J (16) (Section/Page: 2.7.9/2-32)

PJ0 128
PJ[0]
AD[0]

GPIO
EBI Muxed Address/Data

I/O
I/O

VDDE3 MH — — — — N11

Table 2-1. MPC5510 Signal Properties (continued)

Pin
Name

GPIO
(PCR)
Num1

Supported
Functions2 Description

I/O
Type

Voltage3 Pad
Type

Status
During
Reset4

Status
After

Reset4

Package Pin
Locations

144 176 208

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 2-11
 Preliminary

PJ1 129
PJ[1]
AD[1]

GPIO
EBI Muxed Address/Data

I/O
I/O

VDDE3 MH — — — — P11

PJ2 130
PJ[2]
AD[2]

GPIO
EBI Muxed Address/Data

I/O
I/O

VDDE3 MH — — — — N10

PJ3 131
PJ[3]
AD[3]

GPIO
EBI Muxed Address/Data

I/O
I/O

VDDE3 MH — — — — R10

PJ4 132
PJ[4]
AD[4]

GPIO
EBI Muxed Address/Data

I/O
I/O

VDDE3 MH — — — 75 P10

PJ5 133
PJ[5]
AD[5]

GPIO
EBI Muxed Address/Data

I/O
I/O

VDDE3 MH — — — 73 T9

PJ6 134
PJ[6]
AD[6]

GPIO
EBI Muxed Address/Data

I/O
I/O

VDDE3 MH — — — 69 P9

PJ7 135
PJ[7]
AD[7]

GPIO
EBI Muxed Address/Data

I/O
I/O

VDDE3 MH — — — 67 R8

PJ8 136
PJ[8]

PCS_D[4]
GPIO

DSPI_D Peripheral Chip Select
I/O
I/O

VDDE2 SH — — — 27 K2

PJ9 137
PJ[9]

PCS_D[3]
GPIO

DSPI_D Peripheral Chip Select
I/O
I/O

VDDE2 SH — — — 26 K1

PJ10 138
PJ[10]

PCS_D[2]
GPIO

DSPI_D Peripheral Chip Select
I/O
I/O

VDDE2 SH — — — 25 J4

PJ11 139
PJ[11]

PCS_D[1]
GPIO

DSPI_D Peripheral Chip Select
I/O
I/O

VDDE2 SH — — — 19 H3

PJ12 140
PJ[12]

PCS_D[0]
GPIO

DSPI_D Peripheral Chip Select
I/O
I/O

VDDE2 SH — — — 18 H2

PJ13 141
PJ[13]
SCK_D

GPIO
DSPI_D Clock

I/O
I/O

VDDE2 SH — — — 16 G4

PJ14 142
PJ[14]

SOUT_D
GPIO

DSPI_D Serial Out
I/O
O

VDDE2 SH — — — 15 G3

PJ15 143
PJ[15]
SIN_D

GPIO
DSPI_D Serial In

I/O
I

VDDE2 SH — — — 13 G1

Port K (2) (Section/Page: 2.7.10/2-33)

PK0 144
PK[0]

EXTAL32
GPIO

32 kHz Crystal Oscillator Input
I
I

VDDA AE + IH — — — 168 B6

PK1 145
PK[1]

XTAL32
GPIO

32 kHz Crystal Oscillator Output
I
O

VDDA AE + IH — — — 166 A6

Miscellaneous Pins (9) (Section/Page: 2.7.11/2-33)

EXTAL —
EXTAL

EXTCLK
Main Crystal Oscillator Input

External Clock Input
I
I

VDDSYN AE EXTAL 75 91 N16

XTAL — XTAL Main Crystal Oscillator Output O VDDSYN AE XTAL 74 90 P16

TMS — TMS JTAG Test Mode Select Input I VDDE3 SH TMS (Pull Up) 72 88 T15

TCK — TCK JTAG Test Clock Input I VDDE3 IH TCK (Pull Down) 71 87 R14

Table 2-1. MPC5510 Signal Properties (continued)

Pin
Name

GPIO
(PCR)
Num1

Supported
Functions2 Description

I/O
Type

Voltage3 Pad
Type

Status
During
Reset4

Status
After

Reset4

Package Pin
Locations

144 176 208

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

2-12 Freescale Semiconductor
 Preliminary

2.3 Power and Ground Supply Summary
Refer to Section 2.7.12, “Power and Ground Pins,” for detailed descriptions of these pins.

TDO — TDO JTAG Test Data Output O VDDE3 MH TDO (Pull Up9) 70 86 T14

TDI — TDI JTAG Test Data Input I VDDE3 IH TDI (Pull Up) 69 85 R13

JCOMP — JCOMP JTAG Compliancy I VDDE3 IH JCOMP (Pull Down) 68 84 T13

TEST — TEST Test Mode Select I VDDE3 IH TEST 62 78 R11

RESET — RESET External Reset I/O VDDE2 SH RESET (Pull Up) 10 10 E4

1 The GPIO number is the same as the corresponding pad configuration register (SIU_PCRn) number.
2 This column lists the functions associated with the programming of the SIU_PCRn[PA] bit field in the following order: GPIO, function

1, function 2, and function 3. The unused functions by a given pin begin with function 3, then function 2, then function 1 (see
Figure 2-1).

3 These are nominal voltages. Each segment provides the power and ground for the given set of I/O pins.
4 A dash for the function in this column denotes the input and output buffer are turned off.
5 Port A[14:15]—EXTAL32 and XTAL32 functions only apply on the 144LQFP. These functions are on PortK[0:1] for the 176LQFP and

208BGA.
6 This analog input pin has reduced analog-to-digital conversion accuracy compared to PA0–PA15. See the MPC5510 Microcontroller

Family Data Sheet for values.
7 BOOTCFG is the pin function while the RESET pin is asserted. When the RESET pin is negated, the pin function is controlled by

the associated PCR register.
8 The NEXUS function is selected when the JTAG TAP controller is enabled via the JCOMP pin. The value of the PA field in the

associated PCR register has no effect on the pin function when the NEXUS function is selected.
9 Pullup is enabled only when JCOMP is negated.

Table 2-2. MPC5510 Power/Ground

Pin
Name

Function Description Voltage1
Package Pin Locations

144 176 208

VDDR Voltage Regulator Supply 5.0 V 46 56 T6

VDDA Analog Power 5.0 V
144 176

A2

VRH
2 eQADC Voltage Reference High 5.0 V B3

VSSA Analog Ground –
141 173

A4

VRL
3 eQADC Voltage Reference Low – B4

REFBYPC eQADC Reference Bypass Capacitor VSSA 1 1 B1

VPP
4 Flash Program/Erase Power 5.0 V 78 94 P15

VDDSYN Clock Synthesizer Power 3.3 V 73 89 R16

VSSSYN Clock Synthesizer Ground – 76 92 M16

Table 2-1. MPC5510 Signal Properties (continued)

Pin
Name

GPIO
(PCR)
Num1

Supported
Functions2 Description

I/O
Type

Voltage3 Pad
Type

Status
During
Reset4

Status
After

Reset4

Package Pin
Locations

144 176 208

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 2-13
 Preliminary

VDDE1

External I/O Power 3.3 V – 5.0 V

96,119
105,120,
143,155

A15,D10,E13,
G16,K15

VDDE2 16,33,48 21,41,58 H4,L4,N5,P1

VDDE3 61 71,77 N9,T11

VSSE1

External I/O Ground –

95,118
104,119,
142,154

Shorted to VSS in the
package

VSSE2 32,47 20,40,57
Shorted to VSS in the

package

VSSE3 60 70,76
Shorted to VSS in the

package

VDD33 3.3 V I/O Power
3.3 V 77 93 N15

VF:ASH
5 Flash Read Power

VDD Internal Logic Power

1.5 V

31,53,79 39,63,95
A1,A16,B2,B15,
R2,R15,T1,T16

VDDF Flash Internal Logic Power 79 95 Shorted to VDD in the
package

VSS Ground

– 80 96

C3,C14,D4,D13,
G7-G10,H7-H10,
J7-J10,K7-K10,
N4,N13,P3,P14

VSSF Flash Internal Logic Ground
Shorted to VSS in the

package

1 These are nominal voltages.
2 VRH is shorted to VDDA in the 144LQFP and 176LQFP packages.
3 VRL is shorted to VSSA in the 144LQFP and 176LQFP packages.
4 VPP requires nominal 5V for program/erase operations, but may be 0-5V otherwise.
5 VFLASH is shorted to VDD33 in the package.

Table 2-2. MPC5510 Power/Ground (continued)

Pin
Name

Function Description Voltage1
Package Pin Locations

144 176 208

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

2-14 Freescale Semiconductor
 Preliminary

2.4 Pinout – 144 LQFP

Figure 2-2. MPC5510 Pinout – 144 LQFP

PE0/PCS_A2/eMIOS5/MLBCLK

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

REFBYPC
AN7/PA7
AN6/PA6
AN5/PA5
AN4/PA4
AN3/PA3

AN1/PA1
AN0/PA0

RESET
CNTX_F/AN16/PH11
CNRX_F/AN17/PH10
CNRX_E/AN18/PH9

MA0/CNTX_E/AN19/PH8
VSSE2

VDDE2

RXD_F/AN20/PH7
TXD_F/AN21/PH6

MA1/RXD_E/AN22/PH5
MA2/TXD_E/AN23/PH4

CS[2]/eMIOS23/AN24/PH3
CS[3]/eMIOS22/AN25/PH2

SDA_A/eMIOS21/AN26/PH1

108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84

PC12/eMIOS12/PCS_C3/SIN_D
PC13/eMIOS13/PCS_A5/PCS_D[0]
PC14/eMIOS14/PCS_A4/PCS_D[1]
PC15/eMIOS15/PCS_A3/PCS_D[2]
PD0/CNTX_A/PCS_D[3]
PD1/CNRX_A/PCS_D[4]
PD2/CNRX_B/eMIOS10/PCS_D[5]/BOOTCFG*

PD3/CNTX_B/eMIOS11
PD4/CNTX_C/eMIOS12
PD5/CNRX_C/eMIOS13
PD6/TXD_A/eMIOS14
PD7/RXD_A/eMIOS15
VDDE1

VSSE1

PD8/TXD_B/SCL_A
PD9/RXD_B/SDA_A
PD10/PCS_B2/CNTX_F/NMI0
PD11/PCS_B1/CNRX_F/NMI1
PD12/PCS_B0/eMIOS9
PD13/SCK_B/eMIOS8
PD14/SOUT_B/eMIOS7

PE1/PCS_A1/eMIOS4/MLBSI
PE2/PCS_A0/eMIOS3/MLBDI

14
4

14
3

14
2

14
1

14
0

13
9

13
8

13
7

13
6

13
5

13
4

13
3

13
2

13
1

13
0

12
9

12
8

12
7

12
6

12
5

12
4

12
3

12
2

12
1

12
0

V
D

D
A
/V

R
H

P
A

8
/A

N
8

P
A

9
/A

N
9

V
S

S
A
/V

R
L

P
A

1
0
/A

N
1
0

P
A

1
1
/A

N
1
1

P
A

1
2
/A

N
1
2

P
A

1
3
/A

N
1
3

P
A

1
4
/A

N
1
4
/E

X
T

A
L
3
2

P
A

1
5
/A

N
1
5
/X

T
A

L
3
2

P
B

0
/A

N
2
8
/e

M
IO

S
1
6
/P

C
S

_
C

5
P

B
1
/A

N
2
9
/e

M
IO

S
1
7
/P

C
S

_
C

4
P

B
2
/A

N
3
0
/e

M
IO

S
1
8
/P

C
S

_
C

3
P

B
3
/A

N
3
1
/P

C
S

_C
2

P
B

4
/A

N
3
2
/P

C
S

_C
1

P
B

5
/A

N
3
3
/P

C
S

_C
0

P
B

6
/A

N
3
4
/S

C
K

_C
P

B
7
/A

N
3
5
/S

O
U

T
_
C

P
B

8
/A

N
3
6
/S

IN
_
C

P
B

9
/A

N
3
7
/C

N
T

X
_
D

/P
C

S
_B

4
P

B
10

/A
N

38
/C

N
R

X
_
D

/P
C

S
_B

3
P

B
1
1
/A

N
3
9
/e

M
IO

S
1
9
/P

C
S

_
B

5
P

C
0
/e

M
IO

S
0/

F
R

_
A

_
T

X
_
E

N
/A

D
24

P
C

1
/e

M
IO

S
1/

F
R

_
A

_
T

X
/A

D
1
6

P
C

2
/e

M
IO

S
2/

F
R

_
A

_
R

X
/T

S

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

e
M

IO
S

2
2
/A

D
2
2
/P

G
6

e
M

IO
S

2
1
/A

D
2
1
/P

G
5

P
C

S
_
C

0
/e

M
IO

S
2
0
/A

D
2
0
/P

G
4

S
C

K
_
C

/e
M

IO
S

1
9
/A

D
1
9
/P

G
3

S
O

U
T

_
C

/e
M

IO
S

1
8
/A

D
1
8
/P

G
2

S
IN

_
C

/e
M

IO
S

1
7
/A

D
1
7
/P

G
1

e
M

IO
S

1
6
/A

D
1
6
/P

G
0

C
N

R
X

_D
/T

E
A

/W
E

1/
P

F
15

C
N

T
X

_D
/B

D
IP

/W
E

0/
P

F
14

V
D

D
R

V
S

S
E

2

V
D

D
E

2
R

X
D

_D
/O

E
/P

F
13

A
L
E

/T
X

D
_
D

/T
S

/P
F

12
M

D
O

7/
R

X
D

_C
/C

S
0
/P

F
11

M
D

O
6/

T
X

D
_C

/C
S

1
/P

F
10

M
D

O
5/

A
D

D
R

15
/A

D
15

/P
F

9
M

D
O

4/
A

D
D

R
14

/A
D

14
/P

F
8

M
D

O
3/

A
D

D
R

13
/A

D
13

/P
F

7
M

D
O

2/
M

LB
_S

LO
T

/A
D

D
R

12
/A

D
12

/P
F

6
M

D
O

1/
M

LB
D

O
/A

D
D

R
11

/A
D

11
/P

F
5

M
D

O
0/

M
LB

S
O

/A
D

D
R

10
/A

D
10

/P
F

4
V

S
S

E
3

V
D

D
E

3

SCL_A/eMIOS20/AN27/PH0

AN2/PA2

PD15/SIN_B/eMIOS6

26
27
28
29
30
31
32
33
34
35
36

SIN_A/AD31/PG15
SOUT_A/AD30/PG14

SCK_A/AD29/PG13
PCS_A0/AD28/PG12
PCS_A1/AD27/PG11
PCS_A2/AD26/PG10

VSSE2

VDDE2

TXD_C/PCS_A3/AD25/PG9
PCS_A4/AD24/PG8

RXD_C/eMIOS23/AD23/PG7

83
82
81
80
79
78
77
76
75
74
73

PE3/SCK_A/eMIOS2//MLBSO
PE4/SOUT_A/eMIOS1/MLBDO
PE5/SIN_A/eMIOS0/MLB_SLOT
VSS/VSSF

VDD/VDDF

VPP

VDD33/VFLASH

VSSSYN

EXTAL
XTAL
VDDSYN

62 63 64 65 66 67 68 69 70 71 72

M
C

K
O

/M
LB

D
I/A

D
D

R
9/

A
D

9/
P

F
3

M
S

E
O

/M
LB

S
I/A

D
D

R
8/

A
D

8/
P

F
2

E
V

T
O

/M
L
B

C
L
K

/T
A

/P
F

1
E

V
T

I/
R

D
_
W

R
/P

F
0

C
L
K

O
U

T
/P

E
6

JC
O

M
P

T
D

I
T

D
O

T
C

K
T

M
S

11
9

11
8

11
7

11
6

11
5

11
4

11
3

11
2

11
1

11
0

10
9

V
D

D
E

1

V
S

S
E

1

P
C

3
/e

M
IO

S
3/

F
R

_
D

B
G

0
P

C
4
/e

M
IO

S
4/

F
R

_
D

B
G

1
P

C
5
/e

M
IO

S
5/

F
R

_
D

B
G

2
P

C
6
/e

M
IO

S
6/

F
R

_
D

B
G

3
P

C
7
/e

M
IO

S
7/

F
R

_
B

_
R

X
P

C
8
/e

M
IO

S
8/

F
R

_
B

_
T

X
/A

D
1
5

P
C

9
/e

M
IO

S
9/

F
R

_
B

_
T

X
_
E

N
/A

D
14

P
C

1
0
/e

M
IO

S
1
0
/P

C
S

_
C

5
/S

C
K

_
D

P
C

1
1
/e

M
IO

S
1
1
/P

C
S

_
C

4
/S

O
U

T
_
D

Denotes active during RESET only*

VDD

V
D

D

T
E

S
T

144 LQFP

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 2-15
 Preliminary

2.5 Pinout – 176 LQFP

Figure 2-3. MPC5510 Pinout – 176 LQFP

PE0/PCS_A2/eMIOS5/MLBCLK

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

REFBYPC
AN7/PA7
AN6/PA6
AN5/PA5
AN4/PA4
AN3/PA3

AN1/PA1
AN0/PA0

RESET
CNTX_F/AN16/PH11
CNRX_F/AN17/PH10

CNRX_E/AN18/PH9

MA0/CNTX_E/AN19/PH8

VSSE2
VDDE2

RXD_F/AN20/PH7
TXD_F/AN21/PH6

MA1/RXD_E/AN22/PH5

MA2/TXD_E/AN23/PH4
CS[2]/eMIOS23/AN24/PH3
CS[3]/eMIOS22/AN25/PH2

SDA_A/eMIOS21/AN26/PH1

124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105

PC12/eMIOS12/PCS_C3/SIN_D
PC13/eMIOS13/PCS_A5/PCS_D[0]
PC14/eMIOS14/PCS_A4/PCS_D[1]
PC15/eMIOS15/PCS_A3/PCS_D[2]
PD0/CNTX_A/PCS_D[3]
PD1/CNRX_A/PCS_D[4]
PD2/CNRX_B/eMIOS10/PCS_D[5]/BOOTCFG*
PD3/CNTX_B/eMIOS11
PD4/CNTX_C/eMIOS12
PD5/CNRX_C/eMIOS13
PD6/TXD_A/eMIOS14
PD7/RXD_A/eMIOS15
VDDE1

VSSE1

PD8/TXD_B/SCL_A
PD9/RXD_B/SDA_A
PD10/PCS_B2/CNTX_F/NMI0
PD11/PCS_B1/CNRX_F/NMI1
PD12/PCS_B0/eMIOS9
PD13/SCK_B/eMIOS8

PD14/SOUT_B/eMIOS7

PE1/PCS_A1/eMIOS4/MLBSI

PE2/PCS_A0/eMIOS3/MLBDI

17
6

17
5

17
4

17
3

17
2

17
1

17
0

16
9

16
8

16
7

16
6

16
5

16
4

16
3

16
2

16
1

16
0

15
9

15
8

15
7

15
6

15
5

15
4

15
3

15
2

V
D

D
A
/V

R
H

P
A

8
/A

N
8

P
A

9
/A

N
9

V
S

S
A
/V

R
L

P
A

1
0
/A

N
1
0

P
A

1
1
/A

N
1
1

P
A

1
2
/A

N
1
2

P
A

1
3
/A

N
1
3

P
A

1
4
/A

N
1
4

P
A

1
5
/A

N
1
5

P
B

0
/A

N
2
8
/e

M
IO

S
1
6
/P

C
S

_C
5

P
B

1
/A

N
2
9
/e

M
IO

S
1
7
/P

C
S

_C
4

P
B

2
/A

N
3
0
/e

M
IO

S
1
8
/P

C
S

_C
3

P
B

3
/A

N
3
1
/P

C
S

_
C

2
P

B
4
/A

N
3
2
/P

C
S

_
C

1
P

B
5
/A

N
3
3
/P

C
S

_
C

0
P

B
6
/A

N
3
4
/S

C
K

_
C

P
B

7
/A

N
3
5
/S

O
U

T
_
C

P
B

8
/A

N
3
6
/S

IN
_
C

P
B

9
/A

N
3
7
/C

N
T

X
_
D

/P
C

S
_
B

4
P

B
10

/A
N

38
/C

N
R

X
_D

/P
C

S
_B

3

P
B

1
1
/A

N
3
9
/e

M
IO

S
1
9
/P

C
S

_B
5

P
C

0
/e

M
IO

S
0
/F

R
_
A

_T
X

_
E

N
/A

D
2
4

P
C

1/
eM

IO
S

1/
F

R
_A

_T
X

/A
D

16
P

C
2
/e

M
IO

S
2
/F

R
_
A

_R
X

/T
S

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

C
N

T
X

_D
/B

D
IP

/W
E

0/
P

F
14

V
D

D
R

V
S

S
E

2

V
D

D
E

2
R

X
D

_D
/O

E
/P

F
13

A
L
E

/T
X

D
_
D

/T
S

/P
F

12
M

D
O

7/
R

X
D

_C
/C

S
0
/P

F
11

M
D

O
6/

T
X

D
_
C

/C
S

1/
P

F
10

M
D

O
5/

A
D

D
R

15
/A

D
15

/P
F

9
M

D
O

4/
A

D
D

R
14

/A
D

14
/P

F
8

M
D

O
3/

A
D

D
R

13
/A

D
13

/P
F

7

M
D

O
2/

M
LB

_S
LO

T
/A

D
D

R
12

/A
D

12
/P

F
6

M
D

O
1/

M
LB

D
O

/A
D

D
R

11
/A

D
11

/P
F

5

M
D

O
0/

M
LB

S
O

/A
D

D
R

10
/A

D
10

/P
F

4

V
S

S
E

3
V

D
D

E
3

SCL_A/eMIOS20/AN27/PH0

AN2/PA2

PD15/SIN_B/eMIOS6

26
27
28
29
30
31
32
33
34
35
36

SIN_A/AD31/PG15
SOUT_A/AD30/PG14

SCK_A/AD29/PG13
PCS_A0/AD28/PG12
PCS_A1/AD27/PG11
PCS_A2/AD26/PG10

VSSE2

VDDE2
TXD_C/PCS_A3/AD25/PG9

PCS_A4/AD24/PG8
RXD_C/eMIOS23/AD23/PG7

PE3/SCK_A/eMIOS2//MLBSO

PE4/SOUT_A/eMIOS1/MLBDO
PE5/SIN_A/eMIOS0/MLB_SLOT
VSS/VSSF
VDD/VDDF
VPP
VDD33/VFLASH
VSSSYN
EXTAL
XTAL
VDDSYN

78 79 80 81 82 83 84 85 86 87 88

M
C

K
O

/M
LB

D
I/
A

D
D

R
9/

A
D

9/
P

F
3

M
S

E
O

/M
LB

S
I/
A

D
D

R
8/

A
D

8/
P

F
2

E
V

T
O

/M
L
B

C
L
K

/T
A

/P
F

1
E

V
T

I/R
D

_W
R

/P
F

0
C

LK
O

U
T

/P
E

6
JC

O
M

P
T

D
I

T
D

O
T

C
K

T
M

S

15
1

15
0

14
9

14
8

14
7

14
6

14
5

14
4

14
3

14
2

14
1

V
D

D
E

1
V

S
S

E
1

P
C

3/
eM

IO
S

3/
F

R
_D

B
G

0
P

C
4/

eM
IO

S
4/

F
R

_D
B

G
1

P
C

5/
eM

IO
S

5/
F

R
_D

B
G

2
P

C
6/

eM
IO

S
6/

F
R

_D
B

G
3

P
C

7/
eM

IO
S

7/
F

R
_B

_R
X

P
C

8/
eM

IO
S

8/
F

R
_B

_T
X

/A
D

15
P

C
9
/e

M
IO

S
9
/F

R
_
B

_T
X

_
E

N
/A

D
1
4

P
C

1
0
/e

M
IO

S
1
0
/P

C
S

_
C

5
/S

C
K

_
D

P
C

1
1
/e

M
IO

S
1
1
/P

C
S

_
C

4
/S

O
U

T
_
D

Denotes active during RESET only*

VDD

V
D

D

V
S

U
P

/T
E

S
T

176 LQFP

37
38
39
40
41
42
43
44

14
0

13
9

13
8

13
7

13
6

13
5

13
4

13
3

45 46 47 48 49 50 51 52

e
M

IO
S

2
2
/A

D
2
2
/P

G
6

e
M

IO
S

2
1
/A

D
2
1
/P

G
5

P
C

S
_C

0/
eM

IO
S

20
/A

D
20

/P
G

4
S

C
K

_
C

/e
M

IO
S

1
9
/A

D
1
9
/P

G
3

S
O

U
T

_C
/e

M
IO

S
18

/A
D

18
/P

G
2

S
IN

_C
/e

M
IO

S
17

/A
D

17
/P

G
1

e
M

IO
S

1
6
/A

D
1
6
/P

G
0

C
N

R
X

_D
/T

E
A

/W
E

1/
P

F
15

104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89

132
131
130
129
128
127
126
125

SIN_D/PJ15

SOUT_D/PJ14

SCK_D/PJ13

PCS_D0/PJ12

PCS_D1/PJ11

PCS_D2/PJ10

PCS_D3/PJ9
PCS_D4/PJ8

W
E

3/
P

H
15

W
E

2/
P

H
14

A
D

7
/P

J7

A
D

6
/P

J6

A
D

5
/P

J5

A
D

4
/P

J4

V
D

D
E

3

V
S

S
E

3

PE10
PE11

PE12
PE13

VDDE1

VSSE1

PE14

PE15

P
B

15
/R

X
D

_H
P

B
14

/T
X

D
_H

V
D

D
E

1
V

S
S

E
1

P
K

0
/E

X
T

A
L
3
2

P
K

1
/X

T
A

L
3
2

P
B

1
2
/T

X
D

_
G

/P
C

S
_
B

4
P

B
1
3
/R

X
D

_
G

/P
C

S
_
B

3

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

2-16 Freescale Semiconductor
 Preliminary

2.6 Pinout – 208 BGA

Figure 2-4. MPC5510 Pinout – 208 PBGA

2.7 Detailed External Signal Descriptions

2.7.1 Port A Pins

2.7.1.1 PA0 to PA13 — GPI (PA[0:13]) / Analog Input (AN[0] – AN[13])

PA[0:13] are general-purpose input (GPI) pins. AN[0] to AN[13] are single-ended analog input pins.

VDD

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

VDDA PA8 VSSA PB2 PB6 PC3 PC7 PC10 VDDE1 VDDA

REF
VDD VRH VRL PA12 PK0 PB3 PB7 PC0 PC4 PC8 PC11 VDD PC12B

VSS PA9 PA11 PA15 PB4 PB8 PB14 PC1 PC5 PC9 VSS PC13 PC14C

VSS PA10 PA14 PB5 VDDE1 VSS PC15 PD0 PD1D

VDDE1 PD2 PD3 PD4E

PD6 PD7 PD9F

PD8G VSSVSS VSS VSS

VSSVSS VSS VSS

VSSVSS VSS VSS

PE8H

VSSVSS VSS VSS

PE9 PD14 PE11 PE10J

PE12 PD15 VDDE1 PE0K

PE13 PE1 PE14L

PE3M

VSS VDDE2 PF0 VSSN

VSS PG3 PF1

PF3

VSS VPP XTALP

VDD PG5 PF2 TDI TCK VDDR

VDD PG6

PE6

JCOMP VDDT

A

B

C

D

E

F

G

H

J

K

L

M

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

PA13

208 PBGA Ball Map
(as viewed from top through the package)

N

P

R

T

PB10

PB11

PD10 PD11 VDDE1

PF15

PG4

PA6

PA3

RESET

PK1

PA7

PA5 PB9

PD13PD12PE7

PA4

PA0

PH10

PG7

EXTAL

PF14

TMS

PC6

PD5

PE2

PE15 PE5 VSSSYN

PE4 VDD33PJ0PJ2VDDE3PF8PF12

PA1PA2

PH11PH12PH13

PJ13PJ14PH9PJ15

VDDE2PJ11PJ12PH8

PJ10PH5PH6PH7

PH3PH4PJ8PJ9

VDDE2PH0PH1PH2

PG12PG13PG14PG15

PG9PG10PG11

PG8VDDE2 PG0 PJ1PJ4PF7PF11 PJ6

PG2 PF13PH15 TESTPJ3PJ7PF10 PF5

PG1 VDDRPH14 VDDE3PF4PF6PF9 PJ5 TDO

VDDSYN

PB12

PB13

PB15

PB0

PC2PB1

BYPC

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 2-17
 Preliminary

2.7.1.2 PA14 — GPI (PA[14]) / Analog Input (AN[14]) / 32 kHz Crystal Input
(EXTAL32)

PA[14] is a general-purpose input (GPI) pin. AN[14] is a single-ended analog input pin. EXTAL32 is the
input pin for an external 32 kHz crystal oscillator (EXTAL32 function available on PA[14] pin on the
144LQFP package and PK[0] pin on the 176LQFP and 208BGA packages).

2.7.1.3 PA15 — GPI (PA[15]) / Analog Input (AN[15]) / 32 kHz Crystal Output
(XTAL32)

PA[15] is a GPI pin. AN[15] is a single-ended analog input pin. XTAL32 is the output pin for an external
32 kHz crystal oscillator (XTAL32 function available on PA[15] pin on the 144LQFP package and PK[1]
pin on the 176LQFP and 208BGA packages).

2.7.2 Port B Pins

2.7.2.1 PB0 — GPIO (PB[0]) / Analog Input (AN[28]) / eMIOS Channel
(eMIOS[16]) / DSPI_C Peripheral Chip Select (PCS_C[5])

PB[0] is a GPIO pin. AN[28] is a single-ended analog input pin. eMIOS[16] is an output-only channel pin
for the eMIOS200 module. PCS_C[5] is a peripheral chip select output pin for the DSPI C module.

2.7.2.2 PB1 — GPIO (PB[1]) / Analog Input (AN[29]) / eMIOS Channel
(eMIOS[17]) / DSPI_C Peripheral Chip Select (PCS_C[4])

PB[1] is a GPIO pin. AN[29] is a single-ended analog input pin. eMIOS[17] is an output-only channel pin
for the eMIOS200 module. PCS_C[4] is a peripheral chip select output pin for the DSPI C module.

2.7.2.3 PB2 — GPIO (PB[2]) / Analog Input (AN[30]) / eMIOS Channel
(eMIOS[18]) / DSPI_C Peripheral Chip Select (PCS_C[3])

PB[2] is a GPIO pin. AN[30] is a single-ended analog input pin. eMIOS[18] is an output-only channel pin
for the eMIOS200 module. PCS_C[3] is a peripheral chip select output pin for the DSPI C module.

2.7.2.4 PB3 — GPIO (PB[3]) / Analog Input (AN[31]) / DSPI_C Peripheral Chip
Select (PCS_C[2])

PB[3] is a GPIO pin. AN[31] is a single-ended analog input pin. PCS_C[2] is a peripheral chip select
output pin for the DSPI C module.

2.7.2.5 PB4 — GPIO (PB[4]) / Analog Input (AN[32]) / DSPI_C Peripheral Chip
Select (PCS_C[1])

PB[4] is a GPIO pin. AN[32] is a single-ended analog input pin. PCS_C[1] is a peripheral chip select
output pin for the DSPI C module.

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

2-18 Freescale Semiconductor
 Preliminary

2.7.2.6 PB5 — GPIO (PB[5]) / Analog Input (AN[33]) / DSPI_C Peripheral Chip
Select (PCS_C[0])

PB[5] is a GPIO pin. AN[33] is a single-ended analog input pin. PCS_C[0] is a peripheral chip select
output pin for the DSPI C module.

2.7.2.7 PB6 — GPIO (PB[6]) / Analog Input (AN[34]) / DSPI_C Clock (SCK_C)

PB[6] is a GPIO pin. AN[34] is a single-ended analog input pin. SCK_C is the SPI clock pin for the DSPI
C module.

2.7.2.8 PB7 — GPIO (PB[7]) / Analog Input (AN[35]) / DSPI_C Data Output
(SOUT_C)

PB[7] is a GPIO pin. AN[35] is a single-ended analog input pin. SOUT_C is the data output pin for the
DSPI C module.

2.7.2.9 PB8 — GPIO (PB[8]) / Analog Input (AN[36]) / DSPI_C Data Input (SIN _C)

PB[8] is a GPIO pin. AN[36] is a single-ended analog input pin. SIN_C is the data input pin for the DSPI
C module.

2.7.2.10 PB9 — GPIO (PB[9]) / Analog Input (AN[37]) / CAN_D Transmit (CNTX_D)
/ DSPI_B Peripheral Chip Select (PCS_B[4])

PB[9] is a GPIO pin. AN[37] is a single-ended analog input pin. CNTX_D is the transmit pin for the
FlexCan D module. PCS_B[4] is a peripheral chip select output pin for the DSPI B module.

2.7.2.11 PB10 — GPIO (PB[10]) / Analog Input (AN[38]) / CAN_D Receive
(CNRX_D) / DSPI_B Peripheral Chip Select (PCS_B[3])

PB[10] is a GPIO pin. AN[38] is a single-ended analog input pin. CNRX_D is the receive pin for the
FlexCan D module. PCS_B[3] is a peripheral chip select output pin for the DSPI B module.

2.7.2.12 PB11 — GPIO (PB[11]) / Analog Input (AN[39]) / eMIOS Channel
(eMIOS[19]) / DSPI_B Peripheral Chip Select (PCS_B[5])

PB[11] is a GPIO pin. AN[39] is a single-ended analog input pin. eMIOS[19] is an output-only channel
pin for the eMIOS200 module. PCS_B[5] is a peripheral chip select output pin for the DSPI B module.

2.7.2.13 PB12 — GPIO (PB[12]) / SCI_G Transmit (TXD_G) / DSPI_B Peripheral
Chip Select (PCS_B[4])

PB[12] is a GPIO pin. TXD_G is the transmit pin for the eSCI G module. PCS_B[4] is a peripheral chip
select output pin for the DSPI B module.

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 2-19
 Preliminary

2.7.2.14 PB13 — GPIO (PB[13]) / SCI_G Receive (RXD_G) / DSPI_B Peripheral
Chip Select (PCS_B[3])

PB[13] is a GPIO pin. RXD_G is the receive pin for the eSCI G module. PCS_B[3] is a peripheral chip
select output pin for the DSPI B module.

2.7.2.15 PB14 — GPIO (PB[14]) / SCI_H Transmit (TXD_H)

PB[14] is a GPIO pin. TXD_H is the transmit pin for the eSCI H module.

2.7.2.16 PB15 — GPIO (PB[15]) / SCI_H Receive (RXD_H)

PB[15] is a GPIO pin. RXD_H is the receive pin for the eSCI H module.

2.7.3 Port C Pins

2.7.3.1 PC0 — GPIO (PC[0]) / eMIOS Channel (eMIOS[0]) / FlexRay Channel A
Transmit Enable (FR_A_TX_EN) / EBI Multiplexed Address/Data (AD[24])

PC[0] is a GPIO pin. eMIOS[0] is an input/output channel pin for the eMIOS200 module. FR_A_TX_EN
in the FlexRay Channel A transmit enable pin. AD[24] is the external bus interface (EBI) multiplexed
address and data bus.

2.7.3.2 PC1 — GPIO (PC[1]) / eMIOS Channel (eMIOS[1]) / FlexRay Channel A
Transmit (FR_A_TX) / EBI Multiplexed Address/Data (AD[16])

PC[1] is a GPIO pin. eMIOS[1] is an input/output channel pin for the eMIOS200 module. FR_A_TX in
the FlexRay Channel A transmit pin. AD[16] is the EBI multiplexed address and data bus

2.7.3.3 PC2 — GPIO (PC[2]) / eMIOS Channel (eMIOS[2]) / FlexRay Channel A
Receive (FR_A_RX) / EBI Transfer Start (TS)

PC[2] is a GPIO pin. eMIOS[2] is an input/output channel pin for the eMIOS200 module. FR_A_RX in
the FlexRay Channel A receive pin. TS is the EBI transfer start signal.

2.7.3.4 PC3 — GPIO (PC[3]) / eMIOS Channel (eMIOS[3]) / FlexRay Debug 0
(FR_DBG0)

PC[3] is a GPIO pin. eMIOS[3] is an input/output channel pin for the eMIOS200 module. FR_DBG0 is
one of the FlexRay debug port pins.

2.7.3.5 PC4 — GPIO (PC[4]) / eMIOS Channel (eMIOS[4]) / FlexRay Debug 1
(FR_DBG1)

PC[4] is a GPIO pin. eMIOS[4] is an input/output channel pin for the eMIOS200 module. FR_DBG1 is
one of the FlexRay debug port pins.

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

2-20 Freescale Semiconductor
 Preliminary

2.7.3.6 PC5 — GPIO (PC[5]) / eMIOS Channel (eMIOS[5]) / FlexRay Debug 2
(FR_DBG2)

PC[5] is a GPIO pin. eMIOS[5] is an input/output channel pin for the eMIOS200 module. FR_DBG2 is
one of the FlexRay debug port pins.

2.7.3.7 PC6 — GPIO (PC[6]) / eMIOS Channel (eMIOS[6]) / FlexRay Debug 3
(FR_DBG3)

PC[3] is a GPIO pin. eMIOS[6] is an input/output channel pin for the eMIOS200 module. FR_DBG3 is
one of the FlexRay debug port pins.

2.7.3.8 PC7 — GPIO (PC[7]) / eMIOS Channel (eMIOS[7]) / FlexRay Channel B
Receive (FR_B_RX)

PC[7] is a GPIO pin. eMIOS[7] is an input/output channel pin for the eMIOS200 module. FR_B_RX is
the FlexRay Channel B receive pin.

2.7.3.9 PC8 — GPIO (PC[8]) / eMIOS Channel (eMIOS[8]) / FlexRay Channel B
Transmit (FR_B_TX) / Multiplexed Address/Data (AD[15])

PC[8] is a GPIO pin. eMIOS[8] is an input/output channel pin for the eMIOS200 module. FR_B_TX is
the FlexRay Channel B transmit pin. AD[15] is the EBI multiplexed address and data bus.

2.7.3.10 PC9 — GPIO (PC[9]) / eMIOS Channel (eMIOS[9]) / FlexRay Channel B
Transmit Enable (FR_B_TX_EN) / Multiplexed Address/Data (AD[14])

PC[9] is a GPIO pin. eMIOS[9] is an input/output channel pin for the eMIOS200 module. FR_B_TX_EN
is the FlexRay Channel B transmit enable pin. AD[14] is the EBI multiplexed address and data bus.

2.7.3.11 PC10 — GPIO (PC[10]) / eMIOS Channel (eMIOS[10]) / DSPI_C Peripheral
Chip Select (PCS_C[5]) / DSPI_D Clock (SCK_D)

PC[10] is a GPIO pin. eMIOS[10] is an input/output channel pin for the eMIOS200 module. PCS_C[5] is
a peripheral chip select output pin for the DSPI C module. SCK_D is the SPI clock pin of the DSPI_D
module.

2.7.3.12 PC11 — GPIO (PC[11]) / eMIOS Channel (eMIOS[11]) / DSPI_C Peripheral
Chip Select (PCS_C[4]) / DSPI_D Serial Data Out (SOUT_D)

PC[11] is a GPIO pin. eMIOS[11] is an input/output channel pin for the eMIOS200 module. PCS_C[4] is
a peripheral chip select output pin for the DSPI C module. SOUT_D is the serial data output from the
DSPI_D module.

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 2-21
 Preliminary

2.7.3.13 PC12 — GPIO (PC[12]) / eMIOS Channel (eMIOS[12]) / DSPI_C Peripheral
Chip Select (PCS_C[3]) / DSPI_D Serial Data Input (SIN_D)

PC[12] is a GPIO pin. eMIOS[12] is an input/output channel pin for the eMIOS200 module. PCS_C[3] is
a peripheral chip select output pin for the DSPI C module. SIN_D is the serial data input for the DSPI_D
module.

2.7.3.14 PC13 — GPIO (PC[13]) / eMIOS Channel (eMIOS[13]) / DSPI_A Peripheral
Chip Select (PCS_A[5]) / DSPI_D Peripheral Chip Select (PCS_D[0])

PC[13] is a GPIO pin. eMIOS[13] is an input/output channel pin for the eMIOS200 module. PCS_A[5] is
a peripheral chip select output pin for the DSPI A module. PCS_D[0] is a peripheral chip select output pin
for the DSPI_D module.

2.7.3.15 PC14 — GPIO (PC[14]) / eMIOS Channel (eMIOS[14]) / DSPI_A Peripheral
Chip Select (PCS_A[4]) / DSPI_D Peripheral Chip Select (PCS_D[1])

PC[14] is a GPIO pin. eMIOS[14] is an input/output channel pin for the eMIOS200 module. PCS_A[4] is
a peripheral chip select output pin for the DSPI A module. PCS_D[1] is a peripheral chip select output pin
for the DSPI D module.

2.7.3.16 PC15 — GPIO (PC[15]) / eMIOS Channel (eMIOS[15]) / DSPI_A Peripheral
Chip Select (PCS_A[3]) / DSPI_D Peripheral Chip Select (PCS_D[2])

PC[15] is a GPIO pin. eMIOS[15] is an input/output channel pin for the eMIOS200 module. PCS_A[3] is
a peripheral chip select output pin for the DSPI A module. PCS_D[2] is a peripheral chip select output pin
for the DSPI D module.

2.7.4 Port D Pins

2.7.4.1 PD0 — GPIO (PD[0]) / CAN_A Transmit (CNTX_A) / DSPI_D Peripheral
Chip Select (PCS_D[3])

PD[0] is a GPIO pin. CNTX_A is the transmit pin for the FlexCan A module. PCS_D[3] is a peripheral
chip select for the DSPI_D module.

2.7.4.2 PD1 — GPIO (PD[1]) / CAN_A Receive (CNRX_A) / DSPI_D Peripheral
Chip Select (PCS_D[4])

PD[1] is a GPIO pin. CNRX_A is the receive pin for the FlexCan A module. PCS_D[4] is a peripheral
chip select for the DSPI_D module.

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

2-22 Freescale Semiconductor
 Preliminary

2.7.4.3 PD2 — GPIO (PD[2]) / CAN_B Receive (CNRX_B) / eMIOS Channel
(eMIOS[10]) / Boot Configuration (BOOTCFG) / DSPI_D Peripheral Chip
Select (PCS_D[5])

PD[2] is a GPIO pin. CNRX_B is the receive pin for the FlexCan B module. eMIOS[10] is an output-only
channel pin for the eMIOS200 module. The BOOTCFG pin is sampled before the negation of the RESET
pin. The value is used by the BAM program to determine the boot configuration. PCS_D[5] is a peripheral
chip select output pin for the DSPI_D module.

2.7.4.4 PD3 — GPIO (PD[3]) / CAN_B Transmit (CNTX_B) / eMIOS Channel
(eMIOS[11])

PD[3] is a GPIO pin. CNTX_B is the transmit pin for the FlexCan B module. eMIOS[11] is an output-only
channel pin for the eMIOS200 module.

2.7.4.5 PD4 — GPIO (PD[4]) / CAN_C Transmit (CNTX_C) / eMIOS Channel
(eMIOS[12])

PD[4] is a GPIO pin. CNTX_C is the transmit pin for the FlexCan C module. eMIOS[12] is an output-only
channel pin for the eMIOS200 module.

2.7.4.6 PD5 — GPIO (PD[5]) / CAN_C Receive (CNRX_C) / eMIOS Channel
(eMIOS[13])

PD[5] is a GPIO pin. CNRX_C is the receive pin for the FlexCan C module. eMIOS[13] is an output-only
channel pin for the eMIOS200 module.

2.7.4.7 PD6 — GPIO (PD[6]) / SCI_A Transmit (TXD_A) / eMIOS Channel
(eMIOS[14])

PD[6] is a GPIO pin. TXD_A is the transmit pin for the eSCI_A module. eMIOS[14] is an output-only
channel pin for the eMIOS200 module.

2.7.4.8 PD7 — GPIO (PD[7]) / SCI_A Receive (RXD_A) / eMIOS Channel
(eMIOS[15])

PD[7] is a GPIO pin. RXD_A is the receive pin for the eSCI_A module. eMIOS[15] is an output-only
channel pin for the eMIOS200 module.

2.7.4.9 PD8 — GPIO (PD[8]) / SCI_B Transmit (TXD_B) / I2C Serial Clock Line
(SCL_A)

PD[8] is a GPIO pin. TXD_B is the transmit pin for the eSCI_B module. SCL_A is the serial clock signal
for the I2C_A module.

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 2-23
 Preliminary

2.7.4.10 PD9 — GPIO (PD[9]) / SCI_B Receive (RXD_B) / I2C Serial Data Line
(SDA_A)

PD[9] is a GPIO pin. RXD_B is the receive pin for the eSCI_B module. SDA_A is the serial data line for
the I2C_A module.

2.7.4.11 PD10 — GPIO (PD[10]) / DSPI_B Peripheral Chip Select (PCS_B[2]) /
CAN_F Transmit (CNTX_F) / e200z1 Critical Interrupt (NMI0)

PD[10] is a GPIO pin. PCS_B[2] is a peripheral chip select output pin for the DSPI B module. CNTX_F
is the transmit pin for the FlexCan F module. NMI0 is the critical interrupt input for the e200z1 core.

2.7.4.12 PD11 — GPIO (PD[11]) / DSPI_B Peripheral Chip Select (PCS_B[1]) /
CAN_F Receive (CNRX_F) / e200z0 Critical Interrupt (NMI1)

PD[11] is a GPIO pin. PCS_B[1] is a peripheral chip select output pin for the DSPI B module. CNRX_F
is the receive pin for the FlexCan F module. NMI1 is the critical interrupt input for the e200z0 core.

2.7.4.13 PD12 — GPIO (PD[12]) / DSPI_B Peripheral Chip Select (PCS_B[0]) /
eMIOS Channel (eMIOS[9])

PD[12] is a GPIO pin. PCS_B[0] is a peripheral chip select output pin for the DSPI B module. eMIOS[9]
is an output-only channel pin for the eMIOS200 module.

2.7.4.14 PD13 — GPIO (PD[13]) / DSPI_B Clock (SCK_B) / eMIOS Channel
(eMIOS[8])

PD[13] is a GPIO pin. SCK_B is the SPI clock pin for the DSPI B module. eMIOS[8] is an output-only
channel pin for the eMIOS200 module.

2.7.4.15 PD14 — GPIO (PD[14]) / DSPI_B Data Output (SOUT_B) / eMIOS Channel
(eMIOS[7])

PD[14] is a GPIO pin. SOUT_B is the data output pin for the DSPI B module. eMIOS[7] is an output-only
channel pin for the eMIOS200 module.

2.7.4.16 PD15 — GPIO (PD[15]) / DSPI_B Data Input (SIN_B) / eMIOS Channel
(eMIOS[6])

PD[15] is a GPIO pin. SIN_B is the data input pin for the DSPI B module. eMIOS[6] is an output-only
channel pin for the eMIOS200 module.

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

2-24 Freescale Semiconductor
 Preliminary

2.7.5 Port E Pins

2.7.5.1 PE0 — GPIO (PE[0]) / DSPI_A Peripheral Chip Select (PCS_A[2]) / eMIOS
Channel (eMIOS[5]) / MLB Clock (MLBCLK)

PE[0] is a GPIO pin. PCS_A[2] is a peripheral chip select output pin for the DSPI A module. eMIOS[5]
is an output-only channel pin for the eMIOS200 module. MLBCLK is the clock pin for the emulated MLB
module.

2.7.5.2 PE1 — GPIO (PE[1]) / DSPI_A Peripheral Chip Select (PCS_A[1]) / eMIOS
Channel (eMIOS[4]) / MLB Signal In / Signal (MLBSI / MLBSIG)

PE[1] is a GPIO pin. PCS_A[1] is a peripheral chip select output pin for the DSPI A module. eMIOS[4]
is an output-only channel pin for the eMIOS200 module. In a 3-pin MLB interface, MLBSIG is the
bidirectional signal line that transfers bus management data to/from the MOST network controller. In a
5-pin interface, MLBSI carries signal line data from the MOST network controller to the emulated MLB
module.

2.7.5.3 PE2 — GPIO (PE[2]) / DSPI_A Peripheral Chip Select (PCS_A[0]) / eMIOS
Channel (eMIOS[3]) / MLB Data In / Data (MLBDI / MLBDAT)

PE[2] is a GPIO pin. PCS_A[0] is a peripheral chip select output pin for the DSPI A module. eMIOS[3]
is an output-only channel pin for the eMIOS200 module. In a 3-pin MLB interface, MLBDAT is the
bidirectional data line that transfers user data to/from the MOST network controller. In a 5-pin MLB
interface, MLBDI carries user data from the MOST network controller to the emulated MLB module.

2.7.5.4 PE3 — GPIO (PE[3]) / DSPI_A Clock (SCK_A) / eMIOS Channel
(eMIOS[2]) / MLB Signal Out / Level Shifter Enable (MLBSO /
MLBSIG_BUFEN)

PE[3] is a GPIO pin. SCK_A is the SPI clock pin for the DSPI A module. eMIOS[2] is an output-only
channel pin for the eMIOS200 module. In a 3-pin MLB interface, MLBSIG_BUFEN controls the external
level shifter for the MLBSIG pin. In a 5-pin MLB interface, MLBSO carries signal data from the emulated
MLB module to the MOST network controller.

2.7.5.5 PE4 — GPIO (PE[4]) / DSPI_A Data Output (SOUT_A) / eMIOS Channel
(eMIOS[1]) / MLB Data Out / Level Shifter Enable (MLBDO /
MLBDAT_BUFEN)

PE[4] is a GPIO pin. SOUT_A is the data output pin for the DSPI A module. eMIOS[1] is an output-only
channel pin for the eMIOS200 module. In a 3-pin MLB interface, MLBDAT_BUFEN controls the external
level shifter for the MLBDAT pin. In a 5-pin MLB interface, MLBDO carries user data from the emulated
MLB module to the MOST network controller.

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 2-25
 Preliminary

2.7.5.6 PE5 — GPIO (PE[5]) / DSPI_A Data Input (SIN_A) / eMIOS Channel
(eMIOS[0]) / MLB SLOT / Signal Observe / Data Observe (MLB_SLOT /
MLB_SIGOBS / MLB_DATOBS)

PE[5] is a GPIO pin. SIN_A is the data input pin for the DSPI A module. eMIOS[0] is an output-only
channel pin for the eMIOS200 module. MLB_SLOT, MLB_SIGOBS, and MLB_DATOBS are debug
signals for the MLB module.

2.7.5.7 PE6 — GPIO (PE[6]) / Clock Output (CLKOUT)

PE[6] is a GPIO pin. CLKOUT is the external bus interface clock output.

2.7.5.8 PE7 to PE15 — GPIO (PE[7:15])

PE[7:15] are GPIO pins.

2.7.6 Port F Pins

2.7.6.1 PF0 — GPIO (PF[0]) / EBI Read/Write (RD_WR) / Nexus Event In (EVTI)

PF[0] is a GPIO pin. RD_WR indicates whether an external bus transfer is a read or write operation. EVTI
is an input that is read on the assertion of JCOMP to enable or disable the Nexus Debug port. After reset,
the EVTI pin initiates program and data trace synchronization messages or generates a breakpoint.

2.7.6.2 PF1 — GPIO (PF[1]) / EBI Transfer Acknowledge (TA) / Nexus Event Out
(EVTO) / MLB Clock (MLBCLK)

PF[1] is a GPIO pin. TA indicates to the external bus master that the slave has completed the current
transfer. EVTO is an output providing timing to a development tool for a single watch point or breakpoint
occurrence. MLBCLK is the clock pin for the emulated MLB module.

2.7.6.3 PF2 — GPIO (PF[2]) / EBI Multiplex Address/Data (AD[8]) / EBI Non
Muxed Address (ADDR[8]) / MLB Signal In / Signal (MLBSI / MLBSIG) /
Nexus Message Start/End Out (MSEO)

PF[2] is a GPIO pin. AD[8] is the EBI multiplexed address and data bus. ADDR[8] is the EBI non
multiplexed address bus. In a 3-pin MLB interface, MLBSIG is the bidirectional signal line that transfers
bus management data to/from the MOST network controller. In a 5-pin interface, MLBSI carries signal
line data from the MOST network controller to the emulated MLB module. MSEO is an output that
indicates when messages start and end on the MDO pins.

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

2-26 Freescale Semiconductor
 Preliminary

2.7.6.4 PF3 — GPIO (PF[3]) / EBI Multiplex Address/Data (AD[9]) / EBI Non
Muxed Address (ADDR[9]) / MLB Data In / Data (MLBDI / MLBDAT) /
Nexus Message Clock Out (MCKO)

PF[3] is a GPIO pin. AD[9] is the EBI multiplexed address and data bus. ADDR[9] is the EBI non
multiplexed address bus. In a 3-pin MLB interface, MLBDAT is the bidirectional data line that transfers
user data to/from the MOST network controller. In a 5-pin MLB interface, MLBDI carries user data from
the MOST network controller to the emulated MLB module. MCKO is a free running clock output to the
development tools that is used for timing of the MDO and MSEO signals.

2.7.6.5 PF4 — GPIO (PF[4]) / EBI Multiplex Address/Data (AD[10]) / EBI Non
Muxed Address (ADDR[10]) / MLB Signal Out / Level Shifter Enable
(MLBSO / MLBSIG_BUFEN) / Nexus Message Data Out (MDO[0])

PF[4] is a GPIO pin. AD[10] is the EBI multiplexed address and data bus. ADDR[10] is the EBI non
multiplexed address bus. In a 3-pin MLB interface, MLBSIG_BUFEN controls the external level shifter
for the MLBSIG pin. In a 5-pin MLB interface, MLBSO carries signal data from the emulated MLB
module to the MOST network controller. MDO[0] is a trace message output to the development tools.

2.7.6.6 PF5 — GPIO (PF[5]) / EBI Multiplex Address/Data (AD[11]) / EBI Non
Muxed Address (ADDR[11]) / MLB Data Out / Level Shifter Enable
(MLBDO / MLBDAT_BUFEN) / Nexus Message Data Out (MDO[1])

PF[5] is a GPIO pin. AD[11] is the EBI multiplexed address and data bus. ADDR[11] is the EBI non
multiplexed address bus. In a 3-pin MLB interface, MLBDAT_BUFEN controls the external level shifter
for the MLBDAT pin. In a 5-pin MLB interface, MLBDO carries user data from the emulated MLB
module to the MOST network controller. MDO[1] is a trace message output to the development tools.

2.7.6.7 PF6 — GPIO (PF[6]) / EBI Multiplex Address/Data (AD[12]) / EBI Non
Muxed Address (ADDR[12]) / MLB SLOT / Signal Observe / Data Observe
(MLB_SLOT / MLB_SIGOBS / MLB_DATOBS) / Nexus Message Data Out
(MDO[2])

PF[6] is a GPIO pin. AD[12] is the EBI multiplexed address and data bus. ADDR[12] is the EBI non
multiplexed address bus. MLB_SLOT, MLB_SIGOBS, and MLB_DATOBS are debug signals for the
MLB module. MDO[2] is a trace message output to the development tools.

2.7.6.8 PF7 — GPIO (PF[7]) / EBI Multiplex Address/Data (AD[13]) / EBI Non
Muxed Address (ADDR[13]) / Nexus Message Data Out (MDO[3])

PF[7] is a GPIO pin. AD[13] is the EBI multiplexed address and data bus. ADDR[13] is the EBI non
multiplexed address bus. MDO[3] is a trace message output to the development tools.

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 2-27
 Preliminary

2.7.6.9 PF8 — GPIO (PF[8]) / EBI Multiplex Address/Data (AD[14]) / EBI Non
Muxed Address (ADDR[14]) / Nexus Message Data Out (MDO[4])

PF[8] is a GPIO pin. AD[14] is the EBI multiplexed address and data bus. ADDR[14] is the EBI non
multiplexed address bus. MDO[4] is a trace message output to the development tools.

2.7.6.10 PF9 — GPIO (PF[9]) / EBI Multiplex Address/Data (AD[15]) / EBI Non
Muxed Address (ADDR[15]) / Nexus Message Data Out (MDO[5])

PF[9] is a GPIO pin. AD[15] is the EBI multiplexed address and data bus. ADDR[15] is the EBI non
multiplexed address bus. MDO[5] is a trace message output to the development tools.

2.7.6.11 PF10 — GPIO (PF[10]) / EBI Chip Select (CS[1]) / SCI_C Transmit (TXD_C)
/ Nexus Message Data Out (MDO[6])

PF[10] is a GPIO pin. CS[1] is the EBI chip select output signals. TXD_C is the transmit pin for the eSCI
C module. MDO[6] is a trace message output to the development tools.

2.7.6.12 PF11 — GPIO (PF[11]) / EBI Chip Select (CS[0]) / SCI_C Receive (RXD_C)
/ Nexus Message Data Out (MDO[7])

PF[11] is a GPIO pin. CS[0] is the EBI chip select output signals. RXD_C is the receive pin for the eSCI
C module. MDO[7] is a trace message output to the development tools.

2.7.6.13 PF12 — GPIO (PF[12]) / EBI Transfer Start (TS) / SCI_D Transmit (TXD_D)
/ EBI Address Latch Enable

PF[12] is a GPIO pin. TS is the EBI transfer start output signals. TXD_D is the transmit pin for the eSCI
D module. ALE is the EBI address latch enable.

2.7.6.14 PF13 — GPIO (PF[13]) / EBI Output Enable (OE) / SCI_D Receive (RXD_D)

PF[13] is a GPIO pin. OE is the EBI chip select output signals. RXD_D is the receive pin for the eSCI D
module.

2.7.6.15 PF14 — GPIO (PF[14]) / EBI Write Enable (WE[0]) / EBI Burst Data In
Progress (BDIP) / CAN_D Transmit (CNTX_D)

PF[14] is a GPIO pin. WE[0] specifies which data pins contain valid data for an external bus transfer. BDIP
indicates that an EBI burst transfer is in progress. CNTX_D is the transmit pin for the FlexCan D module.

2.7.6.16 PF15 — GPIO (PF[15]) / EBI Write Enable (WE[1]) / EBI Transfer Error
Acknowledge (TEA) / CAN_D Receive (CNRX_D)

PF[15] is a GPIO pin. WE[1] specifies which data pins contain valid data for an external bus transfer. TEA
indicates that an error occurred in the current external bus transfer. CNRX_D is the receive pin for the
FlexCan D module.

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

2-28 Freescale Semiconductor
 Preliminary

2.7.7 Port G Pins

2.7.7.1 PG0 — GPIO (PG[0]) / EBI Multiplex Address/Data (AD[16]) / eMIOS
Channel (eMIOS[16])

PG[0] is a GPIO pin. AD[16] is the EBI multiplexed address and data bus. eMIOS[16] is an input/output
channel pin for the eMIOS200 module.

2.7.7.2 PG1 — GPIO (PG[1]) / EBI Multiplex Address/Data (AD[17]) / eMIOS
Channel (eMIOS[17]) / DSPI_C Data In (SIN_C)

PG[1] is a GPIO pin. AD[17] is the EBI multiplexed address and data bus. eMIOS[17] is an input/output
channel pin for the eMIOS200 module. SIN_C is the data input pin for the DSPI C module.

2.7.7.3 PG2 — GPIO (PG[2]) / EBI Multiplex Address/Data (AD[18]) / eMIOS
Channel (eMIOS[18]) / DSPI_C Data Out (SOUT_C)

PG[2] is a GPIO pin. AD[18] is the EBI multiplexed address and data bus. eMIOS[18] is an input/output
channel pin for the eMIOS200 module. SOUT_C is the data output pin for the DSPI C module.

2.7.7.4 PG3 — GPIO (PG[3]) / EBI Multiplex Address/Data (AD[19]) / eMIOS
Channel (eMIOS[19]) / DSPI_C Serial Clock (SCK_C)

PG[3] is a GPIO pin. AD[19] is the EBI multiplexed address and data bus. eMIOS[19] is an input/output
channel pin for the eMIOS200 module. SCK_C is the SPI clock pin for the DSPI C module.

2.7.7.5 PG4 — GPIO (PG[4]) / EBI Multiplex Address/Data (AD[20]) / eMIOS
Channel (eMIOS[20]) / DSPI_C Peripheral Chip Select (PCS_C[0])

PG[4] is a GPIO pin. AD[20] is the EBI multiplexed address and data bus. eMIOS[20] is an input/output
channel pin for the eMIOS200 module. PCS_C[0] is a peripheral chip select output pin for the DSPI C
module.

2.7.7.6 PG5 — GPIO (PG[5]) / EBI Multiplex Address/Data (AD[21]) / eMIOS
Channel (eMIOS[21])

PG[5] is a GPIO pin. AD[21] is the EBI multiplexed address and data bus. eMIOS[21] is an input/output
channel pin for the eMIOS200 module.

2.7.7.7 PG6 — GPIO (PG[6]) / EBI Multiplex Address/Data (AD[22]) / eMIOS
Channel (eMIOS[22])

PG[6] is a GPIO pin. AD[22] is the EBI multiplexed address and data bus. eMIOS[22] is an input/output
channel pin for the eMIOS200 module.

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 2-29
 Preliminary

2.7.7.8 PG7 — GPIO (PG[7]) / EBI Multiplex Address/Data (AD[23]) / eMIOS
Channel (eMIOS[23]) / SCI_C Receive (RXD_C)

PG[7] is a GPIO pin. AD[23] is the EBI multiplexed address and data bus. eMIOS[23] is an input/output
channel pin for the eMIOS200 module. RXD_C is the receive pin for the eSCI C module.

2.7.7.9 PG8 — GPIO (PG[8]) / EBI Multiplex Address/Data (AD[24]) / DSPI_A
Peripheral Chip Select (PCS_A[4])

PG[8] is a GPIO pin. AD[24] is the EBI multiplexed address and data bus. PCS_A[4] is a peripheral chip
select output pin for the DSPI A module.

2.7.7.10 PG9 — GPIO (PG[9]) / EBI Multiplex Address/Data (AD[25]) / DSPI_A
Peripheral Chip Select (PCS_A[3]) / SCI_C Transmit (TXD_C)

PG[9] is a GPIO pin. AD[25] is the EBI multiplexed address and data bus. PCS_A[3] is a peripheral chip
select output pin for the DSPI A module. TXD_C is the transmit pin for the eSCI_C module.

2.7.7.11 PG10 — GPIO (PG[10]) / EBI Multiplex Address/Data (AD[26]) / DSPI_A
Peripheral Chip Select (PCS_A[2])

PG[10] is a GPIO pin. AD[26] is the EBI multiplexed address and data bus. PCS_A[2] is a peripheral chip
select output pin for the DSPI A module.

2.7.7.12 PG11 — GPIO (PG[11]) / EBI Multiplex Address/Data (AD[27]) / DSPI_A
Peripheral Chip Select (PCS_A[1])

PG[11] is a GPIO pin. AD[27] is the EBI multiplexed address and data bus. PCS_A[1] is a peripheral chip
select output pin for the DSPI A module.

2.7.7.13 PG12 — GPIO (PG[12]) / EBI Multiplex Address/Data (AD[28]) / DSPI_A
Peripheral Chip Select (PCS_A[0])

PG[12] is a GPIO pin. AD[28] is the EBI multiplexed address and data bus. PCS_A[0] is a peripheral chip
select output pin for the DSPI A module.

2.7.7.14 PG13 — GPIO (PG[13]) / EBI Multiplex Address/Data (AD[29]) / DSPI_A
Serial Clock (SCK_A)

PG[13] is a GPIO pin. AD[29] is the EBI multiplexed address and data bus. SCK_A is the SPI clock pin
for the DSPI A module.

2.7.7.15 PG14 — GPIO (PG[14]) / EBI Multiplex Address/Data (AD[30]) / DSPI_C
Data Out (SOUT_A)

PG[14] is a GPIO pin. AD[24] is the EBI multiplexed address and data bus. SOUT_A is the data output
pin for the DSPI A module.

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

2-30 Freescale Semiconductor
 Preliminary

2.7.7.16 PG15 — GPIO (PG[15]) / EBI Multiplex Address/Data (AD[31]) / DSPI_C
Data In (SIN_A)

PG[15] is a GPIO pin. AD[31] is the EBI multiplexed address and data bus. SIN_A is the data input pin
for the DSPI A module.

2.7.8 Port H Pins

2.7.8.1 PH0 — GPIO (PH[0]) / Analog Input (AN[27]) / eMIOS Channel
(eMIOS[20]) / I2C Serial Clock Line (SCL_A)

PH[0] is a GPIO pin. AN[27] is a single-ended analog input pin. eMIOS[20] is an output-only channel pin
for the eMIOS200 module. SCL_A is the serial clock signal for the I2C_A module.

2.7.8.2 PH1 — GPIO (PH[1]) / Analog Input (AN[26]) / eMIOS Channel
(eMIOS[21]) / I2C Serial Data Line (SDA_A)

PH[1] is a GPIO pin. AN[26] is a single-ended analog input pin. eMIOS[21] is an output-only channel pin
for the eMIOS200 module. SDA_A is the serial data signal for the I2C_A module.

2.7.8.3 PH2 — GPIO (PH[2]) / Analog Input (AN[25]) / eMIOS Channel
(eMIOS[22]) / EBI Chip Select (CS[3])

PH[2] is a GPIO pin. AN[25] is a single-ended analog input pin. eMIOS[22] is an output-only channel pin
for the eMIOS200 module. CS[3] is an EBI chip select output.

2.7.8.4 PH3 — GPIO (PH[3]) / Analog Input (AN[24]) / eMIOS Channel
(eMIOS[23]) / EBI Chip Select (CS[2])

PH[3] is a GPIO pin. AN[24] is a single-ended analog input pin. eMIOS[23] is an output-only channel pin
for the eMIOS200 module. CS[2] is an EBI chip select output.

2.7.8.5 PH4 — GPIO (PH[4]) / Analog Input (AN[23]) / SCI_E Transmit (TXD_E) /
External Analog Mux Address Output (MA[2])

PH[4] is a GPIO pin. AN[23] is a single-ended analog input pin. TXD_E is the transmit pin for the eSCI_E
module. MA[2] is a address output for an external analog mux used to select the mux input channel to
connect to the QADC.

2.7.8.6 PH5 — GPIO (PH[5]) / Analog Input (AN[22]) / SCI_E Receive (RXD_E) /
External Analog Mux Address Output (MA[1])

PH[5] is a GPIO pin. AN[22] is a single-ended analog input pin. RXD_E is the receive pin for the eSCI_E
module. MA[1] is a address output for an external analog mux used to select the mux input channel to
connect to the QADC.

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 2-31
 Preliminary

2.7.8.7 PH6 — GPIO (PH[6]) / Analog Input (AN[21]) / SCI_E Transmit (TXD_F)

PH[6] is a GPIO pin. AN[21] is a single-ended analog input pin. TXD_F is the transmit pin for the eSCI_F
module.

2.7.8.8 PH7 — GPIO (PH[7]) / Analog Input (AN[20]) / SCI_F Receive (RXD_F)

PH[7] is a GPIO pin. AN[20] is a single-ended analog input pin. RXD_F is the receive pin for the eSCI_F
module.

2.7.8.9 PH8 — GPIO (PH[8]) / Analog Input (AN[19]) / CAN_E Transmit (CNTX_E)
/ External Analog Mux Address Output (MA[0])

PH[8] is a GPIO pin. AN[19] is a single-ended analog input pin. CNTX_E is the transmit pin for the
FlexCAN_E module. MA[0] is a address output for an external analog mux used to select the mux input
channel to connect to the QADC.

2.7.8.10 PH9 — GPIO (PH[9]) / Analog Input (AN[18]) / CAN_E Receive (CNRX_E)

PH[9] is a GPIO pin. AN[18] is a single-ended analog input pin. CNRX_E is the receive pin for the
FlexCAN_E module.

2.7.8.11 PH10 — GPIO (PH[10]) / Analog Input (AN[17]) / CAN_F Receive
(CNRX_F)

PH[10] is a GPIO pin. AN[17] is a single-ended analog input pin. CNRX_F is the receive pin for the
FlexCAN_F module.

2.7.8.12 PH11 — GPIO (PH[11]) / Analog Input (AN[16]) / CAN_F Transmit
(CNTX_F)

PH[11] is a GPIO pin. AN[16] is a single-ended analog input pin. CNTX_F is the transmit pin for the
FlexCAN_F module.

2.7.8.13 PH12 — GPIO (PH[12]) / DSPI_D Peripheral Chip Select (PCS_D[5])

PH[12] is a GPIO pin. PCS_D[5] is a peripheral chip select output pin for the DSPI_D module.

2.7.8.14 PH13 — GPIO (PH[13])

PH[13] is a GPIO pin.

2.7.8.15 PH14 — GPIO (PH[14]) / EBI Write Enable (WE[2])

PH[14] is a GPIO pin. WE[2] specifies which data pins contain valid data for an external bus transfer.

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

2-32 Freescale Semiconductor
 Preliminary

2.7.8.16 PH15 — GPIO (PH[15]) / EBI Write Enable (WE[3])

PH[15] is a GPIO pin. WE[3] specifies which data pins contain valid data for an external bus transfer.

2.7.9 Port J Pins

2.7.9.1 PJ0 to PJ7 — GPIO (PJ[0:7]) / EBI Multiplex Address/Data (AD[0:7])

PJ[0:7] are GPIO pins. AD[0:7] are EBI multiplexed address and data bus pins.

2.7.9.2 PJ8 — GPIO (PJ8) / DSPI_D Peripheral Chip Select (PCS_D[4])

PJ8 is a GPIO pin. PCS_D[4] is a peripheral chip select output pin for the DSPI_D module.

2.7.9.3 PJ9 — GPIO (PJ9) / DSPI_D Peripheral Chip Select (PCS_D[3])

PJ9 is a GPIO pin. PCS_D[3] is a peripheral chip select output pin for the DSPI_D module.

2.7.9.4 PJ10 — GPIO (PJ10) / DSPI_D Peripheral Chip Select (PCS_D[2])

PJ10 is a GPIO pin. PCS_D[2] is a peripheral chip select output pin for the DSPI_D module.

2.7.9.5 PJ11 — GPIO (PJ11) / DSPI_D Peripheral Chip Select (PCS_D[1])

PJ11 is a GPIO pin. PCS_D[1] is a peripheral chip select output pin for the DSPI_D module.

2.7.9.6 PJ12 — GPIO (PJ12) / DSPI_D Peripheral Chip Select (PCS_D[0])

PJ12 is a GPIO pin. PCS_D[0] is a peripheral chip select output pin for the DSPI_D module.

2.7.9.7 PJ13 - GPIO (PJ13) / DSPI_D Clock (SCK_D)

PJ13 is a GPIO pin. SCK_D is the SPI clock pin of the DSPI_D module.

2.7.9.8 PJ14 - GPIO (PJ14) / DSPI_D Serial Data Out (SOUT_D)

PJ14 is a GPIO pin. SOUT_D is the SPI serial data out for the DSPI_D module.

2.7.9.9 PJ15 - GPIO (PJ15) / DSPI_D Serial Data In (SIN_D)

PJ15 is a GPIO pin. SIN_D is the SPI serial data in for the DSPI_D module.

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 2-33
 Preliminary

2.7.10 Port K Pins

2.7.10.1 PK0 — GPI (PK0) / 32 kHz Crystal Input (EXTAL32)

PK0 is a GPI pin. EXTAL32 is the input pin for an external 32 kHz crystal oscillator. (The EXTAL32
function is available on the PA14 pin on the 144LQFP package and on the PK0 pin on the 176LQFP and
208BGA packages.)

2.7.10.2 PK1 — GPI (PK[1]) / 32 kHz Crystal Output (XTAL32)

PK1 is a GPI pin. XTAL32 is the output pin for an external 32 kHz crystal oscillator (XTAL32 function
available on A15 pin on the 144LQFP package and PK1 pin on the 176LQFP and 208BGA packages).

2.7.11 Miscellaneous Pins

2.7.11.1 XTAL — Crystal Oscillator Output

XTAL is the output pin for an external crystal oscillator.

2.7.11.2 EXTAL — Crystal Oscillator Input / External Clock Input

EXTAL is the input pin for an external crystal oscillator or an external clock source. The alternate function
is the external clock input.

2.7.11.3 RESET — External Reset Input

The RESET pin is a bidirectional I/O pin. It is asserted by an external device to reset all modules of the
MCU, except the RTC counter. It is also an open drain output signal that is asserted during an internal reset.
See Chapter 7, “Reset,” for more detail.

2.7.11.4 TCK — JTAG Test Clock Input

TCK provides the clock input for the on-chip test logic.

2.7.11.5 TDI — JTAG Test Data Input

TDI provides the serial test instruction and data input for the on-chip test logic.

2.7.11.6 TDO — JTAG Test Data Output

TDO provides the serial test data output for the on-chip test logic.

2.7.11.7 TMS — JTAG Test Mode Select Input

TMS controls test mode operations for the on-chip test logic.

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

2-34 Freescale Semiconductor
 Preliminary

2.7.11.8 JCOMP — JTAG Compliance Input

The JCOMP pin is used to enable the JTAG TAP controller.

2.7.11.9 TEST — Test Mode Enable Input

The TEST pin is used to place the chip in test mode. It must be negated for normal operation, and should
be connected to ground in all customer applications.

2.7.12 Power and Ground Pins

2.7.12.1 Voltage Regulator Reference (VDDR)

VDDR is the voltage reference to the internal voltage regulator.

2.7.12.2 VDDA — Analog-to-Digital Converter Analog Supply

VDDA is the analog supply for the eQADC.

2.7.12.3 VSSA — Analog-to-Digital Converter Analog Ground

VSSA is the analog ground for the eQADC.

2.7.12.4 VRH — Analog-to-Digital Converter Reference High

VRH is the reference high input for the eQADC.

2.7.12.5 VRL — Analog-to-Digital Converter Reference Low

VRL is the reference low input for the eQADC.

2.7.12.6 REFBYPC — Reference Bypass Capacitor

REFBYPC is a bypass capacitor input for the eQADC. The REFBYPC pin is used to connect an external
bias capacitor between the REFBYPC pin and VRL.

2.7.12.7 VDDSYN — Clock Synthesizer Supply

VDDSYN is the supply power for the FMPLL.

2.7.12.8 VSSSYN — Clock Synthesizer Ground

VSSSYN is the ground reference for the FMPLL.

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 2-35
 Preliminary

2.7.12.9 VDD33 — 3.3 V I/O and Flash Read Supply (VFLASH)

VDD33 is the 3.3 V internal supply used for the external I/O control logic. It is intended only for the
connection of bypass capacitors, and must not be connect to load or power. (VFLASH is the on-chip flash
read supply.)

2.7.12.10 VPP — Flash Program/Erase Supply

VPP is the on-chip flash program/erase supply.

2.7.12.11 VDD — Internal Logic Supply and Flash Logic Supply (VDDF)

VDD is the 1.5 V logic and flash supply.

2.7.12.12 VSS — Internal Logic and Flash (VSSF) Ground

VSS is the ground reference for internal logic and the flash.

2.7.12.13 VDDEx — External I/O Supply

VDDEx is the 3.3 V to 5.0 V external I/O supply independently controlling the level for one of three
groups of I/O pins. (x=1,2,3.)

2.7.12.14 VSSEx — External I/O Ground

VSSEx is the external I/O ground for one of three groups of I/O pins. (x=1,2,3.)

Signal Descriptions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

2-36 Freescale Semiconductor
 Preliminary

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 3-1
 Preliminary

Chapter 3
System Clock Description

3.1 Introduction
The MPC5510 supports several clock sources that include an internal phase-locked loop (PLL), an
external high-frequency crystal (XOSC), an external low-frequency crystal (32kOSC), an internal
high-frequency RC oscillator (IRC), and an internal low-frequency RC oscillator (32kRC).

The availability of the clock sources vary, depending on the run, stop, and power mode selected. During
low power modes, the PLL and XOSC are not available as clock sources.

The internal system clock may be generated in several ways:

• Internal 16 MHz IRC

• PLL: Normal mode with crystal clock reference for XOSC

• PLL: Normal mode with external clock reference for XOSC

• XOSC with external clock reference (PLL bypass mode)

• XOSC with crystal clock reference

There are two clock output pins driven by programmable clock dividers: CLKOUT and MCKO.

The oscillator clock can be selected as the clock source for the FlexCAN interface in the FlexCAN blocks
resulting in very low jitter performance. The oscillator clock can also be selected as the clock source for
the FlexRay interface in the FlexRay block.

The default clock source after reset is the 16 MHz IRC.

3.2 Clock Sources
The various clock sources that are available on MPC5510 are shown in Figure 3-1 and discussed in more
detail in subsequent sections.

System Clock Description

MPC5510 Microcontroller Family Reference Manual, Rev. 1

3-2 Freescale Semiconductor
 Preliminary

Figure 3-1. MPC5510 Available Clock Sources

3.2.1 External High-Frequency Crystal (XOSC)

The MPC5510 features an internal automatic level control (ALC) oscillator. The oscillator is designed for
optimal startup margin with typical crystal oscillators. Oscillator power is supplied from its own 3.3 V
PLL supply voltage generated by the voltage regulator to minimize noise. The oscillator provides the
reference clock for the entire chip. As such, it may be used to drive the system clock directly (when the
PLL is bypassed), or as the input reference clock for the PLL.

A square-wave input can also be supplied to the device through the oscillator by connecting the external
clock source to the EXTAL pin with the oscillator operating in external-clock mode.

Features:

• Supports external high-frequency resonator or crystal in the range of fref (see MPC5510 data sheet
for reference frequency specification)

• Pierce oscillator

• Two external pins are dedicated for this function (EXTAL, XTAL)

• 40 MHz max required to support FlexRay

• Clock input to PLL

• This clock source is capable of supporting FlexCAN communications (jitter < 0.5%)

• This clock source is capable of supporting FlexRay communications (jitter < 0.5%) (duty
cycle = 50 ± 10%)

XOSC
OSCCLK

SYSCLKSEL 2 1 0

16 MHz
IRCPLL

Clock
Switcher

+1,2,4,8SYSCLKDIV

+1,2,4,8LPCLKDIV[n] System Clock

Peripheral Clocks

TRIMIRC
5 V3.3 V

EXTAL

3.3 V

XTAL

3.3 V

3.3 V

EXTAL32

5 V

XTAL32

5 V

32 kHz
IRC

TRIM32IRC

5V
32 kOSC

OSC32KEN

System Clock Description

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 3-3
 Preliminary

• Clock for the RTI

• Optional disable

• Enabled by default after reset

3.2.2 External Low-Frequency Crystal (32kXOSC)

The MPC5510 supports an external 32 kHz crystal to provide accurate wake-up and time-keeping
functions.

Features:

• Two external pins required: EXTAL32 and XTAL32

• Supports external low frequency crystal in the range of fref32 (see MPC5510 data sheet for
reference frequency specification)

• Option to clock the API to provide a more accurate wakeup

• Option to clock the RTC to provide accurate time keeping

• Powered from 5 V

• Optional disable

3.2.3 Internal High-Frequency RC Oscillator (IRC)

The MPC5510 includes a 16 MHz IRC as the default system clock out of reset.

Features:

• Fast stabilization, enabling fast recovery

• Frequency trimmable for accuracy

• Option to clock software watchdog timer

• Powered from 5 V

• Always enabled except optionally disabled in sleep modes when not being used

3.2.4 Internal Low-Frequency RC Oscillator (32kRC)

The MPC5510 includes a 32 kHz internal RC oscillator that is intended to be used as a highly reliable clock
source during low-power modes.

Features:

• Frequency trimmable for accuracy

• Option to clock the API to provide a wakeup

• Option to clock the RTC to provide time keeping

• Powered from 5 V

• Optionally enabled

System Clock Description

MPC5510 Microcontroller Family Reference Manual, Rev. 1

3-4 Freescale Semiconductor
 Preliminary

3.3 System Clock Architecture Block Diagram
To optimize system power consumption, the MPC5510 supports both system- and peripheral-level clock
dividers, and static clock gating using peripheral-level module disable (MDIS) bits and a system-level halt
mechanism. Figure 3-2 shows the device-level clock gating mechanism for the MPC5510.These features
are detailed in subsequent sections.

Figure 3-2. System Clock Architecture

PLL

IRC

Switcher
and

divider

System clock

XOSC

Cores, INTC, DMA,
SIU, RAM, Flash, BAM,

AIPS, AXBS, MCM
Peripheral dividers

MDIS

DSPI

Module clock

Protocol
clock

MDIS

EBI

MDIS

eMIOS

MDIS

I2C/ADC

MDIS

FlexCAN/RAY

CLK_SRC

MDIS

eSCI

MDIS

PIT_RTI

(RTI)

EBI
CLKOUT
divider

CLKOUT

NPC
MCKO
divider

MCKO

Nexus

Oscillator clock

Bypass clock

Selectable peripheral
clock dividers
(div 1,2,4,8)

System Clock Description

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 3-5
 Preliminary

3.4 Clock Dividers

3.4.1 System Clock Select

The source for the system clock can be selected by the SYSCLKSEL field of the SIU system clock register
(SIU_SYSCLK) to be the 16 MHz IRC, the XOSC, or the PLL.

3.4.2 System Clock Dividers

The system clock dividers can be programmed to create a system clock, which is created from the selected
clock source divided by 1, 2, 4, or 8, based on the setting of the SYSCLKDIV field in the SIU system clock
register (SIU_SYSCLK).

3.4.3 External Bus Clock (CLKOUT) Divider

The external bus clock (CLKOUT) divider can be programmed to create a CLKOUT, which is created
from the system clock divided by 1, 2, or 4, based on the settings of the EBDF bit field in the SIU external
clock control register (SIU_ECCR). The reset value of EBDF selects a CLKOUT frequency of one half of
the system clock frequency. The EBI supports gating of the CLKOUT signal when there are no external
bus accesses in progress.

The CLKOUT divider provides a nominal 50% duty cycle clock. There is no guaranteed phase relationship
between CLKOUT and MCKO.

3.4.4 Nexus Message Clock (MCKO) Divider

The Nexus message clock (MCKO) divider can be programmed to divide the system clock by one, two,
four, or eight based on the MCKO_DIV bit field in the port configuration register (PCR) in the Nexus port
controller (NPC). The reset value of MCKO_DIV selects an MCKO clock frequency one half of the
system clock frequency. The MCKO divider is configured by writing to the NPC through the JTAG port.
The MCKO_EN bit may be used to disable the MCKO clock. The MCKO_GT bit may be used to disable
the MCKO clock when Nexus is not actively transmitting messages on the Nexus port.

The MCKO divider provides a nominal 50% duty cycle clock. There is no guaranteed phase relationship
between CLKOUT and MCKO.

3.4.5 Peripheral Clock Dividers

The peripheral clock dividers provide a mechanism to reduce run power when it is not necessary to clock
peripherals at the full system clock frequency.

System Clock Description

MPC5510 Microcontroller Family Reference Manual, Rev. 1

3-6 Freescale Semiconductor
 Preliminary

The SIU’s SIU_SYSCLK[LPCLKDIVn] bits control the clock divide value for each grouping of modules.
The divide values may be independently selected for each grouping and support a divide by 1, 2, 4, or 8.
Figure 3-1 defines which peripherals are affected by which LPCLKDIVn bits.

The MPC5510 implements a single clock divider circuit that uses the system clock as its source. The
LPCLKDIV bits control which clock divide tap is used for each module grouping clock gate enable. The
resultant gated clocks will be at the desired frequency but are clock pulses instead of a 50% duty cycle (the
high clock pulse width is half the system clock period). The high-order clock taps will be disabled if not
being used. Individual modules should be disabled when changing the LPCLKDIV values affecting the
module.

The user is responsible for adjusting the module function, prescalers, protocol timings, etc. based on the
LPCLKDIV values. Register accesses will be proportionally longer along with other basic module
functions such as interrupts, DMA, etc.

3.5 Software-Controlled Power Management

3.5.1 Module Disable (MDIS) Clock Gating

Static clock gating is enabled by software writes to configuration bits for the modules to disable the
modules. Modules are re-enabled by software to ungate the module clocks.

The modules support software controlled clock gating where the application software can disable the
non-memory-mapped portions of the blocks by writing to module disable (MDIS) bits in registers within
the blocks. (The memory-mapped portions of the blocks are clocked by the system clock only when they
are accessed.) The Nexus port controller (NPC) can be configured to disable the MCKO signal when there
are no Nexus messages pending. The flash array can be disabled by writing to the STOP bit in the flash’s
module configuration register (MCR).

The modules that support software-controlled power management/clock gating are listed in Table 3-2
along with the registers and bits that disable each block. Default out of reset disables the
software-controlled clocks.

Table 3-1. LPCLKDIV Module Groups

LPCLKDIVn Modules

LPCLKDIV0 FlexCAN_A, DSPI_A

LPCLKDIV1 ESCI_A, I2C_A, PIT

LPCLKDIV2 FlexCAN_B-F

LPCLKDIV3 DSPI_B-D

LPCLKDIV4 ESCI_B-H

LPCLKDIV5 eMIOS

LPCLKDIV6 MLB

LPCLKDIV7 Reserved

System Clock Description

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 3-7
 Preliminary

3.5.2 Halt Clock Gating

System clock gating is forced via the centralized halt mechanism. The SIU_HLT register’s bits
corresponding to individual modules are configured to determine which modules are clock gated.

The HLT bits are used to drive the stop inputs to the modules. After the module completes a clean
shutdown, the module asserts the stop acknowledge handshake. The stop acknowledge is visible in the
SIU_HLTACK read-only register bits. The modules are individually controlled and halted.

The halted module recovers when the HLT bit is cleared by software. After HLT is cleared, the device’s
logic will re-enable the clocks to the modules and negate the stop signal after the required timing has been
met.

There is no hardware disable for the eDMA and FlexRay modules. Thus before setting the HLT bits for
these masters, software should take actions to prepare for the eDMA and FlexRay clocks to be stopped.
Then software sets the HLT bits for the eDMA and FlexRay to indicate to the clock logic that the clocks
to these modules can now be stopped.

When the HLT bits for the eDMA and FlexRay are set and when the Z0 and Z1 have executed WAIT
instructions, then the clocks to the platform are also gated. The platform logic includes the MPU, AXBS,
AIPS, and MCM. The INTC and SIU are not clock gated to allow for an interrupt to be used to exit WAIT.

3.5.3 Core WAIT Clock Gating

Core clock gating is enabled via the CPU WAIT instruction (or, if the core is in reset, by the CRP Core
Reset bit).

The Z1 and Z0 cores may be idled by their WAIT instructions. The WAIT instructions are used as a
power-saving feature to halt the core. Executing the WAIT instruction puts the corresponding core in an
idle state at a clean transition point. When the core stops, clocks to the core are gated off, and the core

Table 3-2. Software-Controlled Clock Gating Support

Block Name Register Name Bit Name

DSPI MCR MDIS

ESCI MCR MDIS

FlexCAN MCR MDIS

EMIOS MCR MDIS

EBI MCR MDIS

MLB MCR MDIS

PIT_RTI MCR MDIS1

1 Only the PIT timers are disabled by MDIS. The RTI is not affected by MDIS.

I2C IBCR MDIS

NPC MCR MCKO_EN, MCKO_GT

Flash Array MCR STOP

System Clock Description

MPC5510 Microcontroller Family Reference Manual, Rev. 1

3-8 Freescale Semiconductor
 Preliminary

asserts a signal indicating it is waiting for an interrupt. The state of this signal is software accessible via
the appropriate SIU_HLTACK register’s bits.

An interrupt to the corresponding core exits the WAIT instruction and the core continues to the appropriate
interrupt service routine (ISR).

3.6 Alternate Module Clock Domains

3.6.1 FlexCAN Clock Domains

The FlexCAN blocks have two distinct software-controlled clock domains. One of the clock domains is
always derived from the system clock. This clock domain includes the message buffer logic. The source
for the second clock domain can be the system clock or the XOSC output. The logic in the second clock
domain controls the CAN interface pins. The CLK_SRC bit in the FlexCAN CTRL register selects
between the system clock and the oscillator clock as the clock source for the second domain. Selecting the
oscillator as the clock source ensures low jitter on the CAN bus. System software can gate both clocks by
writing to the MDIS bit in the FlexCAN MCR register.

NOTE
To prevent improper FlexCAN behavior when switching of the system
clock or the CAN protocol engine clock source, or before the desired clock
source has stabilized, the FlexCAN module must first be disabled by setting
the FlexCAN_x_MCR[MDIS] = 1.

If the oscillator clock source is selected, the frequency of the peripheral clock needs to be the same or
greater than the oscillator clock frequency.

If the XOSC is used as the system clock source and is divided down, then the clock source selected for the
CAN interface must be the system clock (i.e. divided XOSC) to keep the system clock not slower than the
CAN interface clock.

3.6.2 FlexRay Clock Domains

The FlexRay block has two distinct software-controlled clock domains. One of the clock domains is
always derived from the system clock. The source for the second clock domain can be the system clock or
the XOSC output. The logic in the second clock domain controls the FlexRay interface pins. The
CLK_SRC bit in the FlexRay CTRL register selects between the system clock and the oscillator clock as
the clock source for the second domain. Selecting the oscillator as the clock source ensures low jitter on
the FlexRay bus.

NOTE
To prevent improper FlexRay behavior, the system clock or the FlexRay
protocol engine clock source must be switched and stable before enabling
the FlexRay module. After it is enabled, the FlexRay module can be
disabled only by asserting RESET.

System Clock Description

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 3-9
 Preliminary

If the oscillator clock source is selected for the FlexRay interface, then a divided down XOSC cannot be
selected as the source for the system clock.

3.6.3 RTC Clock Domain

The clock source for the RTC can be selected as one of the following: the 32 kHz IRC, the 32 kHz OSC,
or the 16 MHz IRC.

NOTE
To prevent improper real-time clock (RTC) behavior when switching the
system clock source, or before the desired clock source has stabilized, the
RTC must first be disabled by clearing the CRP_RTCSC[CNTEN] = 0.

3.6.4 SWT Clock Domain

The clock source for the SWT is selectable as the system clock or the 16 MHz IRC.

NOTE
To prevent improper software watchdog timer (SWT) behavior when
switching the system clock source, or before the desired clock source has
stabilized, the SWT must first be disabled by clearing the
MCM_MSWTCR[SWE] = 0.

System Clock Description

MPC5510 Microcontroller Family Reference Manual, Rev. 1

3-10 Freescale Semiconductor
 Preliminary

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 4-1
 Preliminary

Chapter 4
Frequency Modulated Phase Locked Loop (FMPLL)

4.1 Introduction
The FMPLL module is a frequency modulated phase-locked loop that has been optimized to generate
voltage controlled oscillator (VCO) frequencies from 192 MHz to 500 MHz based on an input clock range
of 4 MHz to 40 MHz. The frequency multiplication, output dividers, and the frequency modulation
waveform are register-programmable through a peripheral bus interface.

NOTE
Although this PLL is basically the same PLL that is used on other Power PC
parts, its implementation is different, owing to the use of an internal 16 MHz
IRC, low-power modes, and other features specific to the 5510 family.

4.1.1 Block Diagram

A simplified block diagram of the FMPLL illustrates the functionality and interdependence of major
blocks (see Figure 4-1). Shaded blocks represent analog circuit components that make up the core analog
portion of the FMPLL. The complete FMPLL closed-loop system contains the feedback divider (EMFD)
and output divider (ERFD), which are implemented with standard cell core logic elements. Refer to
Section 4.4.3.3, “PLL Normal Mode Without FM,” for details on each sub-block.

Figure 4-1. FMPLL Block Diagram

FMDAC_STEP[0:9] D2AFM CALDAC

EXTAL EPREDIV

PFD FILTER VCO ERFD

LOC_PLL

LOC_REF

EMFD

PLL Clock
Out

Used to create the
loss of clock reset
request and decide
which PLL mode to
switch to when
these things happen

Frequency Modulated Phase Locked Loop (FMPLL)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

4-2 Freescale Semiconductor
 Preliminary

4.1.2 Features

The FMPLL has these major features:

• Input clock frequency range: 4 MHz to 40 MHz (EXTAL pin)

• Because the MPC5510 uses a 16 MHz IRC as its default system clock, the FMPLL will be put in
PLL Off mode during reset, so that power dissipation is minimized by disabling the FMPLL until
needed by the system.

• Programmable frequency multiplication factor settings generating VCO frequencies of
192 MHz – 500 MHz

• PLL Off mode (low-power stop)

• Register programmable output clock divider (ERFD)

• Programmable frequency modulation

— Modulation applied as a triangle waveform

— Peak-to-peak register programmable modulation depths of 0.5%, 1%, 1.5%, and 2% of the
system frequency

— Register programmable modulation rates of Fextal/80, Fextal/40, and Fextal/20

• Lock detect circuitry provides a signal indicating the FMPLL has acquired lock and continuously
monitors the FMPLL output for any loss of lock

• Loss-of-clock circuitry monitors input reference and FMPLL output clocks with programmable
ability to select a backup clock source as well as generate a reset or interrupt in the event of a failure

4.1.3 Modes of Operation

There are two main modes of FMPLL: PLL Off mode and normal mode. These modes are briefly described
in this section.

When PLL Off mode is selected, the FMPLL is off, and the end-system user must have selected a different
SIU MUX source than the PLL Output. The lock detector is not functional and will not indicate that the
FMPLL is in a locked state. Frequency modulation is not available and the FMPLL is put into a low-power,
idle state. This operating mode is described in Section 4.4.2, “PLL Off Mode.”

When normal mode is selected, the FMPLL is fully programmable. The FMPLL reference clock source
can be a crystal oscillator or an external clock generator. The lock detector will function and indicate the
lock status of the FMPLL and frequency modulation of the output clock can be enabled. This operating
mode is described in Section 4.4.3, “Normal Mode.”

4.2 External Signal Description
Refer to Table 2-1 and Section 2.7, “Detailed External Signal Descriptions,” for detailed signal
descriptions.

4.3 Memory Map and Registers
This section provides a detailed description of all FMPLL registers.

Frequency Modulated Phase Locked Loop (FMPLL)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 4-3
 Preliminary

4.3.1 Module Memory Map

Table 4-1 shows the FMPLL memory map. The address of each register is given as an offset to the FMPLL
base address. Registers are listed in address order, identified by complete name and mnemonic, and lists
the type of accesses allowed.

4.3.2 Register Descriptions

This section lists the FMPLL registers in address order and describes the registers and their bit fields.

4.3.2.1 FMPLL Synthesizer Status Register (SYNSR)

Table 4-1. FMPLL Memory Map

Offset from
FMPLL_BASE_ADDR

(0xFFFF_0000)
Register Access Reset Value Section/Page

0x0000 Reserved

0x0004 SYNSR—FMPLL Synthesizer Status Register R/W —1

1 See specific register description.

4.3.2.1/4-3

0x0008 ESYNCR1—FMPLL Enhanced Synthesizer Control
Register 1

R/W 0x8001_0053 4.3.2.2/4-5

0x000C ESYNCR2—FMPLL Enhanced Synthesizer Control
Register 2

R/W 0x0000_0005 4.3.2.3/4-8

0x0010–0x0014 Reserved

FMOffset: PLL_BASE_ADDR + 0x0004 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 LOLF
LOC MODE

PLL
SEL

PLL
REF

LOCKS LOCK
LOCF CAL

DONE
CAL

PASSW w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 4-2. FMPLL Synthesizer Status Register (SYNSR)

Table 4-2. SYNSR Register Field Descriptions

Field Description

bits 0–21 Reserved.

Frequency Modulated Phase Locked Loop (FMPLL)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

4-4 Freescale Semiconductor
 Preliminary

LOLF Loss- of-Lock Flag. This bit provides the interrupt request flag. To clear the flag, write a 1 to the bit. Writing 0 has
no effect. This flag will not be set, and an interrupt will not be requested, if the loss-of-lock condition was caused
by a system reset, enabling frequency modulation, or write to the ESYNCR1 which modifies the
ESYNCR1[EMFD] bits. If the flag is set due to a system failure, writing the ESYNCR1[EMFD] bits or enabling FM
will not clear the flag. Assert reset to clear the flag. If lock is reacquired, the bit will remain set until either a write
1 or reset is asserted.
1 Interrupt service requested
0 Interrupt service not requested

LOC Loss-Of-Clock Status. The LOC bit is an indication of whether a loss-of-clock condition is present when operating
in normal PLL mode. If LOC=0, the system clocks are operating normally. If LOC=1, the system clocks have failed
due to a reference failure or a PLL failure. If the read of the LOC bit and the loss-of-clock condition occur
simultaneously, the bit does not reflect the current loss-of-clock condition. If a loss-of-clock condition occurs that
sets this bit and the clocks later return to normal, this bit will be cleared. LOC is always zero in PLL Off mode.
1 Clocks are not operating normally
0 Clocks are operating normally

MODE Clock Mode. The initial value for the MODE bit is determined at reset. The state of this bit, along with PLLSEL
and PLLREF, indicates which clock mode the PLL is operating in (see Table 4-3). The value of
ESYNCR1[CLKCFG0] will be reflected in this location.
1 PLL clock mode
0 PLL Off mode

PLLSEL PLL Mode Select. The initial value for the PLLSEL bit is determined at reset. The state of this bit, along with
MODE and PLLREF, indicates which mode the PLL operates in (see Table 4-3). This bit is cleared in PLL Off
mode. The value of ESYNCR1[CLKCFG1] will be reflected in this location.
1 Normal PLL mode
0 PLL Off mode

PLLREF PLL Clock Reference Source. The initial value for the PLLREF bit is determined at reset. The state of this bit,
along with MODE and PLLSEL, indicates which reference source has been chosen for normal PLL mode (see
Table 4-3). This bit is cleared in PLL Off mode. The value of ESYNCR1[CLKCFG2] will be reflected in this
location.
1 Crystal clock reference chosen
0 External clock reference chosen
Note: User must also use the XOSC bit in the CRP register (CRP_CLKSRC) to enable the 4 to 40 MHz oscillator.

LOCKS Sticky PLL Lock Status Bit. The LOCKS bit is a sticky indication of PLL lock status. LOCKS is set by the lock
detect circuitry when the PLL acquires lock after: 1) a system reset, or 2) a write to the ESYNCR2 which modifies
the ESYNCR2[EMFD] bits, or 3) frequency modulation is enabled. Whenever the PLL loses lock, LOCKS is
cleared. LOCKS remains cleared after the PLL re-locks, until one of the three conditions occurs. Furthermore, if
the LOCKS bit is read when the PLL simultaneously loses lock, the bit does not reflect the current loss-of-lock
condition.

If operating in PLL Off mode, LOCKS remains cleared after reset.
1 PLL has not lost lock since last system reset, a write to ESYNCR1 to modify the ESYNCR1[EMFD] bit field,

or frequency modulation enabled
0 PLL has lost lock since last system reset, a write to ESYNCR1 to modify the ESYNCR1[EMFD] bit field, or

frequency modulation enabled

Table 4-2. SYNSR Register Field Descriptions (continued)

Field Description

Frequency Modulated Phase Locked Loop (FMPLL)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 4-5
 Preliminary

4.3.2.2 FMPLL Enhanced Synthesizer Control Register 1 (ESYNCR1)

This is one of two FMPLL synthesizer control registers that are used to access enhanced features in the
FMPLL. The bit fields in the ESYNCR1 behave as described in Figure 4-3.

LOCK PLL Lock Status Bit. The LOCK bit indicates whether the PLL has acquired lock. PLL lock occurs when the
synthesized frequency matches to within approximately 0.75% of the programmed frequency. The PLL loses lock
when a frequency deviation of greater than approximately 1.5% occurs. If the LOCK bit is read when the PLL
simultaneously loses lock or acquires lock, the bit does not reflect the current condition of the PLL.

If operating in PLL Off mode, LOCK remains cleared after reset.
1 PLL is locked
0 PLL is unlocked

LOCF Loss-of-Clock Flag. This bit provides the interrupt request flag. To clear the flag, write a 1 to the bit. Writing 0 has
no effect. Asserting reset will clear the flag. If clocks return to normal after the flag has been set, the bit will remain
set until cleared by either writing 1 or asserting reset. A loss-of-clock condition can only be detected if LOCEN=1.
1 Interrupt service requested
0 Interrupt service not requested

CALDONE Calibration Complete. The CALDONE bit is an indication of whether the calibration sequence has been
completed since the last time modulation was enabled. If CALDONE=0 then the calibration sequence is in
progress or modulation is disabled. If CALDONE=1 then the calibration sequence has been completed, and
frequency modulation is operating.
1 Calibration complete
0 Calibration not complete

CALPASS Calibration Passed. The CALPASS bit tells whether the calibration routine was successful. If CALPASS=1 and
CALDONE=1 then the routine was successful. If CALPASS=0 and CALDONE=1, then the routine was
unsuccessful. When the calibration routine is initiated the CALPASS is asserted. CALPASS remains asserted
until modulation is disabled by clearing the EDEPTH bits in the ESYNCR2 register or a failure occurs within the
FMPLL calibration sequence.
1 Calibration successful
0 Calibration unsuccessful

If calibration is unsuccessful, then actual depth is not guaranteed to match the desired depth

Table 4-3. System Clock Status Per Mode

MODE PLLSEL PLLREF Clock Mode

0 X X PLL Off mode

1 0 0 Reserved

1 1 0 Normal PLL mode with external clock reference

1 1 1 Normal PLL mode with crystal clock reference

Table 4-2. SYNSR Register Field Descriptions (continued)

Field Description

Frequency Modulated Phase Locked Loop (FMPLL)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

4-6 Freescale Semiconductor
 Preliminary

FMOffset: PLL_BASE_ADDR + 0x0008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 1
CLKCFG[0:2]

0 0 0 0 0 0 0 0
EPREDIV

W

Reset 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
EMFD

W

Reset 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1

Figure 4-3. FMPLL Enhanced Synthesizer Control Register 1 (ESYNCR1)

Table 4-4. ESYNCR1 Register Field Descriptions

Field Description

bit 0 Reserved.

Note: This bit is set to 1 on reset and always reads as 1.

CLKCFG[0:2] Clock Configuration. The CLKCFG[0:2] bits are writable versions of the MODE, PLLSEL, and PLLREF bits
in the SYNSR. These change the clock mode, after reset has negated, via software. CLKCFG[0:2] map
directly to MODE, PLLSEL, and PLLREF to control the system clock mode (see Table 4-3).
Note: CLKCFG[0:2] = 0b101 can produce an unpredictable clock output.

Note: The ESYNCR2[LOLRE] and ESYNCR2[LOCRE] should be set to 0 before changing the PLL mode, so
that a reset is not immediately generated upon the write to CLKCFG[0:2]

bits 4–11 Reserved.

EPREDIV Enhanced Pre-Divider. The EPREDIV bits control the value of the divider on the input clock. The output of
the pre-divider circuit generates the reference clock to the PLL analog loop. The decimal equivalent of the
EPREDIV binary number is substituted into the equation from Table 4-11.
Note: Setting the EPREDIV to any of the invalid states in Table 4-5 will cause the PLL to produce an

unpredictable output clock. and the output frequency of the divider must equal the PLL reference
frequency, fpllref (see MPC5510 data sheet).

When the EPREDIV bits are changed, the PLL will immediately lose lock. If the EPREDIV bits are changed
during FM calibration, the current calibration sequence is terminated and the DEPTH bits are cleared. The
PLL will re-lock to the new EPREDIV value you must manually re-enable modulation. To prevent an
immediate reset, clear the LOLRE bit before writing the EPREDIV bits. In PLL Off mode the EPREDIV bits
have no affect. The available enhanced pre-divider ratios are given in Table 4-5.

Frequency Modulated Phase Locked Loop (FMPLL)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 4-7
 Preliminary

bits 16–23 Reserved.

EMFD Enhanced Multiplication Factor Divider. The EMFD bits control the value of the divider in the PLL feedback
loop. The value specified by the EMFD bits establish the multiplication factor applied to the reference
frequency. The decimal equivalent of the EMFD binary number is substituted into the equation from
Table 4-11 for Fsys to determine the equivalent multiplication factor. The range of settings is
32 ≤ EMFD ≤ 132.
Note: EMFD values less than 32 and greater than 132 are invalid and will cause the PLL to produce an

unpredictable clock output. The VCO frequency must be within the fvco specification (see MPC5510
data sheet)

When the EMFD bits are changed, the PLL loses lock.If the EMFD bits are changed during FM calibration,
the current calibration sequence is terminated and the DEPTH bits are cleared. The PLL will re-lock to the
new EMFD value you must manually re-enable modulation. To prevent an immediate reset, clear the LOLRE
bit before writing the EMFD bits.
In PLL Off mode the EMFD bits have no affect.

Table 4-6 shows the available divide ratios.

Table 4-5. Enhanced Pre-divider Ratios

EPREDIV Input Divide Ratio (EPREDIV+1)

0000 1

0001 2 (default for MPC5510)

0010 3

0011 4

0100 5

0101 6

0110 Invalid

0111 8

1000 Invalid

1001 10

1010–1111 Invalid

Table 4-6. Enhanced Feedback Divide Ratios

EMFD Feedback Divide Ratio (EMFD+16)

0000_0000–0001_1111 Invalid

0010_0000 48

0010_0001 49

0010_0010 50

0010_0011 51

0010_0100 52

Table 4-4. ESYNCR1 Register Field Descriptions (continued)

Field Description

Frequency Modulated Phase Locked Loop (FMPLL)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

4-8 Freescale Semiconductor
 Preliminary

4.3.2.3 FMPLL Enhanced Synthesizer Control Register 2 (ESYNCR2)

This is the second of two enhanced versions of the FMPLL synthesizer control register used to access
enhanced features in the FMPLL. The bit fields in the ESYNCR2 behave as described in Figure 4-4.

0010_0101 53

.

.
0101_0011

.

.

.

.
99 (default for MPC5510)

.

.

1000_0100 148

1000_0101–1111_1111 Invalid

FMOffset: PLL_BASE_ADDR + 0x000C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
LOCEN LOLRE LOCRE

LOL
IRQ

LOC
IRQ

0
ERATE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0
EDEPTH

0 0
ERFD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

Figure 4-4. FMPLL Enhanced Synthesizer Control Register 2 (ESYNCR2)

Table 4-7. ESYNCR2 Field Descriptions

Field Description

bits 0–7 Reserved.

LOCEN Loss-of-Clock Enable. The LOCEN bit determines whether the loss-of-clock function is operational along with
backup clock modes, and interrupt and reset functions. See Section 4.4.3.2, “Loss-of-Clock Detection,” for
more information.

In PLL Off mode, this bit has no affect.

LOCEN does not affect the loss-of-lock circuitry.
1 Loss-of-clock enabled.
0 Loss-of-clock disabled.

LOLRE Loss-of-Lock Reset Enable. The LOLRE bit determines how the integration module handles a loss-of-lock
indication. See Section 4.4.3.1, “PLL Lock Detection,” for more information.
When operating in normal PLL mode, the PLL must be locked before setting the LOLRE bit. Otherwise reset
is immediately asserted.

The LOLRE bit has no affect in PLL Off mode.
1 Assert reset on loss of lock enabled.
0 Assert reset on loss of lock disabled.

Table 4-6. Enhanced Feedback Divide Ratios

EMFD Feedback Divide Ratio (EMFD+16)

Frequency Modulated Phase Locked Loop (FMPLL)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 4-9
 Preliminary

LOCRE Loss-of-Clock Reset Enable. The LOCRE bit determines how the integration module handles a loss-of-clock
condition when LOCEN is equal to 1. LOCRE has no effect when LOCEN is equal to 0.
If the LOCF bit in the SYNSR indicates a loss-of-clock condition, setting the LOCRE bit causes an immediate
reset.

In PLL Off mode LOCRE has no affect.
1 Assert reset on loss of clock enabled
0 Assert reset on loss of clock disabled.

LOLIRQ Loss-of-Lock Interrupt Request. The LOLIRQ bit determines how the integration module handles a
loss-of-lock indication. See Section 4.6.1, “Loss-of-Lock Interrupt Request,” for more information.
When operating in normal mode, the PLL must be locked before setting the LOLIRQ bit. Otherwise an
interrupt is immediately requested.
The LOLIRQ bit has no affect in PLL Off mode.
1 Request interrupt enabled
0 Request interrupt disabled

LOCIRQ Loss- of-Clock Interrupt Request. The LOCIRQ bit determines how the integration module handles a loss-
of-clock condition when LOCEN=1. LOCIRQ has no effect when LOCEN=0.

If the LOCF bit in the SYNSR indicates a loss-of-clock condition, setting (or having previously set) the
LOCIRQ bit causes an interrupt request.

In PLL Off mode LOCIRQ has no affect.
1 Request interrupt on loss of clock enabled.
0 Request interrupt on loss of clock disabled

bit 13 Reserved.

ERATE Enhanced Modulation Rate. The ERATE bits control the rate of frequency modulation applied to the system
frequency. Table 4-8 shows the allowable modulation rates.

bits 16–20 Reserved.

EDEPTH Enhanced Modulation Depth. The EDEPTH bit field controls the frequency modulation depth and enables the
frequency modulation. When programmed to a value other than 0x0 the frequency modulation is
automatically enabled. Table 4-9 shows are the programmable frequency deviations from the system
frequency. Upon a change in the depth value to other than 0x0, the calibration sequence will be re initialized.

bits 24–25 Reserved.

ERFD Enhanced Reduced Frequency Divider. The ERFD bits control a divider at the output of the PLL. The value
specified by the ERFD bits establish the divisor applied to the PLL frequency. The ERFD divides the output
clock by the quantity (ERFD + 1). Even-numbered RFD settings, which would result in odd divide ratios, are
not allowed.

The decimal equivalent of the ERFD binary number is substituted into the equation from Table 4-11.
Note: The ERFD divides the output clock by the quantity (ERFD + 1). Even numbered ERFD settings, which

would result in odd divide ratios, are invalid and cause the PLL to produce an unpredictable output
clock. The PLL output clock must be within the fpll specification (see MPC5510 data sheet).

Changing the ERFD bits does not affect the PLL, hence, no re-lock delay is incurred. Resulting changes in
clock frequency are synchronized to the next falling edge of the current system clock. These bits should be
written only when the lock bit (LOCK) is set, to avoid surpassing the allowable system operating frequency.
In PLL Off mode the ERFD bits have no affect.

The available enhanced output divider ratios are given in Table 4-10.

Table 4-7. ESYNCR2 Field Descriptions (continued)

Field Description

Frequency Modulated Phase Locked Loop (FMPLL)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

4-10 Freescale Semiconductor
 Preliminary

Table 4-8. Programmable Modulation Rates

ERATE Modulation Rate (Hz)

00 Fmod = Fextal/80

01 Fmod = Fextal/40

10 Fmod = Fextal/20

11 Invalid

Table 4-9. Programmable Modulation Depths

EDEPTH Modulation Depth (% of Fsys)

000 0

001 0.25% – 0.5%

010 0.75% – 1.0%

011 1.25% – 1.5%

100 1.75% – 2.0%

101 – 111 Reserved

Table 4-10. Enhanced Output Divide Ratios

ERFD Output Divide Ratio (ERFD+1)

00_0000 1

00_0001 2

00_0010 Invalid

00_0011 4

00_0100 Invalid

00_0101 6 (default value for MPC5510)

00_0110 Invalid

00_0111 8

.

.

.

.

.

.

11_1100 Invalid

11_1101 62

11_1110 Invalid

11_1111 64

Frequency Modulated Phase Locked Loop (FMPLL)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 4-11
 Preliminary

4.4 Functional Description
The FMPLL module contains the frequency modulated phase lock loop (FMPLL), enhanced frequency
divider (ERFD), enhanced synthesizer control registers (ESYNCR1 and ESYNCR2), synthesizer status
register (SYNSR), and clock/PLL control logic. The block also contains a reference frequency pre-divider
controlled by the EPREDIV bits in the ESYNCR1. This enables the user to use a high frequency crystal
or external clock generator and obtain finer frequency synthesis resolution than would be available if the
raw input clock were used directly by the analog loop. For the remainder of this chapter, the term
“reference frequency” and the symbol Fref indicate the output of the pre-divider circuit. This is the clock
on which frequency multiplication will be performed.

4.4.1 General

At reset, the system clock is driven by the internal oscillator (16 MHz IRC) and the module is in bypass
mode. After reset, software can change the PLL mode (see Section 4.5.1, “Clock Mode Selection”).

Table 4-11 shows the PLL-clock to input-clock frequency relationships for the available clock modes.

4.4.2 PLL Off Mode

When PLL Off mode is selected, the PLL is off and either the 16 MHz IRC must be selected as the system
clock or the user must supply an external clock or crystal on the EXTAL pin, and select that clock source
before entering PLL Off mode. The selected clock is directly used to produce the various system clocks.
Refer to MPC5510 Microcontroller Family Data Sheet for external clock input requirements. In bypass
mode, the analog portion of the PLL is disabled, the frequency modulation capability is not available, and
no clocks are generated at the PLL output. The pre-divider is bypassed and has no effect on the system
clock frequency in bypass mode.

4.4.3 Normal Mode

When normal PLL mode is selected, the PLL is fully programmable. The PLL can synthesize frequencies
ranging from 48x to 148x the reference frequency of the output of the predivider. with or without
frequency modulation enabled. The post-divider is capable of reducing the PLL clock frequency without
forcing a re-lock. The PLL reference can be a crystal oscillator reference or an external clock reference.
This clock will be divided by the pre-divider circuit to create the PLL reference clock.

4.4.3.1 PLL Lock Detection

The lock detect logic monitors the reference frequency and the PLL feedback frequency to determine when
frequency lock has been achieved. Phase lock is inferred by the frequency relationship, but is not

Table 4-11. Clock-Out vs. Clock-In Relationships

Clock Mode Frequency Equation

Normal PLL Mode
Fsys

Fextal EMFD 16+()•

EPREDIV 1+() ERFD 1+()
---=

Frequency Modulated Phase Locked Loop (FMPLL)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

4-12 Freescale Semiconductor
 Preliminary

guaranteed. The PLL lock status is reflected in the LOCK status bit in the SYNSR. A sticky lock status
indication, LOCKS, is also provided.

The lock detect function uses two counters, which are clocked by the reference and PLL feedback
respectively. When the reference counter has counted N cycles, the feedback counter’s count is compared.
If the feedback counter has also counted N cycles, the process is repeated for N + K counts. Then if the
two counters’ counts match, the lock criteria is relaxed by one count and the system is notified that the
PLL has achieved frequency lock. Then takes three successful compares before tolerance is relaxed.

After lock has been detected, the lock circuitry continues to monitor the reference and feedback
frequencies using the alternate count and compare process. If the counters do not match at any comparison
time, then the LOCK status bit is cleared to indicate that the PLL has lost lock. At this point, the lock
criteria is tightened and the lock detect process is repeated.

The alternate count sequences prevent false lock detects due to frequency aliasing while the PLL tries to
lock. Alternating between a tight and relaxed lock criteria prevents the lock detect function from randomly
toggling between locked and not locked status due to phase sensitivities. Figure 4-5 illustrates the
sequence for detecting locked and not-locked conditions.

When the frequency modulation is enabled, the loss of lock continues to function as described but with the
lock and loss of lock criteria reduced to ensure that false loss of lock conditions are not detected.

In PLL Off mode, the PLL cannot lock because the PLL is disabled.

Figure 4-5. Lock Detect Sequence

Count N + K
Reference cycles,

and compare
number of feed-

Lock detected

back cycles

Relax lock
 criteria.

Reference count
equals N and feed-
back count equals N
in same count and
compare sequence.

Reference count
equals N + K and feed-
back count equals N + K
in same count and
compare sequence.

Alert system that
PLL has locked.

Feedback count does not
equal reference count of N or
N+K. Alert system that PLL
is not locked. Tighten
lock criteria.

Continue
monitoring PLL
with alternate

N and N+K count
and compare
sequences.

Count N
reference cycles,

and compare
number of feedback

cycles elapsed.

elapsed.

Frequency Modulated Phase Locked Loop (FMPLL)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 4-13
 Preliminary

After the PLL acquires lock after reset, the LOCK and LOCKS status bits are set. If the EPREDIV or
EMFD are changed, or if an unexpected loss-of-lock condition occurs, the LOCK and LOCKS status bits
are negated. While the PLL is in an unlocked condition, the system clocks continue to be sourced from the
PLL as the PLL attempts to re-lock. Consequently, during the re-locking process, the system clock
frequency is not well defined and may exceed the maximum system frequency violating the system clock
timing specifications. Because of this condition, using the loss-of-lock reset function is recommended.

After the PLL has re-locked, the LOCK bit is set. The LOCKS bit remains cleared if the loss of lock was
unexpected. The LOCKS bit is set to one when the loss of lock was caused by changing the EPREDIV or
EMFD fields.

4.4.3.2 Loss-of-Clock Detection

When enabled by the LOCEN bit in the ESYNCR2, the loss-of-clock (LOC) detection circuit monitors the
input clocks to the phase/frequency detector (PFD) (see Figure 4-1). When the reference or feedback clock
frequency falls below a minimum frequency, the LOC circuitry considers the clock to have failed and a
loss-of-clock status is reflected by the sticky LOCF bit, and non-sticky LOC bit in the SYNSR. See
MPC5510 Microcontroller Family Data Sheet for the minimum clock frequency. In PLL Off mode, the
loss-of-clock circuitry is disabled.

Depending on which clock source has failed, the LOC circuitry switches the PLL’s output clock source to
the remaining operational clock, if enabled by LOCEN. The PLL’s output clocks are derived from the
alternate clock source until reset is asserted. If the reference fails, the PLL goes out of lock and into
self-clocked mode (SCM) (see Table 4-12). The PLL remains in SCM until the next reset. When the PLL
is operating in SCM, the PLL will run open loop at a default VCO frequency. The RFD will set to
divide-by-4 to ensure the clock presented to the system will be well below the maximum allowable
frequency for the device. If the loss-of-clock condition is due to a PLL failure (i.e., loss of feedback clock),
the PLL reference becomes the system clocks source until the next reset, even if the PLL regains itself and
re-locks.

A special loss-of-clock condition occurs when both the reference and the PLL fail. The failures may be
simultaneous or the PLL may fail first. In either case, the reference clock failure takes priority and the PLL
attempts to operate in SCM. If successful, the PLL remains in SCM until the next reset. During SCM,
modulation is always disabled. If the PLL cannot operate in SCM, the system remains static until the next
reset. If a loss-of-clock reset is enabled, the reset switches the bus clocks over to the 16 MHz IRC (and
switches off the PLL).

Table 4-12. Loss-of-Clock Summary

Clock Mode
System Clock

Source
before Failure

REFERENCE FAILURE
Alternate Clock Selected by

LOC Circuitry until Reset

PLL FAILURE
Alternate Clock Selected by

LOC Circuitry until Reset

PLL PLL PLL self-clocked mode PLL reference

PLL bypass Ext. Clock(s) None NA

Note: The LOC circuit monitors the inputs to the PFD: reference and feedback clocks (see Figure 4-1).

Frequency Modulated Phase Locked Loop (FMPLL)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

4-14 Freescale Semiconductor
 Preliminary

4.4.3.3 PLL Normal Mode Without FM

In PLL mode, the system clocks are synthesized by the FMPLL by multiplying up the reference clock
frequency. It is critical that the system clock frequency remain within the range for the device (see
MPC5510 Microcontroller Family Data Sheet). The output of the FMPLL can be divided down in powers
of two up to 128 to reduce the system frequency with the ERFD. The ERFD is not contained in the
feedback loop of the PLL, so changing the ERFD bits does not affect FMPLL operation. Finally, the PLL
can be frequency modulated to reduce electromagnetic interference often associated with clock circuitry.
Figure 4-1 shows the overall block diagram for the PLL. Each of the major blocks is discussed briefly in
the following sections.

4.4.3.3.1 Phase/Frequency Detector

The phase/frequency detector (PFD) is a dual-latch phase-frequency detector. It compares both the phase
and frequency of the reference clock and the feedback clock. The reference clock comes from the crystal
oscillator or an external clock source. The feedback clock comes from the VCO output divided down by
the EMFD in normal PLL mode.

When the frequency of the feedback clock equals the frequency of the reference clock (i.e. the PLL is
frequency locked), the PFD will pulse the UP or DOWN signals depending on the relative phase of the
two clocks. If the falling edge of the reference clock leads the falling edge of the feedback clock, then the
UP signal is pulsed. If the falling edge of the feedback clock leads the falling edge of the reference clock,
then the DOWN signal is pulsed. The width of these pulses relative to the reference clock is dependent on
how much the two clocks lead or lag each other. After phase lock is achieved, the PFD continues to pulse
the UP and DOWN signals for a very short duration during each reference clock cycle. These short pulses
force the PLL to continually update and prevent a frequency drift phenomena referred to as
“dead-banding.” Dead-band describes the minimum amount of phase error between the reference and
feedback clocks that a phase detector cannot correct.

4.4.3.3.2 Charge Pump/Loop Filter

Operation of the charge pump is controlled by the UP and DOWN signals from the PFD. They control
whether the charge pumps apply or remove charge, respectively, from the loop filter.

4.4.3.3.3 VCO

The voltage into the VCO controls the frequency of its output. The frequency-to-voltage relationship
(VCO gain) is positive.

4.4.3.3.4 EMFD

The MFD divides down the output of the VCO and feeds it back to the PFD. The PFD controls the VCO
frequency (via the charge pump and loop filter) such that the reference and feedback clocks have the same
frequency and phase. Thus, the input to the MFD, which is also the output of the VCO, is at a frequency
that is the reference frequency multiplied by the same amount the MFD divides by. For example, if the
MFD divides the VCO frequency by 48, then the PLL will be frequency locked when the VCO frequency
is 48 times the reference frequency. The presence of the MFD in the loop allows the PLL to perform
frequency multiplication, or synthesis.

Frequency Modulated Phase Locked Loop (FMPLL)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 4-15
 Preliminary

4.4.3.3.5 Programming System Clock Frequency

In normal PLL clock mode, the default system frequency is determined by the default EPREDIV, EMFD,
and ERFD values.

When programming the PLL, do not to violate the maximum system clock frequency or max/min VCO
frequency specifications. Based on the desired system clock frequency, EPREDIV, EMFD, and ERFD
must be calculated for the given crystal or external reference frequency. See MPC5510 Microcontroller
Family Data Sheet for the max/min VCO frequency range and the maximum allowable system frequency.

Frequency modulation should be disabled prior to changing the EPREDIV, EMFD, or RATE bit fields.
After enabling frequency modulation a new calibration sequence is performed. A change to EPREDIV,
EMFD, DEPTH, or RATE while modulation is enabled will invalidate the previous calibration results.

Use these directions to accommodate the frequency overshoot that occurs when the EPREDIV or EMFD
bits are changed. If frequency modulation is going to be enabled the maximum allowable frequency must
be reduced by the programmed ΔFm.

1. Determine the appropriate value for the EPREDIV, EMFD, and ERFD fields in the synthesizer
control register(s), remember to include the ΔFm if frequency modulation is to be enabled. The
amount of jitter in the system clocks can be minimized by selecting the maximum EMFD factor
that can be paired with an ERFD factor to provide the desired frequency. The maximum EMFD
value that can be used is determined by the VCO and EMFD range.

2. Write a value of ERFD = ERFD (from step 1) + 1 to the ERFD field of the ESYNCR2. Not
increasing the ERFD when changing the EPREDIV or EMFD could subject the device to clock
frequencies beyond the range specified for the device due to the PLL’s unlocked state.

3. If frequency modulation is currently enabled, disable it by writing 00 to the EDEPTH field of the
ESYNCR2.

4. If programming the EPREDIV and/or EMFD, write the value(s) determined in step 1 to the
appropriate field(s) in the ESYNCR1.

5. Monitor the synthesizer lock bit (LOCK) in the synthesizer status register (SYNSR). When the
PLL achieves lock, write the ERFD value determined in step 1 to the ERFD field of the ESYNCR2.
This changes the system clocks frequency to the desired frequency. If frequency modulation is
desired, leave ERFD programmed to ERFD + 1 until after completing the steps in
Section 4.4.3.4.2, “Programming System Clock Frequency With Frequency Modulation.”

6. If frequency modulation was enabled initially, it can be re-enabled following the steps listed in
Section 4.4.3.4.2, “Programming System Clock Frequency With Frequency Modulation.”

4.4.3.4 PLL Normal Mode With Frequency Modulation

In normal PLL clock mode, frequency modulation is not enabled in the default synthesis mode. When
frequency modulation is enabled two parameters must be set to generate the desired level of modulation.
The parameters to be programmed are the RATE and DEPTH bit fields of the ESYNCR2 register. The
RATE bit controls the frequency of modulation, Fmod. The DEPTH bits work to control the modulation
depth, Fm. The available modulation rates and depths are given in Table 4-8 and Table 4-9, respectively.
The modulation waveform is always a triangle wave and its shape is not programmable. An example of
one period of the modulation waveform is shown in Figure 4-6.

Frequency Modulated Phase Locked Loop (FMPLL)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

4-16 Freescale Semiconductor
 Preliminary

Figure 4-6. Frequency Modulation Waveform

4.4.3.4.1 Frequency Modulation Depth Calibration

The frequency modulation calibration system tunes a reference current into the modulation D/A so that the
modulation depth (Fmax and Fmin) remains within specification. Disable frequency modulation prior to
changing the EPREDIV, EMFD, or ERATE bit fields. Upon enabling frequency modulation a new
calibration sequence is performed. A change to EPREDIV, EMFD, or ERATE while modulation is active
will invalidate calibration results.

This routine will correct for process variations, but because temperature can change after the calibration
has been performed, variation due to temperature drift is not eliminated. This system is also voltage
dependent, so if the supply changes after the sequence takes place, error incurred will not be corrected.
The calibration system reuses the two counters in the lock detect circuit, the reference and feedback
counters. The reference counter remains clocked by the reference clock, but the feedback counter is
clocked by the VCO clock.

When the calibration routine is initiated by writing to the EDEPTH bits, the CALPASS and CALDONE
status bits are immediately cleared.

When calibration is induced the VCO is given time to settle before the feedback and reference counters
start counting. Full VCO clock cycles are counted by the feedback counter during this time to give the
initial center frequency count. When the reference counter has counted to the programmed number of
reference count cycles, the input to the feedback counter is disabled and the result is placed in the
COUNT0 register. The calibration system then enables modulation at programmed ΔFm and the VCO gets
time to settle. Both counters are reset and restarted. The feedback counter begins to count full VCO clock

Fmax

Fmin

Δt 1
Fmod
--------------=

t

f

Fmax = Fsys + {0.5%, 1%, 1.5%, 2%}

Fmin = Fsys – {0.5%, 1%,1.5%, 2%}

Fmod = Fextal/Q where Q = {20, 40, 80}

ΔFm

ΔFm

Frequency Modulated Phase Locked Loop (FMPLL)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 4-17
 Preliminary

cycles again to obtain the delta-frequency count. The counter will run only during the high phase of the
triangular modulation waveform. Several half-modulation periods will be measured during the calibration
routine to increase the resolution of the frequency measurement. This will result in a measurement of the
average frequency during the high phase of the modulation waveform which under ideal circumstances
will be equivalent to one-half of the desired modulation depth. When the reference counter has counted to
the new programmed number of reference count cycles, the feedback counter is stopped again.

The delta-frequency count minus the center frequency count (COUNT0) results in a delta count
proportional to the reference current into the modulation D/A. That delta count is subtracted from the
expected value for the selected depth resulting in an error count. The sign of this error count determines
the direction taken by the calibration D/A to update the calibration current. After obtaining the error count
for the present iteration, both counters are cleared. The stored count of COUNT0 is preserved while a new
feedback count is obtained, and the process to determine the error count is repeated. The calibration system
repeats this process eight times, once for each bit of the calibration D/A.

After the last decision is made, a 1 is written to the CALDONE bit of the SYNSR. If an error occurs during
the calibration routine, then CALPASS remains 0. If the routine completed successfully, CALPASS is set
to 1.

4.4.3.4.2 Programming System Clock Frequency With Frequency Modulation

The following steps illustrate proper programming of the frequency modulation mode. These steps ensure
proper operation of the calibration routine and prevent frequency overshoot from the sequence. The PLL
should be programmed and allowed to lock in non-FM mode at the desired frequency as outlined in
Section 4.4.3.3.5, “Programming System Clock Frequency.”

1. Monitor LOCK bit. Do not proceed until the PLL is locked in non-modulation mode.

2. Write a value of ERFD = ERFD + 1 to the ERFD field of the ESYNCR2 to ensure the maximum
system frequency is not exceeded during the calibration routine. This should have been done when
allowing the PLL to lock in non-FM mode.

3. Program the desired modulation rate and depth to the ERATE and EDEPTH fields in the
ESYNCR2. This action initiates the calibration sequence.

4. Allow time for the calibration sequence. Wait for the PLL to lock (i.e. the LOCK bit to set in the
SYNSR). At this time CALDONE should be asserted. CALPASS will be asserted if the calibration
was successful. If not, the calibration can be re-initiated by repeating from step 3. When the PLL
achieves lock, write the ERFD value desired.

The frequency modulation system is dependent on several factors. The accuracies of the
VDDSYN/VSSSYN voltage, of the crystal oscillator frequency, and of the manufacturing variation.

For example, if a 5 percent accurate supply voltage is used, then a 5 percent modulation depth error will
result. If the crystal oscillator frequency is skewed from the nominal operating frequency, the resulting
modulation frequency will be proportionally skewed. Finally, the error due to the manufacturing and
environment variation alone can cause the frequency modulation depth error to be greater than 20 percent.

Frequency Modulated Phase Locked Loop (FMPLL)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

4-18 Freescale Semiconductor
 Preliminary

4.5 Resets
This section describes the reset operation of the PLL, including power-on reset and normal resets. The
reset values of registers and signals are provided in other sections.

4.5.1 Clock Mode Selection

The initial clock mode is reflected in the MODE, PLLSEL, and PLLREF bits of the synthesizer status
register (SYNSR) as well as the ESYNCR1[CLKCFG] bit field. The clock mode can be modified by
writing to the CLKCFG bit field. The synthesizer status register will then reflect the newly-selected PLL
clock mode. Table 4-13 shows the clock mode encoding.

The clock mode selection configuration is summarized in Table 4-13.

4.5.1.1 Power-On Reset (POR)

The PLL will not operate until the POR signal has negated and the CLKCFG set for PLL mode. Refer to
MPC5510 Microcontroller Family Data Sheet for these thresholds. At this point, the PLL will operate in
self-clocked mode (SCM) until a valid reference clock is detected by the internal clock monitor circuit.

Internal to the PLL, the VCO will be held in reset until the negation of the POR signal. This prevents the
PLL from attempting to lock before its supplies are within specification which can cause VCO/loop gain
to be lower than what the analog loop is designed for.

4.5.1.2 External Reset

After POR has negated, the PLL defaults to Bypass mode and the default clock source for the system clock
is the 16 MHz IRC. After reset exit, the PLL may be configured for operation and after lock may be
selected as the system clock source.

After the initial lock with the default MFD (assuming normal mode was selected), ESYNCR1 may be
written to modify the MFD for the desired operating frequency. The PLL might not lock with an MFD and
crystal frequency combination that attempts to force the VCO outside its operating range.

Table 4-13. Clock Mode Selection

Clock Mode

Synthesizer Status Register (SYNSR)
MODE, PLLSEL, and PLLREF Bits

MODE/
CLKCFG2

PLLSEL/
CLKCFG1

PLLREF/
CLKCFG0

Bypass mode 0 X X

Normal mode with external reference 1 1 0

Normal mode with crystal reference 1 1 1

Reserved 1 0 0

Frequency Modulated Phase Locked Loop (FMPLL)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 4-19
 Preliminary

CAUTION
When running in an unlocked state, the clocks generated by the PLL are not
guaranteed stable and may exceed the maximum specified operating
frequency of the device. The RFD should always be used as described in
Section 4.4.3.3.5, “Programming System Clock Frequency,” to insulate the
system from any potential frequency overshoot of the PLL clocks.

4.5.2 PLL Loss-of-Lock Reset

By programming the LOLRE bit in the ESYNCR2, the PLL can assert reset when a loss-of-lock condition
occurs. Because the LOCK and LOCKS bits in the SYNSR are re-initialized after reset, the SIU reset status
register (SIU_RSR) (Section 6.3.2.2, “Reset Status Register (SIU_RSR)”) must be read to determine a
loss-of-lock condition occurred.

In PLL Off mode, the PLL cannot lock; therefore a loss-of-lock condition cannot occur and LOLRE has
no affect.

4.5.3 PLL Loss-of-Clock Reset

When a loss-of-clock condition is recognized, RESET is asserted if the LOCRE bit in the SYNCR is set.
The LOCF and LOC bits in the SYNSR are cleared after reset, therefore, the LOC bit must be read in the
SIU_RSR to determine that a loss-of-clock condition occurred. LOCRE has no affect in PLL Off mode.

4.6 Interrupts
This section describes the interrupt requests that the PLL can generate.

4.6.1 Loss-of-Lock Interrupt Request

By setting the LOLIRQ bit in the ESYNCR2, the PLL can request an interrupt when a loss-of-lock
condition occurs.

In PLL Off mode, the PLL cannot lock; therefore a loss-of-lock condition cannot occur and the LOLIRQ
has no affect.

4.6.2 Loss-of-Clock Interrupt Request

When a loss-of-clock condition is recognized, the PLL will request an interrupt if the LOCIRQ bit in the
SYNCR is set. The LOCIRQ bit has no affect in bypass mode or if LOCEN is equal to 0.

Frequency Modulated Phase Locked Loop (FMPLL)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

4-20 Freescale Semiconductor
 Preliminary

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 5-1
 Preliminary

Chapter 5
Clock, Reset, and Power Control (CRP)

5.1 Introduction
The primary function of the clock, reset, and power (CRP) block is to maintain all of the control logic that
requires power when other portions of the SoC are powered down in power-saving modes. The CRP
manages entry into, operation during, and exit from power-saving modes.

The CRP consists of the input isolation block, the RTC/API, the wakeup and power status block, the clock
and reset control block, low-power state machine, and bus interface unit. The input isolation block allows
inputs from external blocks to be driven to known states when the logic driving the input is powered down.
The RTC/API block implements a real-time counter and periodic interrupt. The wakeup and power status
block implements the logic to select power mode operation and wakeup sources. The clock and reset
control block implements miscellaneous logic related to PLL and oscillator operation, and reset gating for
power-saving modes. The low-power state machine controls the transitions into and out of the power-
saving modes. The bus interface unit allows for slave read/write register access from the device’s core.
There are also several miscellaneous integration functions included in the CRP that are discussed in detail
in later sections of this chapter.

5.1.1 Block Diagram

A simplified block diagram of the CRP illustrates the functionality and interdependence of major blocks
(see Figure 5-1).

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

5-2 Freescale Semiconductor
 Preliminary

Figure 5-1. CRP Block Diagram

RTC /

LOW

BIU

POWER
FSM

API

CLOCKS,
RESET

CONTROL

WAKEUP,
POWER
STATUS

SEA-OF-GATES
LOGIC

16MIRC

32KIRC

32KXOSC

CONTROL
CLOCK

BLOCK

VREG

XOSC

RAM BLOCKS

SYSTEM

PAD
KEEPER

POWER
SWITCHES

IP

SRC/WELL
BIAS

ISOLATION
LOGIC

ISOLATION
INPUT

CLOCK
PLL

CRP

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 5-3
 Preliminary

5.1.2 Features

The CRP has these major features:

• Real-time clock (RTC/API):

— 32-bit counter

— Four selectable counter clock sources

— Fixed divide by 32 prescaler to provide 1.0 ms resolution with 32 kHz clock source

— Fixed divide by 512 prescaler feeding the divide by 32 prescaler to provide 1.0 ms resolution
with 16 MHz clock source

— Option to bypass the divide by 512 prescaler with the 16 MHz clock source

— 12-bit RTC compare, with minimum 1 second resolution (2 ms resolution with bypassed
16 MHz clock source)

— 10-bit API compare with minimum 1 ms resolution (2 us resolution with bypassed 16 MHz
clock source)

— API compare value can be modified while RTC is running

— Optional low-power wakeup and/or interrupt for RTC match, API match, and RTC rollover

— Counters and dividers can be disabled to minimize power consumption

• Low-power mode management:

— Provides control of voltage regulator, LVI circuits, isolation enables, power switches, and pin
output state retention for both sleep and stop modes

— FSM clock gates itself off when waiting for asynchronous wakeup signal for power savings

— Eight selections available for blocks sizes for RAM data retention

• Low-power wakeup:

— Wakeup sources can be either the RTC, API, RTC rollover, or external pin

— All wakeup sources can be enabled at any given time (first to occur generates wakeup)

— Eight pin-wakeup sources can be selected from 64 pins total (eight groups of eight)

— Pin wakeup occurs on either rising edge, falling edge or both

— Two clock-source inputs for pin wakeup to allow for lower power or faster wakeup

— System level reset control to ensure clean recovery from sleep and stop modes

• Miscellaneous:

— All functional logic inputs isolated in low-power modes

— All logic with multiple clock sources internally synchronized

— All CRP logic is reset asynchronously, but exits reset synchronously

5.1.3 Modes of Operation

There are three functional modes of operation for the CRP: normal operation, sleep mode, and stop mode.
In normal operation, all CRP registers can be read or written. The input isolation, low-power FSM, and
wakeup logic is disabled. The voltage regulator, LVI, and power switch outputs are in the enabled state.
The RTC/API and associated interrupts are optionally enabled. In sleep and stop modes, the bus interface

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

5-4 Freescale Semiconductor
 Preliminary

is disabled and the input isolation is enabled. The RTC/API is enabled if enabled prior to entry into sleep
and stop. The voltage regulator, LVI, and power switch control are dependent on whether in sleep or stop
mode (see Section 5.3, “Functional Description.”)

5.2 Memory Map and Registers
This section provides a detailed description of all CRP registers.

5.2.1 Module Memory Map

The CRP memory map is shown in Table 5-1. The address of each register is given as an offset to the CRP
base address. Registers are listed in address order, identified by complete name and mnemonic, and lists
the type of accesses allowed.

5.2.2 Register Descriptions

This section lists the CRP registers in address order and describes the registers and their bit fields.

Table 5-1. CRP Memory Map

Offset from
CRP_BASE

(0xFFFE_C000)
Register Access Reset Value Section/Page

0x0000 CRP_CLKSRC — Clock Source Register R/W 0x0004_DF8F 5.2.2.1/5-5

0x0004–0x000F Reserved

0x0010 CRP_RTCSC — RTC Status and Control Register R/W 0x0000_0000 5.2.2.2/5-6

0x0014 CRP_RTCCNT — RTC Counter Register R 0x0000_0000 5.2.2.3/5-8

0x0018–0x003F Reserved

0x0040 CRP_WKPINSEL — Wakeup Pin Source Select Register R/W 0x0000_0000 5.2.2.4/5-8

0x0044 CRP_WKSE — Wakeup Source Enable Register R/W 0x0000_0000 5.2.2.5/5-9

0x0048–0x004F Reserved

0x0050 CRP_Z1VEC — Z1 Reset Vector Register R/W 0xFFFF_FFFD 5.2.2.6/5-10

0x0054 CRP_Z0VEC — Z0 Reset Vector Register R/W 0xFFFF_FFFE 5.2.2.7/5-11

0x0058 CRP_RECPTR — Recovery Pointer Register R/W 0xFFFF_FFFC 5.2.2.8/5-12

0x005C-0x005F Reserved

0x0060 CRP_PSCR — Power Status and Control Register R/W 0x0000_0000 5.2.2.9/5-13

0x0064–0x006F Reserved

0x0070 CRP_SOCSC — SoC Status and Control Register R/W 0x0000_0000 5.2.2.10/5-15

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 5-5
 Preliminary

5.2.2.1 Clock Source Register (CRP_CLKSRC)

The CRP_CLKSRC contains:

• enable bits for the 32 kHz IRC (32KIRC), the 32 kHz XOSC (32KOSC), and the main external
oscillator (XOSC)

• the trim values for the 16 MHz IRC and 32 kHz IRC

Offset: CRP_BASE + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 32KIRC
EN

XOSC
EN

0 32KOSC
ENW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 01 1 0 01

16 17 18 19 20 21 22 23 24
2

25
2

26
2

27 28 29 30 31

R
TRIM32IRC[0:7] TRIMIRC[0:7]

W

Reset 12 12 0 1 1 1 1 1 1 0 0 0 1 1 1 1
1 These bits are only reset by power-on, VDD15 LVI, VDD33 LVI, VDDSYN LVI, VDD5 Low LVI, and VDD5 LVI.
2 These bits must not be changed.
3 These bits must remain set to a value of 1. Only the six least significant bits of TRIM32IRC are used.

Figure 5-2. Clock Source Register (CRP_CLKSRC)

Table 5-2. CRP_CLKSRC Field Descriptions

Field Description

bits 0–11 Reserved.

IRC32KEN 32 kHz IRC Enable. The IRC32KEN bit enables the 32K IRC.
0 32 kHz IRC disabled
1 32 kHz IRC enabled

XOSCEN External Oscillator Enable. The XOSCEN bit enables the external oscillator.
0 XOSC disabled.
1 XOSC enabled.

Note: During sleep and stop mode with XOSCEN=1, the XOSC will still actively drive an external crystal
but the XOSC clock to the system is disabled.

bit 14 Reserved.

OSC32KEN 32 kHz OSC Enable. The OSC32KEN bit enables the 32K oscillator.

0 32K OSC disabled
1 32K OSC enabled

Note: After enabling the 32K OSC, software needs to wait the required crystal startup/stabilization time
before making use of the 32K OSC.

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

5-6 Freescale Semiconductor
 Preliminary

5.2.2.2 RTC Status and Control Register (CRP_RTCSC)

The CRP_RTCSC register contains:

• RTC counter enable

• RTC interrupt enable

• RTC interrupt flag

• RTC counter roll over interrupt flag

• RTC clock source select

• RTC compare value

• API enable

• API interrupt enable

• API interrupt flag

• API compare value

TRIM32IRC[0:7]1 Trim Value for 32 kHz IRC. The TRIM32IRC bits control the 32 kHz IRC internal reference clock frequency
by controlling the internal reference clock period. The bits’ effect are binary weighted (i.e. bit 6 adjusts
twice as much as bit 7). Increasing the binary value decreases the period and decreasing the value
increases the period.

Note: A trim value of 0xff is reserved and is not a valid trim value.

TRIMIRC[0:7]1 Trim Value for 16 MHz IRC. The TRIMIRC bits control the 16 MHz IRC internal reference clock frequency
by controlling the internal reference clock period. The bits’ effect are binary weighted (i.e. bit 6 adjusts
twice as much as bit 7). Increasing the binary value decreases the period and decreasing the value
increases the period.
Bits 0–2 control the bandgap voltage trim.
Note: Do not change bits 0–2 to any values other than the Factory Trim values or the default reset values.
Bits 3–7 control the IRC current reference.

1 See Chapter 22, “Flash Array and Control” for factory trim value locations in memory.

Offset: CRP_BASE + 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CNTEN RTCIE

RTCF ROVRF
RTCVAL

W w1c w1c

Reset1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
APIEN APIIE

APIF
CLKSEL ROVREN APIVAL

W w1c

Reset1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 These bits are only reset by power-on, VDD15 LVI, VDD33 LVI, and VDDSYN LVI, VDD5 low LVI, and VDD5

LVI.

Figure 5-3. RTC Status and Control Register (CRP_RTCSC)

Table 5-2. CRP_CLKSRC Field Descriptions (continued)

Field Description

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 5-7
 Preliminary

Table 5-3. CRP_RTCSC Field Descriptions

Field Description

CNTEN Counter Enable. The CNTEN bit enable the RTC counter. CNTEN asserted has the effect of asynchronous
resetting (synchronous reset negation) all the RTC logic. This allows for the RTC configuration and clock
source selection to be updated without causing synchronization issues.
0 Counter disabled
1 Counter enabled

RTCIE RTC Interrupt Enable. The RTCIE bit enables interrupts requests to the system if RTCF is asserted.
0 RTC interrupts disabled
1 RTC interrupts enabled

RTCF RTC Interrupt Flag. The RTCF bit indicates that the RTC counter has reached the counter value matching
RTCVAL. RTCF is cleared by writing a 1 to RTCF. Writing a 0 to RTCF has no effect. Note that the RTCF bit
must be cleared before entering SLEEP or STOP mode, if the RTC is to be used as the wakeup source.
0 No RTC interrupt
1 RTC interrupt

ROVRF Counter Roll Over Interrupt Flag. The ROVRF bit indicates that the RTC has rolled over from 0xFFFF_FFFF
to 0x0000_0000. ROVRF is cleared by writing a 1 to ROVRF. Writing a 0 to ROVRF has no effect. Note that
the ROVRF bit must be cleared before entering SLEEP or STOP mode, if the RTC rollover is to be used as
the wakeup source.
0) RTC has not rolled over
1) RTC has rolled over

RTCVAL RTC Compare Value. The RTCVAL bits are compared to bits 10–21 of the RTC counter and if match sets
RTCF. RTCVAL may only be updated when CNTEN is 0.

APIEN Autonomous Periodic Interrupt Enable. The APIEN bit enables the autonomous periodic interrupt function.
0 API disabled
1 API enabled

APIIE API Interrupt Enable. The APIIE bit enables interrupts requests to the system if APIF is asserted.
0 API interrupts disabled
1 API interrupts enabled

APIF API Interrupt Flag. The APIF bit indicates that the RTC counter has reached the counter value matching API
offset value. APIF is cleared by writing a 1 to APIF. Writing a 0 to APIF has no effect. Note that the APIF bit
must be cleared before entering SLEEP or STOP mode, if the API is to be used as the wakeup source.
0 No API interrupt
1 API interrupt.

CLKSEL Clock Select. The CLKSEL bits select the clock source for the RTC. CLKSEL may be updated when CNTEN
is 0 only.
Note: The 32 kHz IRC or 32 kHz OSC are not automatically enabled if selected; therefore, they must be

enabled before either one is selected for use.

00 32 kHz IRC
01 32 kHz OSC
10 16 MHz IRC with 512 prescaler divide
11 16 MHz IRC without 512 prescaler divide

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

5-8 Freescale Semiconductor
 Preliminary

5.2.2.3 RTC Counter Register (CRP_RTCCNT)

The CRP_RTCCNT register contains:

• RTC counter value

5.2.2.4 Wakeup Pin Source Select Register (CRP_WKPINSEL)

The CRP_WKPINSEL register has eight fields, each of which controls which external pin will be used as
one of the eight external wakeup sources.

ROVREN Counter Roll Over Interrupt Enable. The ROVREN bit enables wakeup and/or interrupt requests when the
RTC has rolled over from 0xFFFF_FFFF to 0x0000_0000. The RTCIE bit must also be set in order to
generate an interrupt request on a counter rollover.
0) RTC rollover wakeup/interrupts disabled
1) RTC rollover wakeup/interrupt enabled

APIVAL API Compare Value. The APIVAL bits are compared to an offset value based on bits 22–31 of the RTC
counter and if match asserts a interrupt/wakeup request. APIVAL may only be updated when APIEN is 0 or
API function is undefined.
Note: The compare value will be the number in the API + 1. Numbers less than 3 should not be used as

synchronization requires up to 2 clocks.

Offset: CRP_BASE + 0x0014 Access: User read only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RTCCNT

W

Reset1 0
1 These bits are only reset by power-on, VDD15 LVI, VDD33 LVI, and VDDSYN LVI, VDD5 low LVI, and VDDLVI.

Figure 5-4. RTC Counter Register (CRP_RTCCNT)

Table 5-4. CRP_RTCCNT Field Descriptions

Field Description

RTCCNT RTC Counter Value. The RTCCNT bits reflect the current value of the RTC counter.

Offset: CRP_BASE + 0x0040 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 WKPSEL
7

0 WKPSEL
6

0 WKPSEL
5

0 WKPSEL
4

0 WKPSEL
3

0 WKPSEL
2

0 WKPSEL
1

0 WKPSEL
0W

Reset 0

Figure 5-5. Wakeup Pin Source Select Register (CRP_WKPINSEL)

Table 5-3. CRP_RTCSC Field Descriptions (continued)

Field Description

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 5-9
 Preliminary

NOTE
Program any pins that are to be used as wakeup sources as inputs in the
associated SIU_PCRx register prior to entering a low-power mode.

5.2.2.5 Wakeup Source Enable Register (CRP_WKSE)

The CRP_WKSE register contains:

• Wakeup source enables

• Wakeup clock select

Table 5-5. CRP_WKPINSEL Field Descriptions

Field Description

bits 0, 4, 8, 12,
16, 20, 24, 28

Reserved.

WKPSELn[0:2] Wakeup Pin Source Select. The WKPSELn[0:2] bits select the external pin to be used as one of the eight
external pin wakeup sources (see Table 5-6).

Table 5-6. Wakeup Source Selects

111 110 101 100 011 010 001 000

WKPSEL0 PG11 PD15 PD10 PD0 PC2 PB13 PA4 PA0

WKPSEL1 PJ12 PG15 PD14 PD13 PC4 PB15 PA5 PA1

WKPSEL2 PF10 PD6 PD1 PC0 PB8 PB5 PA6 PA2

WKPSEL3 PG6 PD8 PD7 PC5 PC1 PB14 PB10 PA3

WKPSEL4 PH5 PH4 PG12 PG5 PD12 PD5 PB9 PB6

WKPSEL5 PH8 PH7 PG10 PF12 PE2 PD2 PB7 PA7

WKPSEL6 PH9 PG13 PG7 PF14 PF13 PD9 PD3 PC6

WKPSEL7 PH6 PG14 PG9 PF15 PF11 PD11 PD4 PB12

Offset: CRP_BASE + 0x0044 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
WKPDET7 WKPDET6 WKPDET5 WKPDET4 WKPDET3 WKPDET2 WKPDET1 WKPDET0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 RTCOVR
EN

RTCWK
EN

APIWK
EN

0 0 0 0 0 0 0 WKCLK
SELW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-6. Wakeup Source Enable Register (CRP_WKSE)

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

5-10 Freescale Semiconductor
 Preliminary

5.2.2.6 Z1 Reset Vector Register (CRP_Z1VEC)

The CRP_Z1VEC register contains:

• Recovery vector for the Z1 core

• Reset for the Z1 core

• VLE select for the Z1 core

Table 5-7. CRP_WKSE Field Descriptions

Field Description

WKPDETn Wakeup Pin Edge Detection Select. The WKPDETn bits enable the external pin wakeup sources and define
which edge transition is used for the wakeup. (The corresponding inputs must be enabled through the SIU
registers, to allow them to be used as wakeup sources.) These bits map directly to WKPSELn bits in the
CRP_WKPINSEL register.
00 External pin wakeup source disabled
01 Positive edge of selected external pin triggers the wakeup request
10 Negative edge of selected external pin triggers the wakeup request
11 Positive or negative edge of selected external pin triggers the wakeup request

bits 16–20 Reserved.

RTCOVREN RTC Rollover Wakeup Enable. The RTCOVREN bit enables a rollover of the RTC counter to be a wakeup
source for exit from low-power modes.
0 RTC rollover will not generate a wakeup request from low-power mode
1 RTC rollover will generate a wakeup request from low-power modes.

RTCWKEN RTC Wakeup Enable. The RTCWKEN bit enables the RTC to be a wakeup source for exit from low-power
modes.
0 RTC not enabled as a wakeup source
1 RTC enabled as a wakeup source

APIWKEN API Wakeup Enable. The APIWKEN bit enables the API to be a wakeup source for exit from low-power
modes.
0 The API will not generate a wakeup request from low-power mode
1 The API will generate a wakeup request from low-power modes.

bits 24–30 Reserved.

WKCLKSEL Wakeup Clock Select. The WKCLKSEL bit selects the clock source used for the wakeup logic synchronizer
and edge detect. WKCLKSEL should be switched only when all wakeup sources are disabled.
0 Clock source for wakeup logic is the 32 kHz IRC.
1 Clock source for wakeup logic is the 16 MHz IRC.

Note: The 32 kHz IRC is not automatically enabled if selected; therefore, it must be enabled before it is
selected for use.

Note: When using the 32 kHz IRC to wake up from SLEEP, the application software must wait at least one
32 kHz clock cycle after entering SLEEP before waking up.

Note: The wakeup flag cannot be cleared until at least three 32 kHz cycles after it has been set.

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 5-11
 Preliminary

NOTE
The user may attempt to set both the CRP_Z1VEC[Z1RST] and
CRP_Z0VEC[Z0RST] bits to 1, but if one of these bits is already set to a
value of 1, the write to the other bit will be blocked.

If both cores are running, either core can stop the other core by writing to
the other core’s reset bit.

5.2.2.7 Z0 Reset Vector Register (CRP_Z0VEC)

The CRP_Z0VEC register contains:

• Recovery vector for the Z0 core

• Reset for the Z0 core

Offset: CRP_BASE + 0x0050 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

Z1VEC

Z1
R
S
T

V
L
E

W

Reset 1 0 1

Figure 5-7. Z1 Reset Vector Register (CRP_Z1VEC)

Table 5-8. CRP_Z1VEC Field Descriptions

Field Description

Z1VEC Z1 Recovery Vector. The Z1VEC value determines the initial program counter for the Z1 upon exiting reset.
On POR, the value contained in the register defaults to 0xFFFF_FFFD, so that the Z1 fetches VLE code from
the BAM starting at address 0xFFFF_FFFC. The user may change this value to point to a different memory
location for system reinitialization upon low-power sleep mode exit.

30
Z1RST

Controls the assertion of RESET to the Z1 core. Writes to this bit cause the Z1 to immediately enter/exit reset.
Reads of this bit indicate if the core is being held in reset.
0 Z1 not in reset
1 Z1 in reset

31
VLE

VLE Select. The VLE bit selects whether the Z1 recovers into VLE or Book E mode.
0 Book E
1 VLE

Offset: CRP_BASE + 0x0054 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

Z0VEC

Z0
R
S
T

0

W

Reset 1 0

Figure 5-8. Z0 Reset Vector Register (CRP_Z0VEC)

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

5-12 Freescale Semiconductor
 Preliminary

NOTE
The user may attempt to set the CRP_Z1VEC[Z1RST] and
CRP_Z0VEC[Z0RST] bits to 1, but if one of these bits is already set to a
value of 1, the write to the other bit will be blocked.

If both cores are running, either core can stop the other core by writing to
the other core’s reset bit.

5.2.2.8 Reset Recovery Pointer Register (CRP_RECPTR)

The CRP_RECPTR register contains:

• Recovery pointer

• Fast recovery enable

Table 5-9. CRP_Z0VEC Field Descriptions

Field Description

Z0VEC Z0 Recovery Vector. The Z0VEC value determines the initial program counter for the Z0 upon exiting reset.
On POR, the value contained in the register defaults to 0xFFFF_FFFE, and the Z0 is held in reset. Change
this value to point to a different memory location for Z0 specific initialization upon negation of the Z0RST bit,
or to a location for the Z0 to start running code when exiting Low Power modes (if it was not in RESET before
entering the low power mode).

Z0RST Controls the assertion of RESET to the Z0 core. Writes to this bit cause the Z0 to immediately enter/exit reset.
Reads of this bit indicate if the core is being held in reset.
0 Z0 not in reset.
1 Z0 in reset.

bit 31 Reserved.

Offset: CRP_BASE + 0x0058 Access: User read only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
RECPTR FASTREC

0

W

Reset 1 0 0

Figure 5-9. Reset Recovery Pointer (CRP_RECPTR)

Table 5-10. CRP_RECPTR Field Descriptions

Field Description

RECPTR Recovery Pointer. The RECPTR value is a generic 30 bit register available to the user application which
retains a value during all low-power modes. This register may be used by the user software to indicate where
in RAM a recovery routine exists. On reset, this register defaults to 0xFFFF_FFFC so that it points to the same
location as the Z1VEC and Z0VEC registers.

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 5-13
 Preliminary

5.2.2.9 Power Status and Control Register (CRP_PSCR)

The power status and control register (CRP_PSCR) contains:

• Wakeup mode and source flags

• Pin wakeup selects

• Sleep and stop mode enables

• Pad keeper release

• Sleep RAM retention select

FASTREC Fast Reset Recovery. Allows the reset sequence generated at the exit of a sleep mode to be shortened to 64
clocks. This bit may be used when the Z1VEC or Z0VEC register of the core(s) executing code after a sleep
mode points to a memory other than the flash. This allows code to be executed from those other memories
while the flash completes its internal initialization.
0 Reset occurs for 2400 or 9600 clocks, depending on PLL configuration
1 Reset occurs for 64 clocks

bit 31 Reserved.

Offset:CRP_BASE + 0x0060 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

S
LE

E
P

F

S
TO

P
F

0 0 0

W
K

R
LL

O
V

R
F

W
K

A
P

IF

W
K

R
T

C
F PWKSRCF

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

SLEEP STOP

0 0

S
LP

12
E

N

RAMSEL PWKSRIE[0:7]W
PKREL

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-10. Power Status and Control Register (CRP_PSCR)

Table 5-10. CRP_RECPTR Field Descriptions (continued)

Field Description

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

5-14 Freescale Semiconductor
 Preliminary

Table 5-11. CRP_PSCR Field Descriptions

Field Description

SLEEPF SLEEP Flag. The SLEEPF bit indicates whether recovery from the last low-power modes was sleep. A write
of 1 clears this status flag and a write of 0 has no effect.
0 Last low-power mode was not sleep
1 Last low-power mode was sleep

STOPF STOP Flag. The STOPF bit indicates whether recovery from the last low-power modes was stop. A write of
1 clears this status flag and a write of 0 has no effect.
0 Last low-power mode was not stop
1 Last low-power mode was stop

bits 2–4 Reserved

WKRLLOVRF Counter Rollover Wakeup Flag. The WKRLLOVRF bit indicates that a RTC/API counter rollover was the
wakeup source. A write of 1 clears the interrupt flag and a write of 0 has no effect.
0 The RTC/API counter did not cause the last wakeup
1 The RTC/API counter caused the last wakeup

WKAPIF API Wakeup Flag. The WKAPIF bit indicates the API was the wakeup source. A write of 1 clears the interrupt
flag and a write of 0 has no effect.

0 The API did not cause the last wakeup

1 The API caused the last wakeup

WKRTCF RTC Wakeup Flag. The WKRTCF bit indicates that the RTC was the wakeup source. A write of 1 clears the
interrupt flag and a write of 0 has no effect.
0 The RTC did not cause the last wakeup
1 The RTC caused the last wakeup

PWKSRCF Pin Wakeup Source Flag. The PWKSRCF bits indicate which external pin wakeup source event caused the
wakeup. More than one external wakeup source can be asserted at a time if the wakeup events happened
simultaneously. The eight wakeup sources are ORed together at chiptop to present one interrupt request to
the cores. A write of 1 clears the interrupt flag and a write of 0 has no effect.
0 PWKSRCF[x] did not cause the last wakeup
1 PWKSRCF[x] caused the last wakeup

SLEEP SLEEP Request. The SLEEP bit indicates a request to enter the sleep low-power mode. This bit is cleared
automatically upon exit from SLEEP.
0 No request to enter the sleep low-power mode
1 Request to enter the sleep low-power mode

Note: If SLEEP and STOP are set at the same time, the SLEEP bit has priority.

STOP STOP Request. The STOP bit indicates a request to enter the stop low-power mode. This bit is cleared
automatically upon exit from STOP.
0 No request to enter the stop low-power mode
1 Request to enter the stop low-power mode

Note: If SLEEP and STOP are set at the same time, the SLEEP bit has priority.

bit 18 Reserved.

PKREL Pad Keeper Release. The PKREL bit releases the held I/O states by the pad keepers after recovery from a
low-power sleep mode. The PKREL bit is write only and always reads 0.
0 No effect
1 The I/O states held by the pad keepers are released back to normal functions

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 5-15
 Preliminary

5.2.2.10 SoC Status and Control Register (CRP_SOCSC)

The CRP_SOCSC register contains:

• LVI interrupt flags

• LVI interrupt enables

• LVI reset enables

• LVI lock bit

SLP12EN SLP12EN Sleep 1.2V Enable. The SLP12EN bit enables the use of the 1.2V internal regulator during Sleep
mode instead of the default 1.5V internal regulator for the VDD supply.
0 Sleep 1.2V regulator disabled during Sleep mode.
1 Sleep 1.2V regulator enabled during Sleep mode.

RAMSEL RAM Selects. The RAMSEL bits select which ram configuration retains power during the sleep mode.
000 All RAMs powered down
001 8K RAM retains power (0x4000_0000 - 0x4000_1FFF)
010 16K RAM retains power (0x4000_0000 - 0x4000_3FFF)
011 32K RAM retains power (0x4000_0000 - 0x4000_7FFF)
110 64K RAM retains power (0x4000_0000 - 0x4000_FFFF)
111 80K RAM retains power (0x4000_0000 - 0x4001_3FFF)
Other reserved (defaults to 80K on MPC5510).

PWKSRIE[0:7] Pin Wakeup Source Interrupt Enable. The PWKSRIE bits enable interrupt requests to the system if the
corresponding PWKSRCF bit is asserted. (Note: PWKSRIEn = WKPSELn, n = 0 to 7.)
0 Wakeup source interrupt disabled
1 Wakeup source interrupt enabled

Offset: CRP_BASE + 0x0070 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
LVI5IE LVI5HIE

LVI5F LVI5HF LVI5
LOCK

LVI5RE
0 0 0 0 0 0 0 0 0 BYP

DISW w1c w1c

Reset 0 0 0 0 01 11 0 0 0 0 0 0 0 0 0 02

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 These bits are only reset by power on, VDD15 LVI, VDD33 LVI, VDDSYN LVI, and VDD5 Low LVI.
2 These bits are only reset by power on, VDD15 LVI, VDD33 LVI, VDDSYN LVI, VDD5 Low LVI, and VDD5 LVI.

Figure 5-11. LVI Status and Control Register (CRP_SOCSC)

Table 5-11. CRP_PSCR Field Descriptions (continued)

Field Description

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

5-16 Freescale Semiconductor
 Preliminary

5.3 Functional Description

5.3.1 Low-Power Modes

The CRP support two low power modes of operation, SLEEP and STOP. The primary difference between
these modes is the standard cell logic is powered down in SLEEP mode, but remains powered and static
in STOP mode. In order to achieve the functional requirements of these low power modes, the CRP
provides the following functionality: control of the on-chip voltage regulator, LVI circuits, power gates,
and well/source bias circuitry; control of external pin output state retention circuitry; wakeup monitoring
on external pins or internal RTC; external reset pin monitoring to allow user to abort the low power mode;
system recovery on wakeup; and support for JTAG and Nexus debug capability. The following sections
discuss in detail the entry sequence, the operation, and the exit sequence for the low power modes.

Table 5-12. CRP_SOCSC Field Descriptions

Field Description

LVI5IE LVI5 Interrupt Enable. TheLVI5IE bit enables interrupts requests to the system if LVI5F is asserted.
0 LVI5 interrupts disabled
1 LVI5 interrupts enabled

LVI5HIE LVI5 High Interrupt Enable. TheLVI5HIE bit enables interrupts requests to the system if LVI5HF is asserted.
0 LVI5H interrupts disabled
1 LVI5H interrupts enabled

LVI5F LVI 5V Interrupt Flag. The LVI5F bit indicates that the LVI5 LVI circuit has detected that the 5 V supply is below
the defined nominal limit. LVI5F is cleared by writing a 1 to LVI5F. Writing a 0 to LVI5F has no effect.
0 No LVI5 interrupt
1 LVI5 interrupt

LVI5HF LVI 5V High Interrupt Flag. The LVI5HF bit indicates that the LVI5H LVI circuit has detected that the 5V supply
is below the defined high limit. LVI5HF is cleared by writing a 1 to LVI5HF. Writing a 0 to LVI5HF has no effect.
0 No LVI5H interrupt
1 LVI5H interrupt

LVI5LOCK LVI5 Lock. The LVI5LOCK bit disables writes to the LVI5RE register bit. After it is set, this bit will remain set
until the next POR.
0 LVI5RE writeable
1 LVI5RE not writeable

LVI5RE LVI5 Reset Enable. The LVI5RE bit enables the reset function of the LVI5.
0 LVI5 does not generate a reset when LVI5F is set
1 LVI5 generates a reset when the LVI5F is set

bits 6–14 Reserved.

BYPDIS REFBYPC Disable. The BYPDIS bit disables the REFBPYC pin which allows for a faster eQADC recovery
time after exit from a low power stop or sleep mode.
0 REFBYPC enabled
1 REFBYPC disabled

bits 16–31 Reserved.

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 5-17
 Preliminary

5.3.1.1 External Pin Configuration

The CRP enables external pin state retention in both SLEEP and STOP modes. The user must have the
external I/O in the desired configuration prior to entry. The CRP only provides the controls to latch the
current pin state, select the latched data instead of the normal output data, and enable isolation logic in the
external pin retention state circuitry. The specific external pins and pad configurations controlled by the
CRP signals is determined at the SoC level.

5.3.1.2 External SoC Debug Tool Configuration

For STOP mode, the SoC debug configuration must be complete prior to entering the mode. To wakeup
from STOP mode with the pre-STOP debug capability enabled, the LP_DBG bit in the NPC PCR register
must be set prior to halting the SoC cores and entering the mode.

For SLEEP mode, the SoC debug configuration is lost and must be restored after wakeup. However, the
configuration of the external debug pins must be set prior to entering the mode in order to be used after
wakeup. This includes setting the Nexus pin functionality in the NPC PCR register, the external pin
multiplexing selection and electrical characteristics, etc.

5.3.2 Low-Power Mode Entry

The sequence to enter the low-power stop or sleep modes is for the user to disable the DMA and FlexRay
masters. Then halt all modules via the SIU_HLT register. If desired, the RTI should be shut down, because
it is not affected by the SIU_HLT bits. The system clock source should be set to the 16 MHz IRC prior to
disabling the PLL or powering down the XOSC. The PLL should then be disabled since it does not clock
any logic in sleep or stop modes.

The main external oscillator (XOSC) can be optionally powered down in sleep or stop modes by setting
the XOSCEN bit in the CRP_CLKSRC register. The XOSC will be automatically disabled when entering
sleep or stop mode if it is left powered up (XOSCEN=1). If the XOSC is powered down for either
low-power mode, the crystal oscillator will have to start up again on the exit from the low-power mode. If
the XOSC powered down option is chosen, the user must be sure to first disable any logic that is being
clocked directly by the XOSC to prevent glitches.

All program and erase operations on the flash array need to be completed before entering sleep or stop
modes. In order to reduce power consumption in stop mode, the flash array should be placed in stop mode
via the STOP bit in the flash Module Configuration Register. Also, for minimum power consumption, the
external VPP pin should be grounded in sleep mode, and at 3.3V in stop mode

Prior to entry into either low-power stop or sleep modes, the EQADC halt bit must be set or the EQADC
must be disabled. Upon exit from the low-power mode, the required recovery time must elapse before the
EQADC can be enabled or the EQADC halt bit is cleared. The recovery time allows the EQADC circuits
to stabilize, and must include a time for the REFBYPC pin to charge if the REFBPYC is populated with a
capacitor. See the Data Sheet for recovery times.

Sleep or stop mode selection is done by setting the appropriate bits in the CRP_PSCR register. With one
or both bits set, to enter sleep or stop mode, each active core should individually execute the WAIT
instruction. If only one core is active, and one is held in reset by the user, then executing the WAIT

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

5-18 Freescale Semiconductor
 Preliminary

instruction on the active core will initiate entry into the low-power mode. At this point, the CRP takes over
operation of the SoC until a wakeup event occurs.

5.3.2.1 CRP Clock Selection

In both sleep or stop modes, the CRP control logic is clocked by the 16 MHz IRC. The RTC/API can be
clocked by either the 32 kHz IRC, the 32 kHz XOSC, or the 16 MHz IRC. The pin wakeup logic can be
clocked by either the 32 kHz IRC, or the 16 MHz IRC. These clock source selections must be made prior
to executing both WAIT instructions to the cores.

5.3.2.2 Sleep Mode RAM Retention

The RAMSEL bits in the CRP_PSCR register determine the amount of RAM that remains powered in
sleep mode. This selection must be made prior to executing the WAIT instructions to the cores with the
CRP_PSCR[SLEEP] bit set.

5.3.3 Low-Power Operation

After the WAIT instructions have been executed with either the sleep or stop bit set, and the cores have
cleanly halted, the clock control block signals the CRP to enter the selected low-power mode. Note that if
both the sleep and stop bits are set, sleep will be the mode entered.

At this point, the CRP has complete control of the SoC. Figure 5-12 gives the sequence to transition from
RUN mode to SLEEP/STOP. Figure 5-13 and Figure 5-14 give the transition diagram for going from RUN
mode to sleep, and then back to RUN mode. Figure 5-15 and Figure 5-16 give the same diagram for RUN
mode to stop, and back to RUN mode. The CRP does not support going directly to/from Sleep mode
from/to stop mode.

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 5-19
 Preliminary

Figure 5-12. SLEEP/STOP Mode Entry Diagram

(Run Mode)

Mode Transition: RUN SLEEP/STOP

INIT

T

F

F

F

F

F

T

T

T

T

Sleep
or Stop

debug

enabled?

Set Sleep/Stop
Handshake bit
in NPC PCR

Handshake
bit cleared?

- Acknowledge clock
stop ready to CCB

Clock stop
asserted
by CCB?

Sleep mode
requested?

wait
5 clks

3 clks

Request

Assert clock stop
to clock control block

- Assert TDO OBE

Go to Figure 5-13 Go to Figure 5-15

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

5-20 Freescale Semiconductor
 Preliminary

Figure 5-13. SLEEP Mode Transition Diagram (Part 1)

- Enable isolation
for mem/analog blks

- Isolate CRP block
- Latch pad keeper

- Enable isolation
for pad-keeper

- Disable isolation

Mode Transition:

1 2 3

4 5 6 7

8 9

10 11 12

13 14 15

16

wakeup=0

wait
5 usec

wakeup=1

wait
10 clks

pgate OK

(disable 16MIRC & clkgate,
if not wakeup or RTC clock)

wait all

3 clks after
all pgate OK

- Switch pad keeper
 mux to hold flop
 path

- Assert system POR

1-3 clks from wakeup
edge if 16MIRC
enabled (depends
on where pin
wakeup edge
occurred), 3 clks +
16MIRC start up
time if disabled

SLEEP RUN

wait
5 usec

- Negate PMC run
- Disable LVI
- Assert FSM sleep
 flag

- Assert PMC run - Assert prerun
(SOG vss source
pre-driver PwrGate
switch close)

- Assert run
(SOG vss source
main PwrGate
switch close)

- Negate sleep_b

(SOG vss source bias
fetode circuit switch
close)

- Enable LVIs

2 clks

wait
10 clks

- Shut-off PwrGates
to mem/analog blocks

- Assert sleep_b
(SOG vss source bias
fetode circuit switch
open)

- Negate prerun
(SOG vss source
pre-driver PwrGate
switch open)

-Negate run
(SOG vss source
main PwrGate
switch open)

- Turn on hardblocks
and memories
(PwrGates turn on)

- Enable Wakeup

ctl & data, and NPC
debug signals

- Negate TDO OBE

From Figure 5-12

Go to Figure 5-14

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 5-21
 Preliminary

Figure 5-14. SLEEP Mode Transition Diagram (Part 2)

- Switch keeper mux

17

wait 10 clks, then
negate FSM sleep flag

- SoC exit SLEEP

 to SOG data path
- Clear keeper release
 register bit

18

- Negate keeper
- Negate system POR

- Start clocks
 firewall

19

Debug
Enabled?

- Block NPC debug
signals

- dbg clk = 16MIRC
- Assert core debug
enable

- Assert pad keeper
data select pre-release

T F

wait core
debug ack

17a

17b

17c
- Negate core debug

enable
- Set dbg clk = TCK

- Assert TDO Pin

Mode Transition: SLEEP RUN

Sleep or
Stop Request?

Pad Keeper

Release Set?

TT

FF

- Un-latch NPC
 debug signals

- Negate TDO Pin

- Clear NPC PCR
 Sleep Sync Bit

wait NPC PCR
sleep sync bit set

Allow NPC input

Debug
Enabled?

T

F

signals to propagate

- Capture sleep flag

5 clks

State 16
Figure 5-13

Go to INIT
(Figure 5-12)

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

5-22 Freescale Semiconductor
 Preliminary

Figure 5-15. STOP Mode Transition Diagram (Part 1)

- Enable isolation for
memories, analog,

- Latch pad-keeper
inputs

- Switch pad keeper
- Negate TDO OBE
- Negate run

(SOG vss source main

- Firewall pad-keeper
- Negate prerun

- Assert well bias - Assert enable to the

well bias switch

- Negate PMC run
- Disable LVIs

- Assert PMC run

- Negate SOG and - Disable pad-keeper

(SOG vss source
pre-driver PwrGate

firewall
- Enable LVIs

8 9 10

11 12

4 5 6

7

1 2 3

Mode Transition:

PwrGate switch open)

switch open)

wakeup=1

wait
5 usec

- Assert prerun
(SOG vss source
pre-driver PwrGate
switch close)

- Assert run
(SOG vss source
main PwrGate
switch close)

STOP RUN

wakeup=0

enable to the SOG
(well voltage = 2.0V)

- Assert FSM stop
 flag

(disable 16MIRC & clkgate,
if not wakeup or RTC clock)

1-3 clks from wakeup
edge if 16MIRC
enabled (depends
on where pin
wakeup edge
occurred), 3 clks +
16MIRC start up
time if disabled

wait
10 clocks

 switch well bias

(well voltage = 1.5V)

 enables

wait
5 usec

wait
10 clocks

- Enable Wakeup

and CRPFrom Figure 5-12

Go to Figure 5-16

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 5-23
 Preliminary

Figure 5-16. Stop Mode Transition Diagram (Part 2)

5.3.3.1 Pad Keeper Control

The pad keeper blocks are controlled by the CRP, but are not contained within it. The pad keepers maintain
output pin states through the sleep and stop modes for pins configured as outputs in the SIU PCR registers.
Pins that are to be used for wakeup from sleep/stop modes, must have the IBE enabled in the SIU PCR
prior to sleep/stop entry. If a pullup/down is enabled on an input pin prior to entry into sleep or stop mode,
it will remain enabled during the low-power mode.

13

Debug

Enabled?
T F

14

15

Mode Transition: STOP RUN

- Disable isolation
and pad keepers

Assert TDO Pin

- Start Clocks

wait NPC PCR
sleep sync bit set

- Negate TDO Pin

- Clear NPC PCR
 Sleep Sync Bit

16

wait 10 clks, then
negate FSM stop flag

- Capture stop flag

State 12
Figure 5-15

Go to INIT
(Figure 5-12)

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

5-24 Freescale Semiconductor
 Preliminary

The pad keepers are released automatically on the exit from stop mode. After exiting sleep mode, the user
must restore the external pin configuration in the SIU and enable the IP blocks that drive external pins
before releasing the pad keepers. The pad keepers are released by writing a 1 to the CRP_PSCR[PKREL]
bit.

If the device enters sleep or stop mode, and the pad keepers are not released from a prior sleep mode, the
pad keepers will automatically be released. In this case, the current pin configuration in the SIU PCR and
the values driven by the IP blocks will be latched in the pad keepers and driven through the newly entered
low power mode.

5.3.3.2 Sleep/Stop Mode Reset Operation

The reset controller in the SIU controls the normal reset sequences from POR, LVI, and other resets when
the device is in RUN mode. The CRP controls reset operation for the device in sleep and stop modes.

The external RESET pin is enabled in all modes. Assertion of the RESET pin or a POR during sleep or
stop modes causes the device to restart in RUN mode.

Upon power up from sleep mode, POR and reset is asserted to all logic that was powered down. The SIU
will process the sleep recovery POR in the same manner as a normal POR. The RSR[PORS] bit in the SIU
will be set after the reset controller sequence completes. The CRP_PSCR[SLEEPF] bit will be set in this
case to indicate that the POR came from a sleep recovery.

Note that when powering up from sleep mode, the BOOTCFG pin is not read and the BAM boot sequence
is bypassed since the Z1 and Z0 cores will branch to the appropriate reset vector set in the CRP_Z0VEC
and CRP_Z1VEC registers.

5.3.4 Low-Power Wakeup

A POR or assertion of the external RESET pin causes exit from sleep and stop modes as a reset condition,
and not a wakeup. A POR or external reset is captured in the SIU Reset Status Register. All CRP registers
are reset for a POR, but some like the CRP_RTCSC are maintained for an external reset. Note that there
are no internal reset sources active in sleep and stop modes. The internal power supply monitors are disable
during sleep and stop modes.

There are four methods for waking up the device from sleep or stop modes:

• RTC counter match

• RTC counter rollover

• API counter match

• External pin transition

All wakeup methods are independently enabled and function identically in either sleep or stop modes. The
RTC, RTC rollover, and API wakeup logic is discussed in Section 5.4, “Real-Time Counter (RTC).”

Wakeup from sleep and stop modes can be enabled from transitions on up to eight external pins. Each of
the eight external pin wakeup sources can be selected from a group of eight external pins, which gives a
total of 64 possible external pin wakeup sources. External pin wakeup source selection is done in the
CRP_WKPINSEL register, and Table 5-8 gives the I/O pin mapping to the eight external pin wakeup

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 5-25
 Preliminary

sources. To be used as a low-power mode wakeup, pins must be configured with the output buffer disabled
in the SIU_PCR registers prior to entry into the low-power mode.

Each external pin wakeup source is enabled by the corresponding CRP_WKSE[WKPDETn] field.
External pin wakeup generation can be selected for either a rising edge event on the pin, falling edge, or
both. Using the CRP_WKSE[WKCLKSEL] bit, the edge capture logic can be selectively clocked from
either the 16 MHz IRC clock for faster wakeup, or the 32 kHz IRC clock for lower average power. For
wakeup, the pad assignment in the SIU_PCR does not matter. This enables a pin, such as a CAN receive
pin, to wake up the device on a transition. For example, WKPSEL7 could select PF15, which could be
assigned to CNRX_D.

The corresponding CRP_PSCR[PWKSRCF] flag bit will be set when a selected and enabled event occurs
on an external pin wakeup source. An interrupt request can be generated for an external pin wakeup by
setting the corresponding CRP_PSCR[PWKSRIE] bit. This interrupt request will be pending once the
device recovers from the previous low-power mode.

On exiting stop mode, the PC continues with the location of interrupt service routine of the interrupt that
exits the WAIT instruction. On exiting sleep mode, the PC value is loaded with the value contained in the
Z1VEC/Z0VEC registers. The RECPTR register is a general purpose register which retains a value during
stop and sleep modes and thus may be used by software to hold a generic value used by recovery routines.

A block diagram for the external pin wakeup logic is given in Figure 5-17.

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

5-26 Freescale Semiconductor
 Preliminary

Figure 5-17. External Pin Wakeup Logic

5.3.4.1 Low Power Mode Debug Support

The CRP supports debug after exit from both SLEEP and STOP modes for both Nexus and JTAG debug
tools. This function is enabled by setting the NPC PCR LP_DBG bit prior to entry into SLEEP/STOP
modes.

On entry into STOP mode, if the NPC PCR LP_DBG bit is set, the CRP sets the NPC PCR STOP_SYNC
bit to inform the debug tool that STOP mode is being entered. The CRP waits for this bit to be cleared
before proceeding into STOP mode. During STOP mode, the entire SOC remains powered. The pad
keepers are released immediately on wakeup from STOP mode. Any debug functionality that was enabled
prior to STOP mode will be enabled after waking up from STOP mode. On exit from STOP mode, after
the system clock is started, the CRP asserts the TDO pin in order to inform the debug tool of STOP mode
exit. The TDO pin remains asserted until the debug tool sets the STOP_SYNC bit in the NPC PCR register.
In order for the debug tool not to miss instruction execution, the CRP does not assert the wakeup interrupt
to the Z0 and Z1 cores until after the debug tool has acknowledged the TDO assertion.

0

1

32 kHz IRC

16 MHz IRC

External Pin Group n

3
CRP_WKPINSEL

CRP_WKSE

Edge
detect
logic

2

CRP_WKSE

CRP_PSCR

8 to 1
MUX

To Wakeup Logic

CRP_PSCR
[PWKSRCFn]

NOTE: This logic is repeated for each of the eight pin wakeup groups

[WKPSELn]

[WKCLKSEL]

[WKPDETn]

[PWKSRIEn]

To
interrupt
controller

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 5-27
 Preliminary

On entry into SLEEP mode, if the NPC PCR LP_DBG bit is set, the CRP sets the NPC PCR
SLEEP_SYNC bit to inform the debug tool that SLEEP mode is being entered. The CRP waits for this bit
to be cleared before proceeding into SLEEP mode. During SLEEP mode, most of the SOC is powered
down, and the contents of the debug registers are lost. The CRP supports restoration of the debug registers
on wakeup from SLEEP mode. The CRP latches the NPC PCR LP_DBG bit upon entry into SLEEP mode.
On wakeup from SLEEP mode, if the latched bit is set, the CRP will place both the Z0 and Z1 cores into
debug mode. The CRP selects the 16 MHz IRC to clock the core debug logic, so the development tool does
not need to drive a clock on the TCK pin at this point. Once both cores have acknowledged that they have
entered debug mode, the CRP allows the TCK pin to drive the debug logic, enables the JTAG pins, release
the pad keepers for the Nexus pins, and drives the assertion of the TDO pin. The assertion of the TDO pin
indicates to the debug tool that it can now restore the debug register contents via the JTAG interface.
Although their pad keepers are released, the Nexus pins cannot be used until the NPC configuration is
restored. The TDO pin remains asserted until the debug tool sets the SLEEP_SYNC bit in the NPC PCR
register. At that point, TDO is negated, control of the pin given back to the JTAG controller, and the
wakeup interrupt is asserted to the Z0 and Z1 cores. A block diagram of the SOC blocks and the
connections between them to support debug on SLEEP wakeup is given in Figure 5-18.

Note that the CRP will only enable the debug pins that were enabled prior to SLEEP mode entry. For
example, if Nexus reduced port mode was enabled prior to SLEEP entry, then only the reduced port pins
will be enabled on the wakeup from SLEEP.

When SLEEP or STOP mode is entered from RUN mode with the pad keepers still enabled from a previous
SLEEP mode, the debug configuration is re-sampled and applied to the new low power mode. This
includes sampling the NPC PCR LP_DBG bit to determine if debug should be enabled in the low power
mode, and updating the Nexus pin configuration. However, if debug was not enabled when the pad keepers
were initially enabled, the CRP will not be able to assert the TDO pin to synchronize with the debug tool.
Therefore, the CRP does not support the sequence of entering SLEEP mode with debug disabled, and then
re-entering SLEEP/STOP with the pad keepers enabled, and debug enabled. In this case, the low power
mode will function as normal, but there is no capability for synchronization with the debug tool.

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

5-28 Freescale Semiconductor
 Preliminary

Figure 5-18. Sleep Mode Debug Block Integration

5.4 Real-Time Counter (RTC)
The RTC is a free-running counter used for time-keeping applications. The RTC may be configured to
generate an interrupt at a pre-defined interval independent of the mode of operation (run, stop, and sleep).
If in a low-power stop or sleep mode when the RTC interval is reached, the RTC will first generate a
wakeup and then assert the interrupt request.

The RTC also supports an autonomous periodic interrupt function used to generate a periodic wakeup
request to exit a low-power sleep mode or an interrupt request.

5.4.1 RTC Features

Features of the RTC include:

• 32-bit counter

• Selectable counter clock sources

16MIRC
Z0 Core

Z1 Core

CRP

NPC

TCK

tck tclk

sleep reset

debug req

debug req
debug enable

debug enable

16m irc

npc_lp_dbg

nexus port enables

Pad Keepers

Remaining Nexus & JTAG Pins

nexus pad control pad keeper

TDO

control

tool handshake

tdo

FSM

tdo

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 5-29
 Preliminary

— 32 kHz IRC

— 32 kHz OSC

— 16 MHz IRC

• Fixed divide by 32 prescaler to provide 1.0 ms resolution at 32 kHz

• Option to include or bypass a divide by 512 prescaler for the 16 MHz IRC. When not used, the
divide by 512 prescaler is disabled to save power

• 32-bit counter supports gives roughly 1.5 month rollover with 1 ms resolution (2 µs resolution with
bypassed 16 MHz IRC)

• 12-bit compare value supports intervals of 1s up to ~1 hour with 1second resolution (2 ms
resolution with bypassed 16 MHz IRC)

• RTC interrupt with interrupt enable

• Optionally enabled interrupt on RTC rollover

• Autonomous periodic interrupt support includes:

— 10-bit compare value to support wakeup intervals of 1 ms to 1 second (2 µs to 2 ms with
bypassed 16 MHz IRC)

— Wakeup logic has separate enable to support changing compare value while RTC running

— Wakeup request flag captured for future reference

— API interrupt with interrupt enable

— Optionally operates in all modes of operation

• RTC continues to count through all resets except POR, VDD15 LVI, VDD33 LVI, VDDSYN LVI,
VDD5 low LVI and VDD5 LVI

5.4.2 RTC Functional Description

The RTC consists of a 32-bit free-running counter enabled with CNTEN. (CNTEN when negated
asynchronously resets the counter and synchronously enables the counter when enabled.) The value of the
counter may be read via the RTCCNT register. Due to the clock synchronization, the RTCCNT value may
actually represent a previous counter value.

The clock source to the counter is selected with CLKSEL and may be either the 32 kHz IRC, the
32 kHz OSC, or 16 MHz IRC. The 16 MHz IRC can optionally be divided by 512 to normalize it to the
32 kHz clock sources. Note that the 32 kHz OSC must be enabled before being selected. The 32 kHz OSC
is selected to give a more accurate wakeup than the 32 kHz IRC. (CNTEN must be disabled when the clock
sources are switched.) There is a fixed divide by 32 prescaler to support a 1.0 ms count resolution when
using the 32 kHz input clock frequency.

When the counter value for counter bits 10–21 match the 12-bit value in RTCVAL then the RTCF interrupt
flag is set (after proper clock synchronization). If the RTCIE interrupt enable bit is set, the RTC interrupt
request is generated. The RTCF flag can be cleared by writing a 1 to RTCF. The RTCF supports interrupt
requests in the range of 1 s to 4096 s (> 1 hr) with a 1 s resolution. RTCVAL may be updated when CNTEN
is cleared to disable the counter only. If there is a match while in a sleep or stop mode, and the
CRP_WKSE[RTCWKEN] bit is set, then the RTC will first generate a wakeup request to force a wakeup

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

5-30 Freescale Semiconductor
 Preliminary

to run mode, then the RTCF flag will be set. The RTC wakeup signal is captured in the
CRP_PSCR[WKRTCF] flag bit.

A rollover wakeup and/or interrupt can be generated when the RTC transitions from a count of
0xFFFF_FFFF to 0x0000_0000. The rollover flag is enabled by setting the CRP_RTCSC[ROVREN] bit.
An RTC counter rollover with this bit and the CRP_WKSE[RTCOVREN] bit set will cause a wakeup from
both sleep and stop modes. The rollover wakeup flag is captured in the CRP_PSCR[WKRLLOVRF] bit.
An interrupt request is generated for an RTC counter rollover when both the CRP_RTCSC[ROVREN] and
CRP_RTCSC[RTCIE] bits are set.

Setting APIEN enables the autonomous interrupt function. The 10 bit APIVAL selects the time interval for
triggering an interrupt and/or wakeup event. Since the RTC is a free-running counter, the APIVAL is added
to the current count to calculate an offset. When the counter reaches the offset count, a interrupt and/or
wakeup request is generated. Then the offset value is recalculated and again retriggers a new request when
the new value is reached. APIVAL may only be updated when APIEN is disabled. When a compare is
reached, the APIF interrupt flag is set (after proper clock synchronization). If the APIIE interrupt enable
bit is set, then the API interrupt request is generated. The APIF flag can be cleared by writing a 1 to APIF.
If there is a match while in sleep or stop mode, and the CRP_WKSE[APIWKEN] bit is set, then the API
will first generate a wakeup request to force a wakeup to RUN mode, then the APIF flag will be set. The
API wakeup flag is captured in the CRP_PSCR[WKAPIF] bit.

The RTC counter is unaffected during debug mode.

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 5-31
 Preliminary

Figure 5-19. RTC/API Block Diagram

5.4.3 Register Description

The RTC registers control and monitor operation of the RTC. The registers that are relevant to the use of
the RTC are as follows.

• RTC status and control register (Section 5.2.2.2, “RTC Status and Control Register
(CRP_RTCSC)”)

• RTC counter register (Section 5.2.2.3, “RTC Counter Register (CRP_RTCCNT)”)

0
1

2
C

LK
S

E
L

3

32 kHz IRC

16 MHz IRC

32 kHz OSC
div 32

==

C
N

T
E

N

RTCCNT

RTCVAL

10–21

RTCF

RTCIE
RTC interrupt

offset reg

==
22–31

API wakeup

+

load

22–31

APIVAL

APIEN

reset

reset

32-bit counter

sync

sync

RTC wakeup

APIF

APIIE
API

sync

interrupt

div 512

16 MHz IRC

ROVRF

ROVREN

RTC Rollover

sync

0 31

0 31

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

5-32 Freescale Semiconductor
 Preliminary

5.5 Power Supply Monitors

5.5.1 Power-On Reset (POR)

The internal power-on reset circuit monitors the voltage on the 5V VDDA supply and asserts a reset when
the supply is below defined values. The POR is always enabled.

5.5.2 Low-Voltage Monitors (LVI)

The internal LVI circuits monitor when the voltage on the corresponding supply is below defined values
and either assert a reset or an interrupt. All LVI circuits are enabled in RUN mode, but are disabled in sleep
and stop modes. The LVIs also support hysteresis in the falling and rising trip points. There are the
following LVIs:

• LVI15 — 1.5 V supply: generate reset if the 1.5 V VREG output is out of limit

• LVI33 — 3.3 V supply: generate reset if the 3.3 V VREG output (3.3 V I/O and flash domain) is
out of limit

• LVI33SYN — 3.3V VDDSYN supply: generate reset if the 3.3 V VREG output for VDDSYN is
out of limit

• LVI5 — 5 V VDDA supply: generate reset or interrupt if the 5 V VREG output is out of limit
(nominal 4.5 V)

• LVI5L— 5 V VDDA supply: generate reset if the 5 V VREG output is out of limit (nominal 4.0V)

• LVI5H - 5 V VDDA supply: generate interrupt if the 5 V VREG output is out of limit
(nominal 4.8 V)

The LVI15, LVI33, LVI33SYN, and LVI5L only generate resets. The reset request will cause a system
reset and the appropriate bits set in the RSR status register.

The LVI5H only generates an interrupt request. The trigger event sets the CRP_SOCSC[LVI5HF] interrupt
status flag and will generate an interrupt request to the system if the CRP_SOCSC[LVI5HIE] interrupt
enable bit is set.

When a LVI5 trigger event occurs, the CRP_SOCSC[LVI5F] flag bit will be set, and either a reset or an
interrupt may be generated, depending on the configuration of the CRP_SOCSC[LVI5IE] and
CRP_SOCSC[LVIRE] bits in the CRP. The CRP_SOCSC[LVI5RE] is always writable as long as the
CRP_SOCSC[LVI5LOCK] bit is cleared. When CRP_SOCSC[LVI5LOCK] is set, then writes to
CRP_SOCSC[LVI5RE] have no effect. The CRP_SOCSC[LVI5LOCK] bit is write-once and cleared only
with POR.

There is no LVI monitoring of the individual VDDE I/O segments or the stop regulators during sleep and
stop modes.

5.6 Low-Voltage Operation
The LVI5 is normally configured to generate a reset if the supply voltage is below 4.5 V. If this is always
the desired function, then set the CRP_SOCSC[LVI5RE] to enable the reset function and set the write-once
CRP_SOCSC[LVI5LOCK] bit to prevent any unintentional changes to the CRP_SOCSC[LVI5RE] bit.

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 5-33
 Preliminary

Low-voltage or crank operation is the time when the 5 V supply voltage is pulled down below the
minimum 4.5 V limit and the device is expected to be partially functional. The supply ramp is assumed to
be relatively slow. Thus, the CRP_SOCSC[LVI5HF] is used as an early interrupt warning indication that
the supply voltage is falling. Based on the LVI5HF (either polling the CRP_SOCSC[LVI5HF] status bit or
by the CRP_SOCSC[LVI5HF] interrupt request), the LVI5 is configured for an interrupt function instead
of a reset function. Low-voltage operation below 4.0 V is not supported, as the LVI5L will force a reset at
this point.

Clock, Reset, and Power Control (CRP)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

5-34 Freescale Semiconductor
 Preliminary

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 6-1
Preliminary

Chapter 6
System Integration Unit (SIU)

6.1 Introduction
The system integration unit (SIU) controls MCU reset configuration, the system reset operation, pad
configuration, external interrupt, general purpose I/O (GPIO), internal peripheral multiplexing, clock
frequency divider configuration, peripheral clock disable configuration, and peripheral clock disable
acknowledge. The reset configuration block contains the external pin boot configuration logic. The pad
configuration block controls the static electrical characteristics of I/O pins. The GPIO block provides
uniform and discrete input/output control of the MCU I/O pins. The reset controller performs reset
monitoring of internal and external reset sources, and drives the RESET pin. The core accesses the SIU
through the peripheral bus.

6.1.1 Block Diagram

Figure 6-1 is a block diagram of the SIU. The signals shown are external pins to the device. The SIU
registers are accessed through the crossbar switch. The power-on reset (POR) detection block, pad
interface/pad ring block, and peripheral I/O channels are external to the SIU.

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

6-2 Freescale Semiconductor
Preliminary

Figure 6-1. SIU Block Diagram

6.1.2 Features

Features include the following:

• System configuration

— MCU reset configuration via external pins

— Pad configuration control

Reset

RESET

Configuration

SIU
Registers

Reset
Controller

Pad
Interface/

Pad
Ring

Pad Configuration

Power-on
Reset

Detection

External
IRQ/
Edge

Detects

GPIO

Peripheral
I/O Channels

IMUXIRQ Inputs &
eQADC Triggers

PD11 (NMI[1] Z0)

PD10 (NMI[0] Z1)

PK1:PK0

•••

• • •

• • •

•••

•••
•••

PJ15:PJ0

PH15:PH0

PA15:PA0

PD2 (BOOTCFG)

•••

&
NMI

Control

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 6-3
Preliminary

• System reset monitoring and generation

— Power-on reset support

— Reset status register providing last reset source to software

— Software controlled reset assertion

• External interrupt

— 16 interrupt requests

— Rising or falling edge event detection

— Programmable digital filter for glitch rejection

• GPIO

— GPIO function on up to 146 I/O pins (208 BGA, number varies per package type)

— Dedicated input and output registers for each GPIO pin.

— Parallel input and output registers with pins grouped into 16-bit ports

– Read/Write data is coherent with data written/read using dedicated input/output registers.

• Internal multiplexing

— Allows flexible selection of eQADC trigger inputs

— Allows selection of interrupt requests among external pins

— Allows selection of eMIOS inputs between external pins and deserialized DSPI outputs.

• System clock control

— Clock divider control for individual peripherals or peripheral groups for lower power operation

— Halt request register to disable clocks to unused peripherals for lower power operation

— Halt acknowledge register to determine when peripheral clocks are disabled

6.1.3 Modes of Operation

6.1.3.1 Normal Mode

In normal mode, the SIU provides the register interface and logic that controls system configuration, the
reset controller, GPIO, clock divider control, and peripheral clock disable/acknowledge.

6.1.3.2 Debug Mode

SIU operation in debug mode is identical to normal mode operation.

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

6-4 Freescale Semiconductor
Preliminary

6.2 External Signal Description
Refer to Table 2-1 and Section 2.7, “Detailed External Signal Descriptions,” for signal properties.

6.2.1 Detailed Signal Descriptions

6.2.1.1 Reset (RESET)

To reset all MCU modules, an external device asserts the RESET pin. The RESET pin is also an
open-drain-output signal asserted during an internal reset. Assertion of the RESET pin when the device is
in reset restarts the reset cycle (see Chapter 7, “Reset”).

6.2.1.2 General-Purpose I/O Pins

The GPIO pins provide general-purpose input and output function. The GPIO pins are generally
multiplexed with other I/O pin functions. An input (SIU_GPDI) or output (SIU_GPDO) register controls
each GPIO input and output separately. See Section 6.3.2.14, “GPIO Pin Data Output Registers
(SIU_GPDO16_19–SIU_GPDO140_143),” Section 6.3.2.15, “GPIO Pin Data Input Registers
(SIU_GPDI0_3–SIU_GPDI144_145),” Section 6.3.2.28, “Parallel GPIO Pin Data Output Register 0
(SIU_PGPDO0),”—Section 6.3.2.37, “Parallel GPIO Pin Data Input Register 4 (SIU_PGPDI4),” and
Section 6.3.2.38, “Masked Parallel GPIO Pin Data Output Registers.”

6.2.1.3 Boot Configuration Pin (PD[2])

PD[2] is a GPIO pin. CNRX_B is the receive pin for the FlexCAN B module. eMIOS[10] is an
input/output channel pin for the eMIOS200 module. The BOOTCFG pin is sampled before the negation
of the RESET pin. The BAM program uses the value to determine the boot configuration.

6.2.1.4 Core Non Maskable Interrupt Pins (PD10 and PD11)

PD[10] is a GPIO pin. NMI0 is the critical interrupt input for the e200z1 core.

PD[11] is a GPIO pin. NMI1 is the critical interrupt input for the e200z0 core.

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 6-5
Preliminary

6.3 Memory Map and Registers
This section provides a detailed description of all SIU registers.

6.3.1 Module Memory Map

Table 6-1 is the address map for the SIU registers. All register addresses are given as an offset of the SIU
base address.

Table 6-1. SIU Memory Map

Offset from
SIU_BASE

(0xFFFE_8000)
Register Access Reset Value Section/Page

0x0000–0x0003 Reserved

0x0004–0x0007 SIU_MIDR — MCU ID Register R —1 6.3.2.1/6-11

0x0008–0x000B Reserved

0x000C–0x000F SIU_RSR — Reset Status Register R/W 0x8000_000U 6.3.2.2/6-12

0x0010–0x0013 SIU_SRCR — System Reset Control Register R/W 0x0800_C000 6.3.2.3/6-14

0x0014–0x0017 SIU_EISR — SIU External Interrupt Status Register R/W 0x0000_0000 6.3.2.4/6-15

0x0018–0x001B SIU_DIRER — DMA/Interrupt Request Enable Register R/W 0x0000_0000 6.3.2.5/6-16

0x001C–0x001F SIU_DIRSR — DMA/Interrupt Request Select Register R/W 0x0000_0000 6.3.2.6/6-16

0x0020–0x0023 SIU_OSR — Overrun Status Register R/W 0x0000_0000 6.3.2.7/6-17

0x0024–0x0027 SIU_ORER — Overrun Request Enable Register R/W 0x0000_0000 6.3.2.8/6-18

0x0028–0x002B SIU_IREER — External IRQ Rising-Edge Event Enable Register R/W 0x0000_0000 6.3.2.9/6-18

0x002C–0x002F SIU_IFEER — External IRQ Falling-Edge Event Enable Register R/W 0x0000_0000 6.3.2.10/6-19

0x0030–0x0033 SIU_IDFR — External IRQ Digital Filter Register R/W 0x0000_0000 6.3.2.11/6-20

0x0034–0x0037 SIU_IFIR — External IRQ Filtered Input Register R/W 0x0000_0000 6.3.2.12/6-20

0x0038–0x0039 Reserved

0x0040–0x0163 SIU_PCR0 – SIU_PCR145 — Pad Configuration Register 0 –
Pad Configuration Register 1452

R/W —1 6.3.2.13/6-21

0x0164–0x060F Reserved

0x0610–0x0689 SIU_GPDO0_16_19 – SIU_GPDO140_143 — GPIO Pin Data
Output Register 16-19–GPIO Pin Data Output Register
140–1432

R/W 0x0000_0000 6.3.2.14/6-24

0x0690–0x07FF Reserved

0x0800–0x0891 SIU_GPDI0_3 – SIU_GPDI144_145 — GPIO Pin Data Input
Register 0-3 –GPIO Pin Data Input Register 144-1452

R/W —1 6.3.2.15/6-26

0x0892–0x08FF Reserved

0x0900–0x0903 SIU_ISEL0 — IMUX Select Register 0 R/W 0x0000_0000 6.3.2.16/6-27

0x0904–0x0907 SIU_ISEL1— IMUX Select Register 1 R/W 0x0000_0000 6.3.2.17/6-28

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

6-6 Freescale Semiconductor
Preliminary

Table 6-2 provides absolute addresses for the SIU_PCR and SIU_GPDO registers.

0x0908–0x090B SIU_ISEL2 — IMUX Select Register 2 R/W 0x0000_0000 6.3.2.18/6-31

0x090C–0x097F Reserved

0x0980–0x0983 SIU_CCR — Chip Configuration Register R/W 0x000U_0000 6.3.2.19/6-34

0x0984–0x0987 SIU_ECCR — External Clock Control Register R/W 0x0000_1001 6.3.2.20/6-34

0x0988–0x098B SIU_CMPAH — Compare A High Register R/W 0x0000_0000 6.3.2.21/6-35

0x098C–0x098F SIU_CMPAL — Compare A Low Register R/W 0x0000_0000 6.3.2.22/6-36

0x0990–0x0993 SIU_CMPBH — Compare B High Register R/W 0x0000_0000 6.3.2.23/6-36

0x0994–0x0997 SIU_CMPBL — Compare B Low Register R/W 0x0000_0000 6.3.2.23/6-36

0x0998–0x099B Reserved

0x09A0–0x09A3 SIU_SYSCLK — System Clock Register R/W 0x0000_0000 6.3.2.25/6-37

0x09A4–0x09A7 SIU_HLT — Halt Request R/W 0x0000_0000 6.3.2.26/6-38

0x09A8–0x09AB SIU_HLTACK — Halt Acknowledge R 0x0000_0000 6.3.2.27/6-39

0x09AC–0x0BFF Reserved

0x0C00–0x0C13 SIU_PGPDO0 – SIU_PGPDO4 — Parallel GPIO Pin Data
Output Register 0 – Parallel GPIO Pin Data Output Register 4

R/W 0x0000_0000 6.3.2.28/6-40

0x0C14–0x0C3F Reserved

0x0C40–0x0C53 SIU_PGPDI0 – SIU_PGPDI4 — Parallel GPIO Pin Data Input
Register 0 – Parallel GPIO Pin Data Input Register 4

R/W —1 6.3.2.33/6-43

0x0C54–0x0C83 Reserved

0x0C84–0x0CA3 SIU_MPGPDO1 – SIU_MPGPDO8 — Masked Parallel GPIO
Pin Data Output Register 1 – Masked Parallel GPIO Pin Data
Output Register 8

R 0x0000_0000 6.3.2.38/6-45

1 See register description for reset value.
2 Gaps exist in this memory space where I/O pins are not available in the specified package.

Table 6-2. Detailed Memory Map for SIU_PCR, SIU_GPDO, and SIU_GPDI

Pad ID Pad #
SIU_PCR
Address

SIU_GPDO
Address

SIU_GPDI
Address

PA0 0 FFFE8040 FFFE8800

PA1 1 FFFE8042 FFFE8801

PA2 2 FFFE8044 FFFE8802

PA3 3 FFFE8046 FFFE8803

PA4 4 FFFE8048 FFFE8804

Table 6-1. SIU Memory Map

Offset from
SIU_BASE

(0xFFFE_8000)
Register Access Reset Value Section/Page

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 6-7
Preliminary

PA5 5 FFFE804A FFFE8805

PA6 6 FFFE804C FFFE8806

PA7 7 FFFE804E FFFE8807

PA8 8 FFFE8050 FFFE8808

PA9 9 FFFE8052 FFFE8809

PA10 10 FFFE8054 FFFE880A

PA11 11 FFFE8056 FFFE880B

PA12 12 FFFE8058 FFFE880C

PA13 13 FFFE805A FFFE880D

PA14 14 FFFE805C FFFE880E

PA15 15 FFFE805E FFFE880F

PB0 16 FFFE8060 FFFE8610 FFFE8810

PB1 17 FFFE8062 FFFE8611 FFFE8811

PB2 18 FFFE8064 FFFE8612 FFFE8812

PB3 19 FFFE8066 FFFE8613 FFFE8813

PB4 20 FFFE8068 FFFE8614 FFFE8814

PB5 21 FFFE806A FFFE8615 FFFE8815

PB6 22 FFFE806C FFFE8616 FFFE8816

PB7 23 FFFE806E FFFE8617 FFFE8817

PB8 24 FFFE8070 FFFE8618 FFFE8818

PB9 25 FFFE8072 FFFE8619 FFFE8819

PB10 26 FFFE8074 FFFE861A FFFE881A

PB11 27 FFFE8076 FFFE861B FFFE881B

PB12 28 FFFE8078 FFFE861C FFFE881C

PB13 29 FFFE807A FFFE861D FFFE881D

PB14 30 FFFE807C FFFE861E FFFE881E

PB15 31 FFFE807E FFFE861F FFFE881F

PC0 32 FFFE8080 FFFE8620 FFFE8820

PC1 33 FFFE8082 FFFE8621 FFFE8821

PC2 34 FFFE8084 FFFE8622 FFFE8822

PC3 35 FFFE8086 FFFE8623 FFFE8823

PC4 36 FFFE8088 FFFE8624 FFFE8824

Table 6-2. Detailed Memory Map for SIU_PCR, SIU_GPDO, and SIU_GPDI

Pad ID Pad #
SIU_PCR
Address

SIU_GPDO
Address

SIU_GPDI
Address

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

6-8 Freescale Semiconductor
Preliminary

PC5 37 FFFE808A FFFE8625 FFFE8825

PC6 38 FFFE808C FFFE8626 FFFE8826

PC7 39 FFFE808E FFFE8627 FFFE8827

PC8 40 FFFE8090 FFFE8628 FFFE8828

PC9 41 FFFE8092 FFFE8629 FFFE8829

PC10 42 FFFE8094 FFFE862A FFFE882A

PC11 43 FFFE8096 FFFE862B FFFE882B

PC12 44 FFFE8098 FFFE862C FFFE882C

PC13 45 FFFE809A FFFE862D FFFE882D

PC14 46 FFFE809C FFFE862E FFFE882E

PC15 47 FFFE809E FFFE862F FFFE882F

PD0 48 FFFE80A0 FFFE8630 FFFE8830

PD1 49 FFFE80A2 FFFE8631 FFFE8831

PD2 50 FFFE80A4 FFFE8632 FFFE8832

PD3 51 FFFE80A6 FFFE8633 FFFE8833

PD4 52 FFFE80A8 FFFE8634 FFFE8834

PD5 53 FFFE80AA FFFE8635 FFFE8835

PD6 54 FFFE80AC FFFE8636 FFFE8836

PD7 55 FFFE80AE FFFE8637 FFFE8837

PD8 56 FFFE80B0 FFFE8638 FFFE8838

PD9 57 FFFE80B2 FFFE8639 FFFE8839

PD10 58 FFFE80B4 FFFE863A FFFE883A

PD11 59 FFFE80B6 FFFE863B FFFE883B

PD12 60 FFFE80B8 FFFE863C FFFE883C

PD13 61 FFFE80BA FFFE863D FFFE883D

PD14 62 FFFE80BC FFFE863E FFFE883E

PD15 63 FFFE80BE FFFE863F FFFE883F

PE0 64 FFFE80C0 FFFE8640 FFFE8840

PE1 65 FFFE80C2 FFFE8641 FFFE8841

PE2 66 FFFE80C4 FFFE8642 FFFE8842

PE3 67 FFFE80C6 FFFE8643 FFFE8843

PE4 68 FFFE80C8 FFFE8644 FFFE8844

Table 6-2. Detailed Memory Map for SIU_PCR, SIU_GPDO, and SIU_GPDI

Pad ID Pad #
SIU_PCR
Address

SIU_GPDO
Address

SIU_GPDI
Address

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 6-9
Preliminary

PE5 69 FFFE80CA FFFE8645 FFFE8845

PE6 70 FFFE80CC FFFE8646 FFFE8846

PE7 71 FFFE80CE FFFE8647 FFFE8847

PE8 72 FFFE80D0 FFFE8648 FFFE8848

PE9 73 FFFE80D2 FFFE8649 FFFE8849

PE10 74 FFFE80D4 FFFE864A FFFE884A

PE11 75 FFFE80D6 FFFE864B FFFE884B

PE12 76 FFFE80D8 FFFE864C FFFE884C

PE13 77 FFFE80DA FFFE864D FFFE884D

PE14 78 FFFE80DC FFFE864E FFFE884E

PE15 79 FFFE80DE FFFE864F FFFE884F

PF0 80 FFFE80E0 FFFE8650 FFFE8850

PF1 81 FFFE80E2 FFFE8651 FFFE8851

PF2 82 FFFE80E4 FFFE8652 FFFE8852

PF3 83 FFFE80E6 FFFE8653 FFFE8853

PF4 84 FFFE80E8 FFFE8654 FFFE8854

PF5 85 FFFE80EA FFFE8655 FFFE8855

PF6 86 FFFE80EC FFFE8656 FFFE8856

PF7 87 FFFE80EE FFFE8657 FFFE8857

PF8 88 FFFE80F0 FFFE8658 FFFE8858

PF9 89 FFFE80F2 FFFE8659 FFFE8859

PF10 90 FFFE80F4 FFFE865A FFFE885A

PF11 91 FFFE80F6 FFFE865B FFFE885B

PF12 92 FFFE80F8 FFFE865C FFFE885C

PF13 93 FFFE80FA FFFE865D FFFE885D

PF14 94 FFFE80FC FFFE865E FFFE885E

PF15 95 FFFE80FE FFFE865F FFFE885F

PG0 96 FFFE8100 FFFE8660 FFFE8860

PG1 97 FFFE8102 FFFE8661 FFFE8861

PG2 98 FFFE8104 FFFE8662 FFFE8862

PG3 99 FFFE8106 FFFE8663 FFFE8863

PG4 100 FFFE8108 FFFE8664 FFFE8864

Table 6-2. Detailed Memory Map for SIU_PCR, SIU_GPDO, and SIU_GPDI

Pad ID Pad #
SIU_PCR
Address

SIU_GPDO
Address

SIU_GPDI
Address

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

6-10 Freescale Semiconductor
Preliminary

PG5 101 FFFE810A FFFE8665 FFFE8865

PG6 102 FFFE810C FFFE8666 FFFE8866

PG7 103 FFFE810E FFFE8667 FFFE8867

PG8 104 FFFE8110 FFFE8668 FFFE8868

PG9 105 FFFE8112 FFFE8669 FFFE8869

PG10 106 FFFE8114 FFFE866A FFFE886A

PG11 107 FFFE8116 FFFE866B FFFE886B

PG12 108 FFFE8118 FFFE866C FFFE886C

PG13 109 FFFE811A FFFE866D FFFE886D

PG14 110 FFFE811C FFFE866E FFFE886E

PG15 111 FFFE811E FFFE866F FFFE886F

PH0 112 FFFE8120 FFFE8670 FFFE8870

PH1 113 FFFE8122 FFFE8671 FFFE8871

PH2 114 FFFE8124 FFFE8672 FFFE8872

PH3 115 FFFE8126 FFFE8673 FFFE8873

PH4 116 FFFE8128 FFFE8674 FFFE8874

PH5 117 FFFE812A FFFE8675 FFFE8875

PH6 118 FFFE812C FFFE8676 FFFE8876

PH7 119 FFFE812E FFFE8677 FFFE8877

PH8 120 FFFE8130 FFFE8678 FFFE8878

PH9 121 FFFE8132 FFFE8679 FFFE8879

PH10 122 FFFE8134 FFFE867A FFFE887A

PH11 123 FFFE8136 FFFE867B FFFE887B

PH12 124 FFFE8138 FFFE867C FFFE887C

PH13 125 FFFE813A FFFE867D FFFE887D

PH14 126 FFFE813C FFFE867E FFFE887E

PH15 127 FFFE813E FFFE867F FFFE887F

PJ0 128 FFFE8140 FFFE8680 FFFE8880

PJ1 129 FFFE8142 FFFE8681 FFFE8881

PJ2 130 FFFE8144 FFFE8682 FFFE8882

PJ3 131 FFFE8146 FFFE8683 FFFE8883

PJ4 132 FFFE8148 FFFE8684 FFFE8884

Table 6-2. Detailed Memory Map for SIU_PCR, SIU_GPDO, and SIU_GPDI

Pad ID Pad #
SIU_PCR
Address

SIU_GPDO
Address

SIU_GPDI
Address

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 6-11
Preliminary

6.3.2 Register Descriptions

This section lists the SIU registers in address order and describes the registers and their bit fields.

6.3.2.1 MCU ID Register (SIU_MIDR)

The SIU_MIDR contains the part identification number, package type, and mask revision number specific
to the device. The part number is a read-only field mask-programmed with the device part number. It is
not changed for bug fixes or process changes. The package type is a read-only field that reflects the device
package type. The mask number is a read-only field mask-programmed with the device’s specific mask
revision level.

PJ5 133 FFFE814A FFFE8685 FFFE8885

PJ6 134 FFFE814C FFFE8686 FFFE8886

PJ7 135 FFFE814E FFFE8687 FFFE8887

PJ8 136 FFFE8150 FFFE8688 FFFE8888

PJ9 137 FFFE8152 FFFE8689 FFFE8889

PJ10 138 FFFE8154 FFFE868A FFFE888A

PJ11 139 FFFE8156 FFFE868B FFFE888B

PJ12 140 FFFE8158 FFFE868C FFFE888C

PJ13 141 FFFE815A FFFE868D FFFE888D

PJ14 142 FFFE815C FFFE868E FFFE888E

PJ15 143 FFFE815E FFFE868F FFFE888F

PK0 144 FFFE8160 FFFE8890

PK1 145 FFFE8162 FFFE8891

Offset: SIU_BASE + 0x0004 Access: User read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PARTNUM

W

Reset 0 1 0 1 0 1 0 1 0 0 0 1 0 1 1 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CSP PKG 0 0 MASKNUM_MAJOR MASKNUM_MINOR

W

Reset1 0 * * * * * 0 0 * * * * * * * *

Figure 6-2. MCU ID Register (SIU_MIDR)

Table 6-2. Detailed Memory Map for SIU_PCR, SIU_GPDO, and SIU_GPDI

Pad ID Pad #
SIU_PCR
Address

SIU_GPDO
Address

SIU_GPDI
Address

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

6-12 Freescale Semiconductor
Preliminary

6.3.2.2 Reset Status Register (SIU_RSR)

The SIU_RSR reflects the most recent source, or reset sources, and the pins’ configuration state at reset.
This register contains one bit for each reset source, indicating the last reset was power-on reset (POR),
external, software system, watchdog, loss of PLL lock, loss of clock or checkstop reset. A reset status bit
set to logic one indicates the reset type that occurred. After it is set, the reset source status bits in the
SIU_RSR remain set until another reset occurs. In the following cases more than one reset bit is set:

1. If a power-on reset request has negated and the device is still in the resulting reset, and then an
external reset is requested, both the power-on and external reset status bits will be set. In this case,
the device started the reset sequence due to a power-on reset request but ended the reset sequence
after an external reset request.

2. If any of the loss of clock, loss of lock, watchdog or checkstop reset requests occur on the same
clock cycle, and no other higher priority reset source is requesting reset (Table 6-4), the reset status
bits for all of the requesting resets are set.

Simultaneous reset requests are prioritized. When reset requests of different priorities occur on the same
clock cycle, the lower priority reset request is ignored. Only the highest priority reset request's status bit is
set. Except for a power-on reset request and condition 1 above, all reset requests of any priority are ignored
until the device exits reset.

1 PKG default value reflects the device package type as defined in Table 6-3.
MASKNUM_MAJOR default value is 0x0 for the device’s initial mask set and changes for each major mask set revision.
MASKNUM_MINOR default value is 0x0 for the device’s initial mask set and changes for each minor mask set revision.

Table 6-3. SIU_MIDR Field Descriptions

Field Description

PARTNUM MCU Part Number. Read-only, mask-programmed part identification number of the MCU. Reads
0x5516 for the MPC5516.

CSP Chip Scale Package. The CSP bit indicates whether the die is mounted in a chip scale package.
0 Not a chip scale package.
1 Chip scale package.

PKG Package Configuration. These values set the pin package used for each MPC5510 device.
01101 144-pin LQFP
10001 176-pin LQFP
10000 208-pin BGA
All other combinations are reserved

bits 22–23 Reserved

MASKNUM_MAJOR Major Mask Revision Number. Read-only, mask-programmed mask number of the MCU. Reads
0x0 for the device’s initial mask set and changes for each major mask set revision.

MASKNUM_MINOR Minor Mask Revision Number. Read-only, mask-programmed mask number of the MCU. Reads
0x0 for the device’s initial mask set and changes for each minor mask set.

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 6-13
Preliminary

Table 6-4. Reset Source Priorities

Reset Source Priority

Power on reset (POR) and external reset (Group 0) Highest

Software system reset (Group1)

Loss of clock, loss of lock, watchdog, checkstop (Group2)

Software external reset (Group 3) Lowest

Offset: SIU_BASE + 0x000C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PORS ERS LLRS LCRS WDRS CRS 0 0 0 0 0 0 0 0 SSRS 0

W

Reset1 12 03 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0 0 0 0 0 0 0 0 0 0 0

BOOT
CFG

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U4 0
1 The reset status register receives its reset values during power-on reset.
2 The PORS bit is also set upon recovery from low-power sleep mode.
3 The ERS bit is set if the RESET pin was held low during POR.
4 Before the rising edge of RESET, the PD2 pin state sets the BOOTCFG bit value. During sleep mode recovery, this

bit will take on the state of the PD2 pad keeper when internal reset is negated.

Figure 6-3. Reset Status Register (SIU_RSR)

Table 6-5. SIU_RSR Field Descriptions

Field Description

PORS Power-on Reset Status. (Also set upon recover from sleep mode)
0 The reset controller acknowledged another reset source since the last assertion of the power-on reset input.
1 The power-on reset input to the reset controller is asserted, and no other reset source has been acknowledged

since that assertion of the power-on reset input except an external reset.

ERS External Reset Status.
0 Last reset source the reset controller acknowledged was not a valid assertion of the RESET pin.
1 Last reset source the reset controller acknowledged was a valid assertion of the RESET pin.

LLRS Loss-of-Lock Reset Status. (Asynchronous reset source)
0 Last reset source the reset controller acknowledged was not a loss of PLL lock reset.
1 Last reset source the reset controller acknowledged was a loss of PLL lock reset.

LCRS Loss-of-Clock Reset Status. (Asynchronous reset source)
0 Last reset source the reset controller acknowledged was not a loss of clock reset.
1 Last reset source the reset controller acknowledged was a loss of clock reset.

WDRS Watchdog Timer/Debug Reset Status.
0 Last reset source the reset controller acknowledged was not a watchdog timer or debug reset.
1 Last reset source the reset controller acknowledged was a watchdog timer or debug reset.

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

6-14 Freescale Semiconductor
Preliminary

6.3.2.3 System Reset Control Register (SIU_SRCR)

CRS Checkstop Reset Status.
0 Last reset source the reset controller acknowledged was not an enabled checkstop reset.
1 Last reset source the reset controller acknowledged was an enabled checkstop reset.

bits 6–13 Reserved.

SSRS Software System Reset Status.
0 Last reset source the reset controller acknowledged was not a software system reset.
1 Last reset source the reset controller acknowledged was a software system reset.

bits 15–29 Reserved.

BOOTCFG Status of BOOTCFG pin at negation of RESET.

bit 31 Reserved.

Offset: SIU_BASE + 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SSR1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CRE0 CRE1

0 0 0 0 0 0
SSRL3 0 0 0 0 0 0 0

W

Reset 12 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 The SSR bit always reads as zero. A write of zero to this bit has no effect.
2 The CRE0/1 bits are reset to 0b1 by POR. Other resets sources do not reset the bit value.
3 Once written to a 1, the SSRL bit can be reset only to zero by POR.

Figure 6-4. System Reset Control Register (SIU_SRCR)

Table 6-6. SIU_SRCR Field Descriptions

Field Description

SSR Software System Reset. Used to generate a software system reset. Writing a 1 to this bit causes an internal reset.
The software system reset is processed as a synchronous reset. The bit is automatically cleared on the assertion
of any other reset source except a software external reset.
0 Do not generate a software system reset.
1 Generate a software system reset.

bits 1–15 Reserved.

Table 6-5. SIU_RSR Field Descriptions (continued)

Field Description

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 6-15
Preliminary

6.3.2.4 External Interrupt Status Register (SIU_EISR)

The external interrupt status register is used to record edge-triggered events on the IRQ0–IRQ15 and
NMI0–NMI1 inputs to the SIU. When an edge-triggered event is enabled in the SIU_IREER or
SIU_IFEER for an IRQn input and then sensed, the corresponding SIU_EISR flag bit is set. The IRQ flag
bit is set, regardless of the state of the corresponding DMA/IRQ enable bit in SIU_DIRER. The IRQ flag
bit remains set until cleared by software or through the servicing of a DMA request. The IRQ flag bits are
cleared by writing a 1 to the bits (w1c). A write of 0 has no effect.

CRE0 Checkstop Reset Enable (enable primary CPU, Z1, checkstop to generate reset). Writing a 1 to this bit enables a
reset when the e200z1 checkstop reset request input is asserted. The checkstop reset request input is a
synchronous internal reset source. The CRE0 bit defaults to checkstop reset enabled at POR. If this bit is cleared,
it remains cleared until the next POR.
0 No reset occurs when the e200z1 checkstop reset input to the reset controller is asserted.
1 A reset occurs when the e200z1 checkstop reset input to the reset controller is asserted.

CRE1 Checkstop Reset Enable (enable secondary CPU, Z0, checkstop to generate reset). Writing a 1 to this bit enables
a reset when the e200z0 checkstop reset request input is asserted. The checkstop reset request input is a
synchronous internal reset source. The CRE1 bit defaults to checkstop reset enabled at POR. If this bit is cleared,
it remains cleared until the next POR.
0 No reset occurs when the e200z0 checkstop reset input to the reset controller is asserted.
1 A reset occurs when the e200z0 checkstop reset input to the reset controller is asserted.

bits 18–23 Reserved.

SSRL Software System Reset Lock. This bit is used to disable the software system reset. This bit defaults to 0. A write of
1 disables the SSR bit until the next POR (write once).
0 Enable the SSR bit.
1 Disable the SSR bit.

bits 25–31 Reserved.

Offset: SIU_BASE + 0x0014 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R NMI0 NMI1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EIF15 EIF14 EIF13 EIF12 EIF11 EIF10 EIF9 EIF8 EIF7 EIF6 EIF5 EIF4 EIF3 EIF2 EIF1 EIF0

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-5. SIU External Interrupt Status Register (SIU_EISR)

Table 6-6. SIU_SRCR Field Descriptions (continued)

Field Description

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

6-16 Freescale Semiconductor
Preliminary

6.3.2.5 DMA/Interrupt Request Enable Register (SIU_DIRER)

The SIU_DIRER allows the assertion of a DMA or interrupt request if the corresponding flag bit is set in
the SIU_EISR. The external interrupt request enable bits enable the interrupt or DMA request. There are
five interrupt requests from the SIU to the interrupt controller: IRQ0, IRQ1, IRQ2, IRQ3, and IRQ4, plus
IRQ5 to IRQ15 on one interrupt request. The EIRE bits allow selection of which external interrupt request
flag bits cause assertion of the one interrupt request signal for IRQ5 to IRQ15.

6.3.2.6 DMA/Interrupt Request Select Register (SIU_DIRSR)

The SIU_DIRSR allows selection between a DMA or interrupt request for events on the IRQ4–IRQ1
inputs. The SIU_DIRSR selects between DMA and interrupt requests. If the corresponding bits are set in
SIU_EISR and the SIU_DIRER, then the DMA/interrupt request select bit determines whether a DMA or
interrupt request is asserted.

Table 6-7. SIU_EISR Field Descriptions

Field Description

NMIn Non Maskable Interrupt Flag for primary CPU (Z1) or secondary CPU (Z0). NMI0 is for the primary core. NMI1 is for
the secondary core. This bit is set when an edge-triggered event occurs on the corresponding NMIn input.
0 No edge-triggered event occurred on the corresponding NMIn input.
1 An edge-triggered event occurred on the corresponding NMIn input.

bits 2–15 Reserved

EIFn External Interrupt Request Flag n. Set when an edge-triggered event occurs on the corresponding IRQn input.
0 No edge triggered event occurred on the corresponding IRQn input.
1 An edge triggered event occurred on the corresponding IRQn input.

Offset: SIU_BASE + 0x0018 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EIRE
15

EIRE
14

EIRE
13

EIRE
12

EIRE
11

EIRE
10

EIRE9 EIRE8 EIRE7 EIRE6 EIRE5 EIRE4 EIRE3 EIRE2 EIRE1 EIRE0
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-6. SIU DMA/Interrupt Request Enable Register (SIU_DIRER)

Table 6-8. SIU_DIRER Field Descriptions

Field Description

bits 0–15 Reserved.

EIREn External Interrupt Request Enable n. Enables assertion of the interrupt request from the SIU to the interrupt
controller when an edge triggered event occurs on the IRQn pin.
0 External interrupt request disabled.
1 External interrupt request enabled.

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 6-17
Preliminary

6.3.2.7 Overrun Status Register (SIU_OSR)

The SIU_OSR contains flag bits that record an overrun. These flag bits are cleared by writing 1 to the bits
(w1c); writing 0 has no effect.

Offset: SIU_BASE + 000x1C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0
DIRS4 DIRS3 DIRS2 DIRS1

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

1 Do not write a 1 to bit 31 as it will block interrupt function of IRQ0.

Figure 6-7. DMA/Interrupt Request Select Register (SIU_DIRSR)

Table 6-9. SIU_DIRER Field Descriptions

Field Description

bits 0–26 Reserved.

DIRSn DMA/Interrupt Request Select n. Selects between a DMA or interrupt request when an edge triggered event occurs
on the corresponding IRQn pin.
0 Interrupt request selected.
1 DMA request selected.

bit 31 Reserved.

Note: Reserved bit 31 is writeable, but setting this bit will block the interrupt function of IRQ0. Thus, this bit should
not be written to a one.

Offset
:

SIU_BASE + 0x0020 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R OVF15 OVF14 OVF13 OVF12 OVF11 OVF10 OVF9 OVF8 OVF7 OVF6 OVF5 OVF4 OVF3 OVF2 OVF1 OVF0

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-8. Overrun Status Register (SIU_OSR)

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

6-18 Freescale Semiconductor
Preliminary

6.3.2.8 Overrun Request Enable Register (SIU_ORER)

The SIU_ORER contains bits to enable an overrun if the corresponding flag bit is set in the SIU_OSR. If
any overrun request enable bit and the corresponding flag bit are set, the single combined overrun request
from the SIU to the interrupt controller is asserted.

6.3.2.9 IRQ Rising-Edge Event Enable Register (SIU_IREER)

The SIU_IREER allows rising-edge-triggered events to be enabled on the corresponding IRQn pins.
Setting the corresponding bits in the SIU_IREER and SIU_IFEER enables rising- and falling-edge events.

Table 6-10. SIU_OSR Field Descriptions

Field Function

bits 0–15 Reserved.

OVFn Overrun Flag n. This bit is set when an overrun occurs on the corresponding IRQn pin.
0 No overrun occurred on the corresponding IRQn pin.
1 An overrun occurred on the corresponding IRQn pin.

Offset: SIU_BASE + 0x0024 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R ORE
15

ORE
14

ORE
13

ORE
12

ORE
11

ORE
10

ORE
9

ORE
8

ORE
7

ORE
6

ORE
5

ORE
4

ORE
3

ORE
2

ORE
1

ORE
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-9. Overrun Request Enable Register (SIU_ORER)

Table 6-11. SIU_ORER Field Descriptions

Field Function

bits 0–15 Reserved.

OREn Overrun Request Enable n. Enables the corresponding overrun request when an overrun occurs on the
corresponding IRQn pin.
0 Overrun request disabled.
1 Overrun request enabled.

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 6-19
Preliminary

6.3.2.10 IRQ Falling-Edge Event Enable Register (SIU_IFEER)

The SIU_IFEER allows falling-edge-triggered events to be enabled on the corresponding IRQn pins.
Setting the corresponding bits in the SIU_IREER and SIU_IFEER enables rising- and falling-edge events.

Offset: SIU_BASE + 0x0028 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R NREE0 NREE1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R IREE
15

IREE
14

IREE
13

IREE
12

IREE
11

IREE
10

IREE
9

IREE
8

IREE
7

IREE
6

IREE
5

IREE
4

IREE
3

IREE
2

IREE
1

IREE
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-10. IRQ Rising-Edge Event Enable Register (SIU_IREER)

Table 6-12. SIU_IREER Field Descriptions

Field Function

NREEn NREEn - NMI Rising-Edge Event Enable n. These write-once bits enable rising-edge-triggered events on the
corresponding NMIn input.
0 Rising edge event disabled.
1 Rising edge event enabled.

bits 2–15 Reserved.

IREEn IRQ Rising-Edge Event Enable n. Enables rising-edge triggered events on the corresponding IRQn pin.
0 Rising edge event disabled.
1 Rising edge event enabled.

Offset: SIU_BASE + 0x002C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R NFEE0 NFEE1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R IFEE
15

IFEE
14

IFEE
13

IFEE
12

IFEE
11

IFEE
10

IFEE
9

IFEE
8

IFEE
7

IFEE
6

IFEE
5

IFEE
4

IFEE
3

IFEE
2

IFEE
1

IFEE
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-11. IRQ Falling-Edge Event Enable Register (SIU_IFEER)

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

6-20 Freescale Semiconductor
Preliminary

6.3.2.11 External IRQ Digital Filter Register (SIU_IDFR)

The SIU_IDFR specifies the amount of digital filtering on the IRQ0–IRQ15 pins. The digital filter length
field specifies the number of system clocks that define the period of the digital filter and the minimum time
a signal must be held in the active state on the IRQ pins to be recognized as an edge-triggered event.

6.3.2.12 IRQ Filtered Input Register (SIU_IFIR)

This is a read only register that captures the output of the NMIn and IRQn digital input filters.

Table 6-13. SIU_IFEER Field Descriptions

Field Function

NFEEn NMI Falling-Edge Event Enable n. These write-once bits enable rising-edge triggered events on the corresponding
NMIn input.
0 Falling edge event disabled.
1 Falling edge event enabled.

bits 2–15 Reserved.

IFEEn IRQ Falling-Edge Event Enable n. Enables falling-edge triggered events on the corresponding IRQn pin.
0 Falling edge event disabled.
1 Falling edge event enabled.

Offset: SIU_BASE + 0x0030 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
DFL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-12. External IRQ Digital Filter Register (SIU_IDFR)

Table 6-14. SIU_IDFR Field Descriptions

Field Function

0–27 Reserved.

28–31
DFL

Digital Filter Length. Defines digital filter period on the IRQn inputs according to the following equation:

For a 66 MHz system clock, this gives a range of 30 ns to 491.5 μs. The minimum time of two clocks accounts for
synchronization of the IRQ input pins with the system clock.

Filter Period SystemClockPeriod 2
DFL

×() 1 S(ystemClockPeriod)+=

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 6-21
Preliminary

6.3.2.13 Pad Configuration Registers (SIU_PCR)

The following subsections define the SIU_PCRs for all device pins that allow configuration of the pin
function, direction, and static electrical attributes. The information presented pertains to which bits and
fields are active for a given pin or group of pins, and the register reset state. The reset state of SIU_PCRs
in the following sections is prior to executing the boot-assist module (BAM) program. The BAM program
may change SIU_PCRs based on reset configuration. See the BAM section of the manual for more detail.

For all PCRs:

• If the pin is configured as an input only, the ODE and SRC bits do not apply.

• If the pin is configured as an output only, the HYS bit does not apply.

• When a pin is configured as an output, the weak internal pull up/down is disabled, regardless of the
WPE or WPS settings in the PCR.

IBE and OBE bit definitions are specific to each PCR. When an I/O function is input- or output-only, the
IBE and OBE bits do not have to be set to enable the input or output. When an I/O function can be either
an input and output, the IBE and OBE bits must be set accordingly (IBE = 1 for input, and OBE = 1 for
output). For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally, and the IBE and OBE bits have no effect.

Offset: SIU_BASE + 0x0034 Access: User read only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FNMI
0

FNMI
1

0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
FI15 FI14 FI13 FI12 IFI11 FI10 FI9 FI8 FI7 FI6 FI5 FI4 FI3 FI2 FI1 FI0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-13. External IRQ Filtered Input Register (SIU_IFIR)

Table 6-15. SIU_IFIR Field Descriptions

Field Function

FNMI0 Filtered Non Maskable Interrupt 0. This bit is set/cleared for the corresponding NMI pin:
0 A logic one has passed through the NMI digital filter for NMI0 pin.
1 A logic zero has passed through the NMI digital filter for NMI0 pin.

FNMI1 Filtered Non Maskable Interrupt 1. This bit is set/cleared for the corresponding NMI pin:
0 A logic one has passed through the NMI digital filter for NMI1 pin.
1 A logic zero has passed through the NMI digital filter for NMI1 pin.

bits 2–15 Reserved.

FIn Filtered Input n. This bit is set/cleared for the corresponding filtered IRQ pin:
0 A logic one has passed through the IRQ digital filter for the corresponding IRQ pin.
1 A logic zero has passed through the IRQ digital filter for the corresponding IRQ pin.

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

6-22 Freescale Semiconductor
Preliminary

For all PCRs where GPIO function is available on the pin, if the pin is configured as an output and the IBE
bit is set, the actual pin value is reflected in the corresponding GPDIx_x register. Negating the IBE bit
when the pin is configured as an output reduces noise and power consumption. Reads from the GPDIx_x
registers are undefined when the corresponding IBE bit is negated.

The SIU_PCRs are 16-bit registers that may be read or written as 32-bit values aligned on 32-bit address
boundaries. Table 6-16 describes the SIU_PCR fields.

NOTE
Not all of the fields may be present in a given SIU_PCR, depending on the
type of pad it controls. See the specific SIU_PCR definition.

For all SIU_PCRs, the associated pin supports GPIO and up to three functions. The PA field is defined in
Table 6-16. For all PCRs of this type, a value of 0b11 selects Function 3, a value of 0b10 selects Function
2, the value 0b01 selects Function 1, and a value 0b00 selects GPIO.

All pins are named according to their associated parallel port name and associated bit number. For
example, the Port A pins are named PA0 to PA15 (these pin names should not be confused with the bit field
name.) See Chapter 2, “Signal Descriptions,” for a list of pins and their functions. The MCU is available
in different package configurations. Some of the I/O controlled by the SIU PCRs are not available in the
smaller package. The port-enable logic for these PCRs is the same for PCRs that control I/O available in
all packages. For the smaller package where some of the I/O is not available, the pad drivers are disabled
in the pad interface logic. Do not select the unavailable functions via the PA field.

Some PCRs contain a slew rate control (SRC) field. Slew rate control pertains to pins with slow or medium
I/O pad types. The SRC field for all PCRs with slew rate control is defined in Table 6-16.

Table 6-16. SIU_PCR Field Descriptions

Field Description

bits 0–3 Reserved.

PA Pin Assignment. Selects a multiplexed pad function. A separate port enable output signal from the SIU is asserted
for each register value.

OBE Output Buffer Enable. Enables the pad as an output and drives the output buffer enable signal.
0 Output buffer for the pad disabled.
1 Output buffer for the pad enabled.

PA Field Pin Function

0b00 GPIO

0b01 Function 1

0b10 Function 2

0b11 Function 3

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 6-23
Preliminary

6.3.2.13.1 Pad Configuration Registers 0–15 (SIU_PCR0–SIU_PCR15)

The SIU_PCR0 to SIU_PCR15 registers control the pin function and static electrical attributes of the Port
A pins PA0 to PA15 (input only). For each pin, Table 2-1 lists the signals available as the PA settings for
Function1, Function2 and Function3.

See Table 6-16 for bit field definitions.

IBE Input Buffer Enable. Enables the pad as an input and drives the input buffer enable signal.
0 Input buffer for the pad disabled.
1 Input buffer for the pad enabled.

bits 8–9 Reserved.

ODE Open Drain Output Enable. Controls output driver configuration for the pads. Either open drain or push/pull driver
configurations can be selected. This feature applies only when pins are configured as outputs.
0 Open drain disabled for the pad (push/pull driver enabled).
1 Open drain enabled for the pad.

HYS Input Hysteresis. Controls whether hysteresis is enabled for the pad.
0 Hysteresis disabled for the pad.
1 Hysteresis enabled for the pad.

SRC Slew Rate Control. Controls slew rate for the pad. Slew rate control pertains to pins with slow or medium I/O pad
types, and the output signals are driven according to the value of this field. Actual slew rate is dependent on the pad
type and load. See the MPC5510 Microcontroller Family Data Sheet for this information.
00 Minimum slew rate (slowest)
01 Medium slew rate
10 Reserved
11 Maximum slew rate (fastest)

WPE Weak Pullup/Down Enable. Controls whether the weak pullup/down devices are enabled/disabled for the pad.
Pullup/down devices are enabled by default.
0 Weak pull device is disabled for the pad.
1 Weak pull device is enabled for the pad.

WPS Weak Pullup/Down Select. Controls whether weak pullup or weak pulldown devices are used for the pad when weak
pullup/down devices are enabled. The WKPCFG pin determines whether pullup or pulldown devices are enabled at
reset. The WPS bit determines whether weak pullup or pulldown devices are used after reset, or for pads in which
the WKPCFG pin does not determine the reset weak pullup/down state.
0 Pulldown value enabled for the pad.
1 Pullup value enabled for the pad.

Offset: SIU_BASE+0x0040–SIU_BASE+0x005F Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA

0
IBE1 0 0

ODE HYS
0 0

WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 The IBE bit should be 0 when analog input function is selected.

Figure 6-14. Port A Pad Configuration Registers (SIU_PCR0 - SIU_PCR15)

Table 6-16. SIU_PCR Field Descriptions (continued)

Field Description

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

6-24 Freescale Semiconductor
Preliminary

6.3.2.13.2 Pad Configuration Registers 16–143 (SIU_PCR16–SIU_PCR143)

The SIU_PCR16 to SIU_PCR143 registers control the pin function, direction, and static electrical
attributes of the Port B (PB0-PB15), Port C (PC0-PC15), Port D (PD0-PD15), Port E (PE0-PE15), Port F
(PF0-PF150), Port G (PG0-PG15), Port H (PH0-PH15), and Port J (PJ0-PJ15) pins. For each pin, Table 2-1
lists the signals that are available as the PA settings for Function1, Function2 and Function3.

See Table 6-16 for bit field definitions.

6.3.2.13.3 Pad Configuration Registers 144–145 (SIU_PCR144–SIU_PCR145)

The SIU_PCR144 and SIU_PCR145 registers control the pin function and static electrical attributes of the
Port K pins PK0 and PK1 (input only). For each pin, Table 2-1 lists the signals available as the PA settings
for Function1, Function2 and Function3.

See Table 6-16 for bit field definitions.

6.3.2.14 GPIO Pin Data Output Registers (SIU_GPDO16_19–SIU_GPDO140_143)

The SIU_GPDO16_19 register definition is in Figure 6-17. All other SIU_GPDOx_x registers follow the
same pattern where four GPDO bits are placed in a 32-bit word, with one bit per byte. Each of the 128
PDO bits corresponds to a port pin in the order given in Table 6-18. Gaps exist in this memory space where
the pin is not available in the package.

NOTE
On MPC5510, the Port A and Port K pins are only general-purpose inputs.
Therefore, there are no output data registers associated with these pins.

The SIU_GPDOx_x registers are written to by software to drive data out on the external GPIO pin. Each
byte of a register drives a single external GPIO pin, which allows the pin state to be controlled
independently from other GPIO pins. Writes to the SIU_GPDOx_x registers do not affect pin states if the
pins are configured as inputs or as non-GPIO function by the associated pad configuration registers. The

 Offset: SIU_BASE+0x0060–SIU_BASE+0x015F Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE IBE

0 0
ODE HYS SRC WPE WPS

W

Reset 0 0 0 0 0 0 0 U1 0 0 0 0 0 0 U1 0
1 The reset value is 1 for PCR50 (BOOTCFG), 0 for all other PCRs in this range

Figure 6-15. Port B to Port K Pad Configuration Registers (SIU_PCR16 - SIU_PCR145)

 Offset: SIU_BASE+0x0160–SIU_BASE+0x0163 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA

0
IBE1 0 0

ODE HYS
0 0

WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 The IBE bit should be 0 when analog input function is selected.

Figure 6-16. Port K Pad Configuration Registers (SIU_PCR144–SIU_PCR145)

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 6-25
Preliminary

SIU_GPDOx_x register values are automatically driven to the GPIO pins without software update if the
GPIO pins’ direction changes from input to output.

Offset: SIU_BASE + 0x0610–SIU_BASE+0x068F Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 PDO
16

0 0 0 0 0 0 0 PDO
17W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 PDO
18

0 0 0 0 0 0 0 PDO
19W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-17. GPIO Pin Data Out Register 16 - 19 (SIU_GPDO16_19)

Table 6-17. SIU_GPDOn Field Descriptions

Field Description

PDOn Pin Data Out. Stores the data to be driven out on the external GPIO pin
associated with the register. If the register is read, it returns the value written.
0 VOL driven on the external GPIO pin when the pin is configured as an output.
1 VOH driven on the external GPIO pin when the pin is configured as an output.

Table 6-18. Pin Data Output Register to Pin Mapping

SIU_GPDOx_x Address Offset Pin

16_19
20_23
24_27
28_31

0x0610
0x0614
0x0618
0x061C

PB0-PB3
PB4-PB7

PB8-PB11
PB12-PB15

32_35
36_39
40_43
44_47

0x0620
0x0624
0x0628
0x062C

PC0-PC3
PC4-PC7

PC8-PC11
PC12-PC15

48_51
52_55
56_59
60_63

0x0630
0x0634
0x0638
0x063C

PD0-PD3
PD4-PD7

PD8-PD11
PD12-PD15

64_67
68_71
72_75
76_79

0x0640
0x0644
0x0648
0x064C

PE0-PE3
PE4-PE7

PE8-PE11
PE12-PE15

80_83
84_87
88_91
92_95

0x0650
0x0654
0x0658
0x065C

PF0-PF3
PF4-PF7
PF8-PF11

PF12-PF15

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

6-26 Freescale Semiconductor
Preliminary

6.3.2.15 GPIO Pin Data Input Registers (SIU_GPDI0_3–SIU_GPDI144_145)

The definition of the SIU_GPDI0_3 register is given in Figure 6-18. All other SIU_GPDIx_x registers
follow the same pattern where 4 GPDI bits are placed in a 32-bit word, with one bit per byte. Each of the
146 GPDI bits correspond to the port pin (Table 6-20). Gaps exist in this memory space where the pin is
not available in the package.

The SIU_GPDIx_x registers are read-only registers that allow software to read the input state of an external
GPIO pin. Each byte of a register represents the input state of a single external GPIO pin. If the GPIO pin
is configured as an output, and the input buffer enable (IBE) bit is set in the associated Pad Configuration
Register, the SIU_GPDIx_x register reflects the actual state of the output pin.

96_99
100_103
104_107
108_111

0x0660
0x0664
0x0668
0x066C

PG0-PG3
PG4-PG7
PG8-PG11

PG12-PG15

112_115
116_119
120_123
124_127

0x0670
0x0674
0x0678
0x067C

PH0-PH3
PH4-PH7

PH8-PH11
PH12-PH15

128_131
132_135
136_139
140_143

0x0680
0x0684
0x0688
0x068C

PJ0-PJ3
PJ4-PJ7

PJ8-PJ11
PJ12-PJ15

Offset: SIU_BASE + 0x0800–SIU_BASE+0x0891 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 PDI0 0 0 0 0 0 0 0 PDI1

W

Reset 0 0 0 0 0 0 0 U 0 0 0 0 0 0 0 U

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 PDI2 0 0 0 0 0 0 0 PDI3

W

Reset 0 0 0 0 0 0 0 U 0 0 0 0 0 0 0 U

Figure 6-18. GPIO Pin Data Input Register 0–3 (SIU_GPDI0_3)

Table 6-19. SIU_GPDIn Field Description

Field Description

PDIn Pin Data In. This bit reflects the input state on the external GPIO pin
associated with the register.
0 Signal on pin is less than or equal to VIL.
1 Signal on pin is greater than or equal to VIH.

Table 6-18. Pin Data Output Register to Pin Mapping (continued)

SIU_GPDOx_x Address Offset Pin

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 6-27
Preliminary

6.3.2.16 IMUX Select Register 0 (SIU_ISEL0)

The SIU_ISEL0 register selects the source for the EQADC trigger inputs.

Table 6-20. GPIO Pin Data Input Register to Pin Mapping

SIU_GPDIx_x Address Offset Pin

0_3
4_7

8_11
12_15

0x0800
0x0804
0x0808
0x080C

PA0–PA3
PA4–PA7
PA8–PA11

PA12–PA15

16_19
20_23
24_27
28_31

0x0810
0x0814
0x0818
0x081C

PB0–PB3
PB4–PB7
PB8–PB11

PB12–PB15

32_35
36_39
40_43
44_47

0x0820
0x0824
0x0828
0x082C

PC0–PC3
PC4–PC7
PC8–PC11

PC12–PC15

48_51
52_55
56_59
60_63

0x0830
0x0834
0x0838
0x083C

PD0–PD3
PD4–PD7
PD8–PD11

PD12–PD15

64_67
68_71
72_75
76_79

0x0840
0x0844
0x0848
0x084C

PE0–PE3
PE4–PE7
PE8–PE11

PE12–PE15

80_83
84_87
88_91
92_95

0x0850
0x0854
0x0858
0x085C

PF0–PF3
PF4–PF7

PF8–PF11
PF12–PF15

96_99
100_103
104_107
108_111

0x0860
0x0864
0x0868
0x086C

PG0–PG3
PG4–PG7

PG8–PG11
PG12–PG15

112_115
116_119
120_123
124_127

0x0870
0x0874
0x0878
0x087C

PH0–PH3
PH4–PH7
PH8–PH11

PH12–PH15

128_131
132_135
136_139
140_143

0x0880
0x0884
0x0888
0x088C

PJ0–PJ3
PJ4–PJ7
PJ8–PJ11

PJ12–PJ15

144_145 0x0890 PK0–PK1

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

6-28 Freescale Semiconductor
Preliminary

NOTE
If a PIT trigger is selected as the source of the trigger, the trigger pulse width
is two PIT clocks long. The PIT clock may be the system clock divided by
1, 2, 4, or 8, as selected by the SIU_SYSCLK[LPCLKDIV1] register. Thus
the eQADC digital filtering needs to be set appropriately.

6.3.2.17 IMUX Select Register 1 (SIU_ISEL1)

The SIU_ISEL1 selects the source for the external interrupt/DMA inputs.

Offset: SIU_BASE + 0x0900 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
TSEL3 TSEL2 TSEL1 TSEL0

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-19. IMUX Select Register 0 (SIU_ISEL0)

Table 6-21. SIU_ISEL0 Field Descriptions

Field Description

TSEL3 eQADC Trigger Input Select 3. Specifies input for eQADC trigger 3.
00 PC1 pin
01 PG1 pin
10 PIT 7
11 PIT 8

TSEL2 eQADC Trigger Input Select 2. Specifies input for eQADC trigger 2.
00 PC2 pin
01 PG2 pin
10 PIT 7
11 PIT 8

TSEL1 eQADC Trigger Input Select 1. Specifies input for eQADC trigger 1.
00 PE2 pin
01 PG3 pin
10 PIT 7
11 PIT 8

TSEL0 eQADC Trigger Input Select 0. Specifies input for eQADC trigger 0.
00 PC4 pin
01 PG4 pin
10 PIT 7
11 PIT 8

bits 8–31 Reserved.

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 6-29
Preliminary

Offset: SIU_BASE + 0x0904 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
ESEL15 ESEL14 ESEL13 ESEL12 ESEL11 ESEL10 ESEL9 ESEL8

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
ESEL7 ESEL6 ESEL5 ESEL4 ESEL3 ESEL2 ESEL1 ESEL0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-20. IMUX Select Register 1 (SIU_ISEL1)

Table 6-22. SIU_ISEL1 Field Descriptions

Field Description1

ESEL15 External IRQ Input Select 15. Specifies input for IRQ15.
00 PD4
01 PF15
10 PG14
11 PH6

ESEL14 External IRQ Input Select 14. Specifies input for IRQ14.
00 PD3
01 PF13
10 PG13
11 PH9

ESEL13 External IRQ Input Select 13. Specifies input for IRQ13.
00 PB7
01 PE2
10 PG10
11 PH8

ESEL12 External IRQ Input Select 12. Specifies input for IRQ12.
00 PB6
01 PD12
10 PG12
11 PH4

ESEL11 External IRQ Input Select 11. Specifies input for IRQ11.
00 PB12
01 PD11
10 PF11
11 PG9

ESEL10 External IRQ Input Select 10. Specifies input for IRQ10.
00 PD9
01 PF14
10 PG7
11 PC6

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

6-30 Freescale Semiconductor
Preliminary

ESEL9 External IRQ Input Select 9. Specifies input for IRQ9.
00 PA7
01 PD2
10 PF12
11 PH7

ESEL8 External IRQ Input Select 8. Specifies input for IRQ8.
00 PB9
01 PD5
10 PG5
11 PH5

ESEL7 External IRQ Input Select 7. Specifies input for IRQ7.
00 PB14
01 PD7
10 PG6
11 PC5

ESEL6 External IRQ Input Select 6. Specifies input for IRQ6.
00 PA6
01 PB8
10 PD1
11 PF10

ESEL5 External IRQ Input Select 5. Specifies input for IRQ5.
00 PA5
01 PB15
10 PD13
11 PC4

ESEL4 External IRQ Input Select 4. Specifies input for IRQ4.
00 PA4
01 PB13
10 PD15
11 PC2

ESEL3 External IRQ Input Select 3. Specifies input for IRQ3.
00 PA3
01 PB10
10 PD8
11 PC1

ESEL2 External IRQ Input Select 2. Specifies input for IRQ2.
00 PA2
01 PB5
10 PD6
11 PC0

Table 6-22. SIU_ISEL1 Field Descriptions (continued)

Field Description1

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 6-31
Preliminary

6.3.2.18 IMUX Select Register 2 (SIU_ISEL2)

The SIU_ISEL2 register specifies the source for the eMIOS[15:0] input channels, thus allowing the timer
input channels to come from the pins, or from the deserialized output of one of three DSPI modules. Each
2-bit field in this register individually controls the setting for one eMIOS input channel, but typically all
channels receive their inputs from the same source.

ESEL1 External IRQ Input Select 1. Specifies input for IRQ1.
00 PA1
01 PD14
10 PG15
11 PJ12

ESEL0 External IRQ Input Select 0. Specifies input for IRQ0.
00 PA0
01 PD0
10 PG11
11 PD10

1 Pins specified in this table must be configured as general purpose inputs to be used as external IRQs.

Offset: SIU_BASE + 0x0908 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SELEMIOS
15

SELEMIOS
14

SELEMIOS
13

SELEMIOS
12

SELEMIOS
11

SELEMIOS
10

SELEMIOS
9

SELEMIOS
8W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SELEMIOS
7

SELEMIOS
6

SELEMIOS
5

SELEMIOS
4

SELEMIOS
3

SELEMIOS
2

SELEMIOS
1

SELEMIOS
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-21. IMUX Select Register 2 (SIU_ISEL2)

Table 6-23. SIU_ISEL2 Field Descriptions

Field Description

SELEMIOS15 eMIOS[15] Input Select. The source of the input for the eMIOS[15] timer channel is selected
according to the SELEMIOS15 field.
00 eMIOS[15] input pin
01 DSPI_A deserialized output
10 DSPI_B deserialized output
11 DSPI_C deserialized output

SELEMIOS14 eMIOS[14] Input Select. The source of the input for the eMIOS[14] timer channel is selected
according to the SELEMIOS14 field.
00 eMIOS[14] input pin
01 DSPI_A deserialized output
10 DSPI_B deserialized output
11 DSPI_C deserialized output

Table 6-22. SIU_ISEL1 Field Descriptions (continued)

Field Description1

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

6-32 Freescale Semiconductor
Preliminary

SELEMIOS13 eMIOS[13] Input Select. The source of the input for the eMIOS[13] timer channel is selected
according to the SELEMIOS13 field.
00 eMIOS[13] input pin
01 DSPI_A deserialized output
10 DSPI_B deserialized output
11 DSPI_C deserialized output

SELEMIOS12 eMIOS[12] Input Select. The source of the input for the eMIOS[12] timer channel is selected
according to the SELEMIOS12 field.
00 eMIOS[12] input pin
01 DSPI_A deserialized output
10 DSPI_B deserialized output
11 DSPI_C deserialized output

SELEMIOS11 eMIOS[11] Input Select. The source of the input for the eMIOS[11] timer channel is selected
according to the SELEMIOS11 field.
00 eMIOS[11] input pin
01 DSPI_A deserialized output
10 DSPI_B deserialized output
11 DSPI_C deserialized output

SELEMIOS10 eMIOS[10] Input Select. The source of the input for the eMIOS[10] timer channel is selected
according to the SELEMIOS10 field.
00 eMIOS[10] input pin
01 DSPI_A deserialized output
10 DSPI_B deserialized output
11 DSPI_C deserialized output

SELEMIOS9 eMIOS[9] Input Select. The source of the input for the eMIOS[9] timer channel is selected
according to the SELEMIOS9 field.
00 eMIOS[9] input pin
01 DSPI_A deserialized output
10 DSPI_B deserialized output
11 DSPI_C deserialized output

SELEMIOS8 eMIOS[8] Input Select. The source of the input for the eMIOS[8] timer channel is selected
according to the SELEMIOS8 field.
00 eMIOS[8] input pin
01 DSPI_A deserialized output
10 DSPI_B deserialized output
11 DSPI_C deserialized output

SELEMIOS7 eMIOS[7] Input Select. The source of the input for the eMIOS[7] timer channel is selected
according to the SELEMIOS7 field.
00 eMIOS[7] input pin
01 DSPI_A deserialized output
10 DSPI_B deserialized output
11 DSPI_C deserialized output

SELEMIOS6 eMIOS[6] Input Select. The source of the input for the eMIOS[6] timer channel is selected
according to the SELEMIOS6 field.
00 eMIOS[6] input pin
01 DSPI_A deserialized output
10 DSPI_B deserialized output
11 DSPI_C deserialized output

Table 6-23. SIU_ISEL2 Field Descriptions (continued)

Field Description

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 6-33
Preliminary

SELEMIOS5 eMIOS[5] Input Select. The source of the input for the eMIOS[5] timer channel is selected
according to the SELEMIOS5 field.
00 eMIOS[5] input pin
01 DSPI_A deserialized output
10 DSPI_B deserialized output
11 DSPI_C deserialized output

SELEMIOS4 eMIOS[4] Input Select. The source of the input for the eMIOS[4] timer channel is selected
according to the SELEMIOS4 field.
00 eMIOS[4] input pin
01 DSPI_A deserialized output
10 DSPI_B deserialized output
11 DSPI_C deserialized output

SELEMIOS3 eMIOS[3] Input Select. The source of the input for the eMIOS[3] timer channel is selected
according to the SELEMIOS3 field.
00 eMIOS[3] input pin
01 DSPI_A deserialized output
10 DSPI_B deserialized output
11 DSPI_C deserialized output

SELEMIOS2 eMIOS[2] Input Select. The source of the input for the eMIOS[2] timer channel is selected
according to the SELEMIOS2 field.
00 eMIOS[2] input pin
01 DSPI_A deserialized output
10 DSPI_B deserialized output
11 DSPI_C deserialized output

SELEMIOS1 eMIOS[1] Input Select. The source of the input for the eMIOS[1] timer channel is selected
according to the SELEMIOS1 field.
00 eMIOS[1] input pin
01 DSPI_A deserialized output
10 DSPI_B deserialized output
11 DSPI_C deserialized output

SELEMIOS0 eMIOS[0] Input Select. The source of the input for the eMIOS[0] timer channel is selected
according to the SELEMIOS0 field.
00 eMIOS[0] input pin
01 DSPI_A deserialized output
10 DSPI_B deserialized output
11 DSPI_C deserialized output

Table 6-23. SIU_ISEL2 Field Descriptions (continued)

Field Description

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

6-34 Freescale Semiconductor
Preliminary

6.3.2.19 Chip Configuration Register (SIU_CCR)

6.3.2.20 External Clock Control Register (SIU_ECCR)

The SIU_ECCR controls the timing relationship between the system clock and the external clocks,
CLKOUT. All bits and fields in the SIU_ECCR are read/write and reset by the asynchronous reset signal.

Offset: SIU_BASE + 0x0980 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MATCH DISNEX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U U

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 TES
T

LOC
K

0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-22. Chip Configuration Register (SIU_CCR)

Table 6-24. SIU_CCR Field Descriptions

Field Description

bits 0–13 Reserved.

MATCH Compare Register Match. The MATCH bit is a read-only bit that holds the value of the match input
signal to the SIU. The match input is asserted if the values in the SIU_CMPAH/SIU_CMPAL and
SIU_CMPBH/SIU_CMPBL are equal.
0 Match input signal is negated.
1 Match input signal is asserted.

DISNEX Disable Nexus. The DISNEX bit is a read-only bit that holds the value of the Nexus disable input
signal to the SIU. When system reset negates, the value in this bit depends on the censorship
control word and the boot configuration bits.
0 Nexus disable input signal negated.
1 Nexus disable input signal asserted.

bits 16–23 Reserved.

TESTLOCK TEST Lock. The TESTLOCK bit prevents access to Freescale internal test features.
These internal test features are enabled by writing to reserved test bits in the device. Setting the
TESTLOCK bit locks the test bits so that they cannot be changed inadvertently by runaway code.
Customer initialization code should always set this bit.
0 Internal test features could be enabled.
1 Internal test features are disabled.

bits 25–31 Reserved.

Note: Reserved bit 30 is writeable, but writing to this bit has no effect other than to update the
value of the register. For future compatibility, this bit should be written to zero. This bit is
reset with POR only.

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 6-35
Preliminary

6.3.2.21 Compare A High Register (SIU_CMPAH)

The SIU_CMPAH register holds the 32-bit value that is compared against the value in the SIU_CMPBH
register. The CMPAH field is read/write and reset by the asynchronous reset signal.

Offset: SIU_BASE + 0x0984 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EBDF

W

Reset 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

Figure 6-23. External Clock Control Register (SIU_ECCR)

Table 6-25. SIU_ECCR Field Descriptions

Field Description

bits 0–29 Reserved.

Note: Reserved bits 16–24 and 28 are writeable, but writing to these bits has no effect other than to
update the value of the register. For future compatibility, these bits should be written to zeros.

EBDF External Bus Division Factor. Specifies frequency ratio between system clock and external clock,
CLKOUT. The EBDF field must not be changed during an external bus access or while an access is
pending. The CLKOUT frequency is divided from the system clock frequency according to the
descriptions below.
00 Divide by 1
01 Divide by 2
10 Reserved
11 Divide by 4

Note: The reset value of the EBDF field is divide-by-2.

Note: The EBDF field must not be modified while an external bus transaction is in progress.

Note: If EBDF is equal to 0x00 and SYSCLKDIV is not equal to 0x00, then the CLKOUT pin will not
have a nominal 50% duty cycle.

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

6-36 Freescale Semiconductor
Preliminary

6.3.2.22 Compare A Low Register (SIU_CMPAL)

The SIU_CMPAL register holds the 32-bit value that is compared against the value in the SIU_CMPBL
register. The CMPAL field is read/write and reset by the asynchronous reset signal.

6.3.2.23 Compare B High Register (SIU_CMPBH)

The SIU_CMPBH register holds the 32-bit value that is compared against the value in the SIU_CMPAH
register. The CMPBH field is read/write and reset by the asynchronous reset signal.

Offset: SIU_BASE + 0x0988 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CMPAH

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CMPAH

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-24. Compare A High Register (SIU_CMPAH)

Offset: SIU_BASE + 0x098C Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CMPAL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CMPAL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-25. Compare A Low Register (SIU_CMPAL)

Offset: SIU_BASE + 0x0990 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CMPBH

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CMPBH

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-26. Compare B High Register (SIU_CMPBH)

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 6-37
Preliminary

6.3.2.24 Compare B Low Register (SIU_CMPBL)

The SIU_CMPBL register holds the 32-bit value that is compared against the value in the SIU_CMPAL
register. The CMPBL field is read/write and reset by the asynchronous reset signal.

6.3.2.25 System Clock Register (SIU_SYSCLK)

The SIU_SYSCLK register controls the source for the system clock, the divider for the system clock, and
eight fields that control the clock divider for groups of peripherals. For a listing of which peripherals are
associated with which LPCLKDIV bit on MPC5510, see Section 3.4.5, “Peripheral Clock Dividers.”

Offset: SIU_BASE + 0x0994 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CMPBL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CMPBL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-27. Compare B Low Register (SIU_CMPBL)

Offset: SIU_BASE + 0x09A0 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SYSCLKSEL SYSCLKDIV

SWT
CLKSEL

0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
LPCLKDIV7 LPCLKDIV6 LPCLKDIV5 LPCLKDIV4 LPCLKDIV3 LPCLKDIV2 LPCLKDIV1 LPCLKDIV0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-28. System Clock Register (SIU_SYSCLK)

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

6-38 Freescale Semiconductor
Preliminary

6.3.2.26 Halt Register (SIU_HLT)

The SIU_HLT register is used to disable the clocks to various modules. Each bit drives a separate halt
request to the associated peripheral. Table 6-28 shows these connected outputs.

Table 6-26. SIU_SYSCLK Field Descriptions

Field Description

SYSCLKSEL System Clock Select. The SYSCLKSEL bit selects the source for the system clock.
00 System clock supplied by 16 MHz IRC
01 System clock supplied by XOSC
10 System clock supplied by PLL
11 Reserved (defaults to 16 MHz IRC)

SYSCLKDIV System Clock Divide. The SYSCLKDIV bits select the divider value for the system clock. The
SYSCLKDIV divider is required in addition to the RFD to allow the other sources for the system clock
(16 MHz IRC and OSC) to be divided to slowest frequencies to improve power.
00 Divide by 1
01 Divide by 2
10 Divide by 4
11 Divide by 8

SWTCLKSEL Software Watchdog Timer Clock Select. The SWTCLKSEL bit determines whether the software
watchdog timer counter uses 16 MHz IRC or the system clock.
0 System Clock (Note: out of reset, the system clock is driven by the 16 MHz IRC)
1 16 MHz IRC

bits 5–15 Reserved.

LPCLKDIVn Low-Power Peripheral Clock Divides. The LPCLKDIV bits select the divider values for each peripheral
group. Table 6-27 defines the module groups that are affect by LPCLKDIVn.
00 Divide by 1
01 Divide by 2
10 Divide by 4
11 Divide by 8

Table 6-27. LPCLKDIV Module Groups

LPCLKDIVn Modules

LPCLKDIV0 FlexCAN_A, DSPI_A

LPCLKDIV1 ESCI_A, I2C_A, PIT

LPCLKDIV2 FlexCAN_B-F

LPCLKDIV3 DSPI_B-D

LPCLKDIV4 ESCI_B-H

LPCLKDIV5 eMIOS

LPCLKDIV6 MLB

LPCLKDIV7 Reserved

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 6-39
Preliminary

6.3.2.27 Halt Acknowledge Register (SIU_HLTACK)

The SIU_HLTACK bits indicate that the peripheral requested to halt via the HLT bit has completed the halt
process and has entered a halted state with the peripheral clocks disabled. The HLTACK bits are read-only

Offset: SIU_BASE + 0x09A4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
HLT

W

Reset 0

Figure 6-29. Halt Register (SIU_HLT)

Table 6-28. HALT Register Field Descriptions

Field Description

HLT Halt Selects. The HLT bits halt specific modules. Each bit corresponds to a separate module, as mapped
below.
0 Reserved
1 Reserved
2 FLEXRAY
3 DMA
4 Reserved
5 Reserved
6 NPC
7 EBI
8 EQADC
9 MLB
10 EMIOS200
11 Reserved
12 I2C_A
13 PIT
14 FLEXCAN_F
15 FLEXCAN_E
16 FLEXCAN_D
17 FLEXCAN_C
18 FLEXCAN_B
19 FLEXCAN_A
20 DSPI_D
21 DSPI_C
22 DSPI_B
23 DSPI_A
24 ESCI_H
25 ESCI_G
26 ESCI_F
27 ESCI_E
28 ESCI_D
29 ESCI_C
30 ESCI_B
31 ESCI_A

Note: Writes to reserved HLT bits 4, 5, and 11 are reflected in the reserved HLTACK bits 4, 5, and 11.

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

6-40 Freescale Semiconductor
Preliminary

and writes have no effect. The halt acknowledge from each peripheral is connected, as shown in
Table 6-29.

6.3.2.28 Parallel GPIO Pin Data Output Register 0 (SIU_PGPDO0)

The SIU_PGPDO0 register contains the parallel GPIO pin data output for PB[0:15].

Offset: SIU_BASE + 0x09A8 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
HLTACK

W

Reset 0

Figure 6-30. Halt Acknowledge Register (SIU_HLTACK)

Table 6-29. HLTACK Register Field Descriptions

Field Description

HLTACK Halt Flags. Each bit corresponds to a separate module, as mapped below.
0 e200z1
1 e200z0
2 FLEXRAY
3 DMA
4 Reserved
5 Reserved
6 NPC
7 EBI
8 EQADC
9 MLB
10 EMIOS200
11 Reserved
12 I2C_A
13 PIT
14 FLEXCAN_F
15 FLEXCAN_E
16 FLEXCAN_D
17 FLEXCAN_C
18 FLEXCAN_B
19 FLEXCAN_A
20 DSPI_D
21 DSPI_C
22 DSPI_B
23 DSPI_A
24 ESCI_H
25 ESCI_G
26 ESCI_F
27 ESCI_E
28 ESCI_D
29 ESCI_C
30 ESCI_B
31 ESCI_A

Note: Writes to reserved HLT bits 4, 5, and 11 are reflected in the reserved HLTACK bits 4, 5, and 11.

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 6-41
Preliminary

Reads and writes to this register are coherent with the registers SIU_GPDO16_19, SIU_GPDO20_23,
SIU_GPDO24_27, and SIU_GPDO28_31.

NOTE
On MPC5510, the port A pins are general-purpose inputs only. Therefore,
there are no parallel GPIO pin data output register bits for port A.

6.3.2.29 Parallel GPIO Pin Data Output Register 1 (SIU_PGPDO1)

The SIU_PGPDO1 register contains the parallel GPIO pin data output for PC0:PC15 and PD0:PD15.

Reads and writes to this register are coherent with the registers SIU_GPDO32_35, SIU_GPDO36_39,
SIU_GPDO40_43, SIU_GPDO44_47, SIU_GPDO48_51, SIU_GPDO52_55, SIU_GPDO56_59, and
SIU_GPDO60_63.

6.3.2.30 Parallel GPIO Pin Data Output Register 2 (SIU_PGPDO2)

The SIU_PGPDO2 register contains the Parallel GPIO Pin Data Output for PE0:PE15 and PF0:PF15.

Reads and writes to this register are coherent with the registers SIU_GPDO64_67, SIU_GPDO68_71,
SIU_GPDO72_75, SIU_GPDO76_79, SIU_GPDO80_83, SIU_GPDO84_87, SIU_GPDO88_91, and
SIU_GPDO92_95.

Offset: SIU_BASE + 0xC00 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PB0:PB15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-31. Parallel GPIO Pin Data Output Register 0 (SIU_PGPDO0)

Offset: SIU_BASE + 0x0C04 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PC0:PC15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PD0:PD15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-32. Parallel GPIO Pin Data Output Register 1 (SIU_PGPDO1)

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

6-42 Freescale Semiconductor
Preliminary

6.3.2.31 Parallel GPIO Pin Data Output Register 3 (SIU_PGPDO3)

The SIU_PGPDO3 register contains the parallel GPIO pin data output for PG0:PG15 and PH0:PH15.

Reads and writes to this register are coherent with the registers SIU_GPDO96_99, SIU_GPDO100_103,
SIU_GPDO104_107, SIU_GPDO108_111, SIU_GPDO112_115, SIU_GPDO116_119,
SIU_GPDO120_123, and SIU_GPDO124_127.

6.3.2.32 Parallel GPIO Pin Data Output Register 4 (SIU_PGPDO4)

The SIU_PGPDO4 register contains the parallel GPIO pin data output for PJ0:PJ15.

Reads and writes to this register are coherent with the registers SIU_GPDO18_131, SIU_GPDO132_135,
SIU_GPDO136_139, and SIU_GPDO140_143.

NOTE
On MPC5510, the port K pins are only inputs. Therefore, there are no
parallel GPIO pin data output bits associated with port K.

Offset SIU_BASE + 0x0C08 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PE0:PE15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PF0:PF15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-33. Parallel GPIO Pin Data Output Register 2 (SIU_PGPDO2)

Offset: SIU_BASE + 0x0C0C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PG0:PG15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PH0:PH15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-34. Parallel GPIO Pin Data Output Register 3 (SIU_PGPDO3)

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 6-43
Preliminary

6.3.2.33 Parallel GPIO Pin Data Input Register 0 (SIU_PGPDI0)

Reads to the SIU_PGPDI0 register provide the parallel GPIO pin data input for PA0:PA15 and PB0:PB15.
Writes have no effect.

Reads of this register are coherent with the registers SIU_GPDI0_3, SIU_GPDI4_7, SIU_GPDI8_11,
SIU_GPDI12_15, SIU_GPDI16_19, SIU_GPDI20_23, SIU_GPDI24_27, and SIU_GPDI28_31.

6.3.2.34 Parallel GPIO Pin Data Input Register 1 (SIU_PGPDI1)

Reads to the SIU_PGPDI1 register provide the parallel GPIO pin data input for PC0:PC15 and PD0:PD15.
Writes have no effect.

Reads of this register are coherent with the registers SIU_GPDI32_35, SIU_GPDI36_39,
SIU_GPDI40_43, SIU_GPDI44_47, SIU_GPDI48_51, SIU_GPDI52_55, SIU_GPDI56_59, and
SIU_GPDI60_63.

Offset: SIU_BASE + 0x0C10 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PJ0:PJ15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-35. Parallel GPIO Pin Data Output Register 4 (SIU_PGPDO4)

Offset: SIU_BASE + 0x0C40 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PA0:PA15

W

Reset U U U U U U U U U U U U U U U U

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PB0:PB15

W

Reset U U U U U U U U U U U U U U U U

Figure 6-36. Parallel GPIO Pin Data Input Register 0 (SIU_PGPDI0)

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

6-44 Freescale Semiconductor
Preliminary

6.3.2.35 Parallel GPIO Pin Data Input Register 2 (SIU_PGPDI2)

Reads to the SIU_PGPDI2 register provide the parallel GPIO pin data input for PE0:PE15 and PF0:PF15.
Writes have no effect.

Reads of this register are coherent with the registers SIU_GPDI64_67, SIU_GPDI68_71,
SIU_GPDI72_75, SIU_GPDI76_79, SIU_GPDI80_83, SIU_GPDI84_87, SIU_GPDI88_91, and
SIU_GPDI92_95.

6.3.2.36 Parallel GPIO Pin Data Input Register 3 (SIU_PGPDI3)

Reads to the SIU_PGPDI2 register provide the parallel GPIO pin data input for PG0:PG15 and PH0:PH15.
Writes have no effect.

Reads of this register are coherent with the registers SIU_GPDI96_99, SIU_GPDI100_103,
SIU_GPDI104_107, SIU_GPDI108_111, SIU_GPDI112_115, SIU_GPDI116_119, SIU_GPDI120_123,
and SIU_GPDI124_127.

Offset: SIU_BASE + 0x0C44 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PC0:PC15

W

Reset U U U U U U U U U U U U U U U U

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PD0:PD15

W

Reset U U U U U U U U U U U U U U U U

Figure 6-37. Parallel GPIO Pin Data Input Register 1 (SIU_PGPDI1)

Offset: SIU_BASE + 0x0C48 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PE0:PE15

W

Reset U U U U U U U U U U U U U U U U

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PF0:PF15

W

Reset U U U U U U U U U U U U U U U U

Figure 6-38. Parallel GPIO Pin Data Input Register 2 (SIU_PGPDI2)

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 6-45
Preliminary

6.3.2.37 Parallel GPIO Pin Data Input Register 4 (SIU_PGPDI4)

Reads to the SIU_PGPDI4 register provide the parallel GPIO pin data input for PJ0:PJ15 and PK0:PK1.
Writes have no effect.

Reads of this register are coherent with the registers SIU_GPDI128_131, SIU_GPDI132_135,
SIU_GPDI136_139, SIU_GPDI140_143, and SIU_GPDI144_145.

6.3.2.38 Masked Parallel GPIO Pin Data Output Registers

The purpose of these registers is to allow any combination of bits in a 16-bit parallel GPIO pin data output
port to be updated in a single 32-bit write operation, while allowing other bits to maintain their previous
state. This is accomplished by grouping each 16-bit port with a 16-bit mask register, and only updating
those bits in the data register for which the corresponding mask bit is set.

For example, if the current state of the port B parallel GPIO pin data output register is 0x1234 and you
want to change only bits [12:15] (i.e., the 4) to be an 8, then a 32-bit write with a mask value of 0x000C
and data value of 0x0008 (i.e. 0x000C_0008) would be performed.

This register always reads as 0.

6.3.2.38.1 Masked Parallel GPIO Pin Data Output Register 1 (SIU_MPGPDO1)

The SIU_MPGPDO1 register contains the Masked Parallel GPIO Pin Data Output for PB[0:15].

Offset: SIU_BASE + 0x0C4C Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PG0:PG15

W

Reset U U U U U U U U U U U U U U U U

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PH0:PH15

W

Reset U U U U U U U U U U U U U U U U

Figure 6-39. Parallel GPIO Pin Data Input Register 3 (SIU_PGPDI3)

Offset: SIU_BASE + 0x0C50 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PJ0:PJ15

W

Reset U U U U U U U U U U U U U U U U

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PK0:PK1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset U U 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-40. Parallel GPIO Pin Data Input Register 4 (SIU_PGPDI4)

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

6-46 Freescale Semiconductor
Preliminary

Writes to this register are coherent with the registers SIU_GPDO16_19, SIU_GPDO20_23,
SIU_GPDO24_27, and SIU_GPDO28_31.

6.3.2.38.2 Masked Parallel GPIO Pin Data Output Register 2 (SIU_MPGPDO2)

The SIU_MPGPDO2 register contains the masked parallel GPIO pin data output for PC[0:15].

Writes to this register are coherent with the registers SIU_GPDO32_35, SIU_GPDO36_39,
SIU_GPDO40_43, and SIU_GPDO44_47.

6.3.2.38.3 Masked Parallel GPIO Pin Data Output Register 3 (SIU_MPGPDO3)

The SIU_MPGPDO3 register contains the masked parallel GPIO pin data output for PD[0:15].

Writes to this register are coherent with the registers SIU_GPDO48_51, SIU_GPDO52_55,
SIU_GPDO56_59, and SIU_GPDO60_63.

Offset: SIU_BASE + 0x0C84 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PB_MASK[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PB[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-41. Masked Parallel GPIO Pin Data Output Register 1 (SIU_MPGPDO1)

Offset: SIU_BASE + 0x0C88 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PC_MASK[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PC[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-42. Masked Parallel GPIO Pin Data Output Register 2 (SIU_MPGPDO2)

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 6-47
Preliminary

6.3.2.38.4 Masked Parallel GPIO Pin Data Output Register 4 (SIU_MPGPDO4)

The SIU_MPGPDO4 register contains the masked parallel GPIO pin data output for PE[0:15].

Writes to this register are coherent with registers SIU_GPDO64_67, SIU_GPDO68_71,
SIU_GPDO72_75, and SIU_GPDO76_79.

6.3.2.38.5 Masked Parallel GPIO Pin Data Output Register 5 (SIU_MPGPDO5)

The SIU_MPGPDO5 register contains the masked parallel GPIO pin data output for PF[0:15].

Writes to this register are coherent with registers SIU_GPDO80_83, SIU_GPDO84_87,
SIU_GPDO88_91, and SIU_GPDO92_95.

Offset: SIU_BASE + 0x0C8C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PD_MASK[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PD[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-43. Masked Parallel GPIO Pin Data Output Register 3 (SIU_MPGPDO3)

Offset: SIU_BASE + 0x0C90 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PE_MASK[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PE[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-44. Masked Parallel GPIO Pin Data Output Register 4 (SIU_MPGPDO4)

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

6-48 Freescale Semiconductor
Preliminary

6.3.2.38.6 Masked Parallel GPIO Pin Data Output Register 6 (SIU_MPGPDO6)

The SIU_MPGPDO6 register contains the masked parallel GPIO pin data output for PG[0:15]

Writes to this register are coherent with registers SIU_GPDO96_99, SIU_GPDO100_103,
SIU_GPDO104_107, and SIU_GPDO108_111.

6.3.2.38.7 Masked Parallel GPIO Pin Data Output Register 7 (SIU_MPGPDO7)

The SIU_MPGPDO7 register contains the masked parallel GPIO pin data output for PH[0:15].

Writes to this register are coherent with registers SIU_GPDO112_115, SIU_GPDO116_119,
SIU_GPDO120_123, and SIU_GPDO124_127.

Offset: SIU_BASE + 0x0C94 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PF_MASK[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PF[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-45. Masked Parallel GPIO Pin Data Output Register 5 (SIU_MPGPDO5)

Offset: SIU_BASE + 0x0C98 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PG_MASK[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PG[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-46. Masked Parallel GPIO Pin Data Output Register 6 (SIU_MPGPDO6)

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 6-49
Preliminary

6.3.2.38.8 Masked Parallel GPIO Pin Data Output Register 8 (SIU_MPGPDO8)

The SIU_MPGPDO8 register contains the masked parallel GPIO pin data output for PJ[0:15].

Writes to this register are coherent with registers SIU_GPDO128_131, SIU_GPDO132_135,
SIU_GPDO136_139, and SIU_GPDO140_143.

6.4 Functional Description
The following sections provide an overview of the SIU operation.

6.4.1 System Configuration

6.4.1.1 Boot Configuration

During the assertion of RESET, the BOOTCFG pin is used to load a value into the SIU_RSR[BOOTCFG]
bit, so the BAM program can determine the location of the reset configuration half word (RCHW), the boot
mode to be initiated, and whether to initiate a CAN or SCI boot. See Section 32.3.3.1.1, “Reset
Configuration Halfword Read” of the BAM chapter for detail on the RCHW. Table 6-30 defines the boot
modes specified by the SIU_RST[BOOTCFG] field.

Offset: SIU_BASE + 0xC9C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PH_MASK[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PH[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-47. Masked Parallel GPIO Pin Data Output Register 7 (SIU_MPGPDO7)

Offset: SIU_BASE + 0x0CA0 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PJ_MASK[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PJ[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-48. Masked Parallel GPIO Pin Data Output Register 8 (SIU_MPGPDO8)

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

6-50 Freescale Semiconductor
Preliminary

6.4.1.2 Pad Configuration

The pad configuration registers (SIU_PCR) in the SIU allow software control of the static electrical
characteristics of external pins. The PCRs can select the multiplexed function of a pin, selection of pullup
or pulldown devices, the slew rate of I/O signals, open drain mode for output pins, and hysteresis.

6.4.2 Reset Control

The reset controller logic is located in the SIU. See Section 7.4, “Reset Configuration,” for reset operation
details.

6.4.3 External Interrupt

There are sixteen external interrupt inputs, IRQ0–IRQ15, to the SIU. The IRQn inputs can be configured
for rising- or falling-edge events or both. Each IRQn input has a corresponding flag bit in the external
interrupt status register (SIU_EISR). The flag bits for the IRQ4–IRQ15 inputs are ORed together to form
one interrupt request to the interrupt controller. The flag bits for the IRQ1–IRQ4 inputs can generate an
interrupt request to the interrupt controller or a DMA transfer request to the DMA controller. The flag bit
for IRQ0 can generate an interrupt request if SIU_DIRSR[31] is 0, or is disabled if SIU_DIRSR[0] is 1.
Figure 6-49 shows the DMA and interrupt request connections to the interrupt and DMA controllers.

Any pin used as an external interrupt must be configured in its SIU_PCR as a GPIO in input mode. In
addition, either rising and/or falling edge must be enabled in the SIU_IREER, or SIU_IFEER.

Two external inputs from pins PD11 and PD10 connect through the SIU to the critical interrupt input to
the Z0 and Z1 cores, respectively. These signals should be used as non maskable interrupt (NMI) inputs.

The SIU contains an overrun interrupt enable for each IRQ and one combined overrun interrupt request to
the interrupt controller which is the logical OR of the individual overrun requests’ flags. Only the
combined overrun interrupt request is used in the device, and the individual overrun requests are not
connected.

Each IRQ pin has a programmable filter for rejecting glitches on the IRQ signals. The filter length for the
IRQ pins is specified in the external IRQ digital filter register (SIU_IDFR).

Table 6-30. SIU_RSR[BOOTCFG] Configuration

Value Meaning

0b0 Boot from internal flash memory

0b1 CAN/SCI boot

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 6-51
Preliminary

Figure 6-49. SIU DMA/Interrupt Request Diagram

6.4.4 GPIO Operation

All GPIO functionality is provided by the SIU. Each pin that has GPIO functionality has an associated Pin
Configuration Register in the SIU where the GPIO function is selected for the pin. In addition, each pin
with GPIO functionality has an input data register (SIU_GPDIx_x) and an output data register
(SIU_GPDOx_x). The SIU also implements several parallel GPIO registers (SIU_PGPDOx_x and
SIU_PGPDIx_x) that can be used to access up to 32 GPIO bits in a single- and word-sized accesses. The
values read/written to these parallel register is coherent with the data read/written to the SIU_GPDOx_x
and SIU_GPDIx_x registers.

6.4.5 Internal Multiplexing

The IMUX Select Registers (SIU_ISELx) provide selection of the input source for the eQADC external
trigger inputs and the SIU external interrupts.

6.4.5.1 eQADC External Trigger Input Multiplexing

The four eQADC external trigger inputs can be connected to two different external pins or one of two PIT
channels. The input source for each eQADC external trigger is individually specified in the IMUX Select
Register 0 (SIU_ISEL0). Figure 6-50 gives an example of the multiplexing of an eQADC external trigger
input. As shown in the figure, the ETRIG[0] input of the eQADC can be connected to the PC4 pin, the PG4
pin, the PIT7 channel, or the PIT8 channel. Remaining ETRIG inputs are multiplexed in the same manner.

•••• Interrupt
controller

D
M

A
/In

te
rr

up
t

S
e

le
ct

EIF0

EIF1

EIF2

EIF3

EIF4

EIF15

IMUX

Interrupt
request

DMA
request

eDMA

OVF0

OVF1

OVF15

SIU_OSR

SIU_EISR

External
IRQ pins or

internal
sources

••
•

•
•

SIU_DIRSR
SIU

NMI1

NMI0

PD11

PD10

•••

Secondary
CPU

Primary
CPU

••

Overrun
request Critical

interrupt

EIF5–EIF15

DIRS1

DIRS2

DIRS3

DIRS4

DIRS1
DIRS2
DIRS3
DIRS4

DIRS1

DIRS2

DIRS3

DIRS4

System Integration Unit (SIU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

6-52 Freescale Semiconductor
Preliminary

Figure 6-50. Four-to-One Internal Multiplexing Block Diagram

6.4.5.2 SIU External Interrupt Input Multiplexing

The 16 SIU external interrupt inputs can be connected to one of four external pins. The input source for
each SIU external interrupt is individually specified in the IMUX Select Register 1 (SIU_ISEL1).
Figure 6-51 shows an example of the multiplexing of an SIU external interrupt input. As shown in the
figure, the IRQ[0] input of the SIU can be connected to the PA0 pin, PD0 pin, PD10, or PG11 pin. The
remaining IRQ inputs are multiplexed in the same manner.

Figure 6-51. SIU External Interrupt Input Multiplexing

ETRIG[0]

PC4

PG4

PIT7 Channel

PIT8 Channel

SIU_ISEL0[TSEL0]

SIU

IRQ[0]

PA0

PD0

PG11

PD10

SIU_ISEL1[30:31]

SIU

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 7-1
 Preliminary

Chapter 7
Reset

7.1 Introduction
The reset sources supported in the MPC5510 are:

• Power-on reset (POR)

• Low-voltage inhibit (LVI) reset

• External reset

• Loss-of-lock reset

• Loss-of-clock reset

• Watchdog timer

• JTAG reset

• Checkstop reset (both Z1 and Z0 cores)

• Software-system reset

All reset sources are processed by the reset controller, which is located in the SIU module (Chapter 6,
“System Integration Unit (SIU)”). The reset controller monitors the reset input sources and, upon detection
of a reset event, resets internal logic and controls the assertion of the RESET pin.

The MCU is clocked by the 16 MHz IRC clock after any reset.

The reset status register (SIU_RSR) gives the source, or sources, of the last reset and is updated for all reset
sources except JTAG reset

The BOOTCFG pin controls the MCU boot sequence after the POR or if the Z1 reset vector points to the
BAM. If the pin is driven low during the MCU reset, the MCU boots from internal flash and the Reset
Configuration Halfword (RCHW) controls the boot sequence. The RCHW needs to be programmed by
user in internal flash in one of predefined locations together with the user application start address.

If the pin is driven high, the BAM executes serial boot sequence.

See Chapter 32, “Boot Assist Module (BAM) for more details about the boot procedures.

7.2 External Signal Description.
Refer to Table 2-1 and Section 2.7, “Detailed External Signal Descriptions,” for signal properties.

Reset

MPC5510 Microcontroller Family Reference Manual, Rev. 1

7-2 Freescale Semiconductor
 Preliminary

7.2.1 Reset (RESET)

This pin provides the system reset. It is an open-drain, active-low bidirectional pin. It acts as an input to
initialize the MCU to a known start-up state, and an output when an internal MCU function causes a reset.
Externally asserting the RESET pin will asynchronously reset the chip. The chip will remain in reset as
long as the external RESET pin is asserted. Any internal reset event will assert the RESET pin for as long
as the reset event is active. When the internal reset sources are negated, the RESET pin will be asserted by
the reset controller for a predefined time (2400 clocks), then the reset controller will stop asserting the
RESET pin. After another predefined time, the RESET pin is sampled, and if still asserted then an external
reset request is assumed. When the RESET pin is sampled high (the pin is no longer being driven low by
the MPC5510 reset logic or by external logic that might be requesting reset), the reset configuration pin
(pin PD2) is sampled and the internal reset to the chip negates.

7.2.2 Boot Configuration (BOOTCFG)

The BOOTCFG pin (pin name PD2 in package diagrams and signal lists) is used to determine the boot
mode initiated by the BAM program. The pin state during reset is latched in the SIU_RSR[BOOTCFG]
field. The BAM program uses the BOOTCFG field to determine whether initiate internal flash boot mode
or a CAN or SCI “serial” boot.

Refer to Section 6.3.2.2, “Reset Status Register (SIU_RSR),” and Section 6.4.1.1, “Boot Configuration,”
for more information.

NOTE
The reset controller latches the state of the BOOTCFG pin into the
SIU_RSR register 4 clock cycles prior to the negation of RESET.

7.3 Functional Description

7.3.1 Z1, Z0 Cores Reset Vectors

The reset vectors for the Z1 and Z0 cores in the MPC5510 MCU are controlled via the Z1VEC and Z0VEC
registers in the Clock, Reset, and Power control (CRP) module. The power-on reset values for the Z1VEC
and Z0VEC registers point to the first instruction of the BAM program.

The Z0 core is disabled after the reset occurs and Z1 is active. Thus, following the reset, the Z1 core starts
to execute the BAM code. See Chapter 32, “Boot Assist Module (BAM) for more details about the boot
process.

The values in the Z1VEC and Z0VEC registers can be changed so the Z1 and Z0 cores begin code
execution at any desired memory location after any exit from Sleep. This can reduce the start-up time upon
a low-power mode exit by pointing the cores directly to a low-power mode recovery routine.

Reset

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 7-3
 Preliminary

7.3.2 Reset Sources

7.3.2.1 Power-on Reset (POR)

The internal power-on reset signal is asserted when the voltage on the 5 V VDDA supply is below defined
values. See the MPC5510 Microcontroller Family Data Sheet and Section 7.3.2.2, “Low-Voltage Inhibit
(LVI) Resets.”

7.3.2.2 Low-Voltage Inhibit (LVI) Resets

The internal LVI reset signals are asserted when the voltage on the corresponding supply is below defined
values. The following are the LVI resets:

• LVI15S: LVI on 1.5 V supply

• LVI33S: LVI on 3.3 V supply (used for 3.3 V power to internal I/O pad logic)

• LVI33SYNS: LVI on 3.3 V supply (used for VDDSYN)

• LVI5S: LVI on 5 V VDDA supply (nominal trip point VLV5A)

• LVI5CS: LVI on 5 V VDDA supply (nominal trip point 4.0 V used during crank operation)

7.3.2.3 External Reset

When the reset controller detects assertion of the RESET pin, the internal reset signal is asserted. The
SIU_RSR[ERS] bit is set, and all other reset status bits in the SIU_RSR are cleared.

7.3.2.4 Loss-of-Lock Reset

A loss-of-lock reset occurs when the PLL loses lock and the loss-of-lock reset enable (LOLRE) bit in the
PLL enhanced synthesizer control register 2 (ESYNCR2) is set. The internal reset signal and RESET pin
are asserted. The SIU_RSR[LLRS] bit is set, and all other reset status bits in the SIU_RSR are cleared.

7.3.2.5 Loss-of-Clock Reset

A loss-of-clock reset occurs when a failure is detected in either the reference clock signal or PLL output
when the PLL is enabled. The internal reset signal and RESET pin are asserted. The SIU_RSR[LCRS] bit
is set, and all other reset status bits in the SIU_RSR are cleared.

7.3.2.6 Watchdog Timer

A watchdog timer reset occurs when the miscellaneous controller module (MCM) SWT watchdog timer
is enabled and is not serviced properly. The affect of a watchdog timer reset is the same for the reset
controller. The internal reset signal and RESET pin are asserted. The SIU_RSR[WTRS] bit is set, and all
other reset status bits in the SIU_RSR are cleared.

7.3.2.7 Checkstop Reset

When the Z1 or Z0 core enters a checkstop state, and the checkstop reset is enabled (SIU_SRCR[CRE0]
bit for Z1 and the SIU_SRCR[CRE1] bit for Z0), a checkstop reset occurs. The internal reset signal and

Reset

MPC5510 Microcontroller Family Reference Manual, Rev. 1

7-4 Freescale Semiconductor
 Preliminary

RESET pin are asserted. The SIU_RSR[CRS] bit is set and all other reset status bits in the SIU_RSR are
cleared.

7.3.2.8 JTAG Reset

A system reset occurs when JTAG is enabled and either the EXTEST, CLAMP, or HIGHZ instructions are
executed by the JTAG controller. The internal reset signal is asserted. The state of the RESET pin is
determined by the JTAG instruction. The reset status bits in the SIU_RSR are unaffected.

7.3.2.9 Software System Reset

A software system reset is caused by writing to the SIU_RCR[SSR] bit. Setting the SSR bit causes an
internal reset of the MCU. The internal reset signal and RESET pin are asserted. The SIU_RSR[SSRS] bit
is set, and all other reset status bits in the SIU_RSR are cleared.

7.4 Reset Configuration
The reset state of the system is:

• All pads on ports A–K are placed in a disabled mode with output enables, input enables, and pull
devices all disabled, except PD2.

• TDI pad is an input with pullup enabled.

• TDO pad is an output with fastest slew rate selected.

• TCK pad is an input with pulldown enabled.

• TMS pad is an input with pullup enabled.

• JCOMP pad is an input with pulldown enabled.

• RESET pin is configured as open drain output with pullup disabled and initially driven low, but
switched to an input with pullup enabled after the reset sequence.

• BOOTCFG pin is an input, the pin data is latched 4 clock cycles before the RESET signal is
negated (high).

7.4.1 Reset Configuration Timing

The timing diagram in Figure 7-1 shows the sampling of the BOOTCFG (PD2) pin for a power-on reset.
The timing diagram is also valid for internal/external resets assuming VDD, VDD33, and VDDA are
within valid operating ranges. The value of the BOOTCFG pin is latched 4 clock cycles before the
negation of the RESET pin and stored in the reset status register.

Reset

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 7-5
 Preliminary

Figure 7-1. Reset Configuration Timing

RESET

VDD

POR

BOOTCFG is latched.

(4 clock cycles)

 2400 clocks

BOOTCFG can be applied,
but not latched.

User drives
configuration pins
relative to RESET

Internal
Reset

Reset

MPC5510 Microcontroller Family Reference Manual, Rev. 1

7-6 Freescale Semiconductor
 Preliminary

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 8-1
 Preliminary

Chapter 8
Interrupts

8.1 Introduction
Interrupt functionality is handled between the e200z1 (Z1) and e200z0 (Z0) cores and the interrupt
controller (INTC). The INTC has a set of configuration bits that allows any interrupt source to generate an
interrupt request to either the Z1 or Z0 or to both the Z1 and Z0 cores. The INTC has two independent sets
of priority arbitration/comparison, request selection, vector encoder and acknowledge logic—one set for
each CPU. This allows each CPU to handle its software-assigned interrupt requests independently of the
other CPU’s operation, and provides flexibility for the user to decide which core should handle which
interrupt sources in the application.

Here is an example of an interrupt handling approach between the e200z1 and e200z0 cores.

• Z0 handles all interrupts associated with eSCI, DSPI, FlexCAN, and FlexRay modules.

— Z0 can also handle eMIOS and eQADC interrupts if there is available bandwidth.

• Z1 handles interrupts associated with application code — eMIOS and eQADC.

— Z1 can handle communication interrupts if desired.

• By allowing the user to choose which core handles which interrupt, the user is not restricted to
using the Z0 core only as Freescale has envisioned its use.

• INTC has two independent interrupt request outputs — one for each core.

— Implies two sets of priority selection, vector encoding, priority level FIFOs, etc.

— Priority level configuration register also contains bits to select which core is interrupted when
a source (including software interrupts) asserts an interrupt request. (Note that an interrupt
source can be selected to interrupt both cores; in such cases, the user must take special care not
to cause spurious interrupts on the other core when servicing the interrupt.)

— Out of RESET, all interrupt requests are steered to Z1 (for compatibility with parts without Z0).

— User decides which core will handle which interrupts in their application.

— Care must be taken when dynamically switching core handling interrupts (i.e. make sure
interrupt source is disabled before switching so that both cores don’t become interrupted).

— Software interrupts would be used for inter processor signaling.

— A use-case for the MPC5510: use the DMA for simple data movement, the Z0 for data
movement with some intermediate processing, and the Z1 for the main algorithm.

The details of the INTC operation are given in Chapter 9, “Interrupt Controller (INTC).”

Two types of modes are used to learn the interrupt request source’s vector number: software vector mode
and hardware vector mode. Software vector mode is the mode that conforms to Power Architecture
technology. The e200z1/z0 branches to a common interrupt exception handler to service the interrupt

Interrupts

MPC5510 Microcontroller Family Reference Manual, Rev. 1

8-2 Freescale Semiconductor
 Preliminary

request. The interrupt exception handler reads the INTC_IACKR to learn the vector of the source of the
interrupt request. In hardware vector mode, the interrupt exception handler is unique to the interrupt
request source’s vector.

8.2 Interrupt Vectors
The core interrupt vectors are located on a 4 KB boundary in the memory map, with the hardware interrupt
vectors located 2 KB above the core interrupt vectors (see Figure 8-1).

Figure 8-1. MPC5510 Interrupt Vector Memory Map

8.2.1 Core Interrupts

Table 8-1. MPC5510 Core Interrupt Vector Memory Map

Core Interrupt Type IVOR #1 VPR
Offset

Enables2 State
Saved In

Examples

Critical Input IVOR 0 0x000 CE CSRR[0:1] Non maskable interrupt (pins PD[10],
PD[11])

Machine Check IVOR 1 0x010 ME CSRR[0:1] ISI, ITLB error on first instruction of
exception handler

Data Storage IVOR 2 0x020 — SRR[0:1] Incorrect privilege mode for R/W access

Instruction Storage IVOR 3 0x030 — SRR[0:1] Incorrect privilege mode for instruction

External Input3 IVOR 4 0x040 EE, src SRR[0:1] Peripherals, IRQ pins, software

Alignment IVOR 5 0x050 — SRR[0:1] Load or store operand not word aligned

Program IVOR 6 0x060 — SRR[0:1] Illegal instruction, trap

Floating Point Unavailable4 IVOR 7 0x070 — SRR[0:1] FP instruction attempt with MSR[FP]=0

System Call IVOR 8 0x080 — SRR[0:1] System call, “sc”, instruction

Decrementer4 IVOR 10 0x0A0 EE, DIE SRR[0:1] Decrementer timeout

Fixed Interval Timer4 IVOR 11 0x0B0 EE, FIE SRR[0:1] Fixed-interval timer timeout

Watchdog Timer4 IVOR 12 0x0C0 CE, WIE CSRR[0:1] Watchdog timeout when ENW=1, WIS=0

INTC
Hardware

IVPR + 2 KB

IVPR
(4 KB boundary)

Core
Interrupt
Vectors

Vector Mode
Interrupt
Vectors

Interrupts

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 8-3
 Preliminary

8.2.2 External Input: Software Vector Mode

The IVPR acts as a base register for all types of exceptions. An IVOR, unique to each type of exception,
determines the offset from the IVPR. The IVPR and IVOR are added to calculate the interrupt exception
handler address. In software vector mode, IVOR4 is used for the external input, that is, the interrupt request
to the e200z1 or e200z0 from the INTC. Figure 8-2 shows the software vector mode interrupt exception
handler address calculation.

Figure 8-2. Software Vector Mode Interrupt Exception Handler Address Calculation

8.2.3 External Input: Hardware Vector Mode

In hardware vector mode, no IVOR is used, including IVOR4, which has no effect. The interrupt exception
handler for each vector is offset from the IVPR. The vectors for each source are shown in Table 8-2. The

Data TLB Error4 IVOR 13 0x0D0 — SRR[0:1] Data TLB miss in MMU

Instruction TLB Error4 IVOR 14 0x0E0 — SRR[0:1] Instruction TLB miss in MMU

Debug IVOR 15 0x0F0 DE, IDM CSRR[0:1] ROM Debugger when HID0[DAPUEN]=0

DSRR[0:1] ROM Debugger when HID0[DAPUEN]=1

1 IVOR 9 (Offset 0x090) is not supported.
2 CE, ME, EE, DE are in MSR. DIE, FIE, WIE are in TCR. “src” is individual enable for each INTC source. Debug interrupt IVOR15

also requires EDM = 0 (EDM and IDM are in DBCR0).
3 Software vector mode interrupts use IVOR 4. Hardware vectored mode interrupts supply an interrupt vector based upon the

vector number given in Table 8-2., “Interrupt Summary for External Input to e200z1 or e200z0.
4 Only on e200z1; not implemented on e200z0.

Table 8-1. MPC5510 Core Interrupt Vector Memory Map (continued)

Core Interrupt Type IVOR #1 VPR
Offset

Enables2 State
Saved In

Examples

+

=

IVPR

0 19 20 31
Vector base 0x000

IVOR4

0 31
0x0000_0040

Software Vector Mode Interrupt Exception Handler Address

0 19 20 31
Vector base 0x040

Interrupts

MPC5510 Microcontroller Family Reference Manual, Rev. 1

8-4 Freescale Semiconductor
 Preliminary

amount of the offset is the vector number × 4 bytes. Figure 8-3 shows the hardware vector mode interrupt
exception handler address calculation.

Figure 8-3. Hardware Vector Mode Interrupt Exception Handler Address Calculation

Any vector that is not reserved can have an interrupt exception handler that can be executed.

NOTE
In hardware vector mode, the IVORs for all other exceptions besides the
external input must be configured to not use the interrupt exception handler
addresses.

8.2.4 Critical Input

The external interrupt pins NMI0 (the third alternate function of pin PD[10]) and NMI1 (the third alternate
function of pin PD[11]) can be used as critical interrupt sources to the e200z1 and e200z0 cores
respectively. See Section 8.4.3, “Non Maskable Interrupt (NMI),” for more details on the usage and
configuration of the critical interrupt input to the core as a pseudo non maskable interrupt (NMI).

For critical interrupts, IVOR0 is used for the exception handler address calculation as shown in Figure 8-4.

For critical interrupts, only software vector mode is supported. The INTC does not support a hardware
vector mode for critical interrupts.

For a critical interrupt, the port pin must be configured for alternate function NMIn mode in its SIU_PCR,
and either rising-edge or falling-edge detect must be enabled in the SIU_IREER or SIU_IFEER. (Note that
these bits are “write once” bits.) When the NMI is taken, the flag must be cleared in the SIU_EISR.

+

=

IVPR

0 19 20 31
Vector base 0x000

Hardware Vector Mode Offset

0 19 20 21 29 30 31
0x0_0000 0b1 Vector 0b00

Hardware Vector Mode Interrupt Exception Handler Address

0 19 20 21 29 30 31
Vector base 0b1 Vector 0b00

Interrupts

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 8-5
 Preliminary

Figure 8-4. Critical Interrupt Exception Handler Address Calculation

8.3 Interrupt Sources

8.3.1 Interrupt Source Summary Table

The assignments between the interrupt requests from the blocks to the vectors for the external input to
either the e200z1 or e200z0 are shown in Table 8-2. The source column is written in C language syntax.
The syntax is block_instance.register[bit]. The syntax ‘||’ represents the ORing of individual interrupt
requests from the block.

Table 8-2. Interrupt Summary for External Input to e200z1 or e200z0 (Sheet 1 of 14)

Interrupt Offset1

V
ec

to
r

P
ri

o
ri

ty
2

Source Description

INTC_SSCIR0_3_CLR0 0x0800 0 INTC.INTC_SSCIR0_3[CLR0] INTC software settable clear flag 0

INTC_SSCIR0_3_CLR1 0x0804 1 INTC.INTC_SSCIR0_3[CLR1] INTC software settable clear flag 1

INTC_SSCIR0_3_CLR2 0x0808 2 INTC.INTC_SSCIR0_3[CLR2] INTC software settable clear flag 2

INTC_SSCIR0_3_CLR3 0x080C 3 INTC.INTC_SSCIR0_3[CLR3] INTC software settable clear flag 3

INTC_SSCIR4_7_CLR4 0x0810 4 INTC.INTC_SSCIR4_7[CLR4] INTC software settable clear flag 4

INTC_SSCIR4_7_CLR5 0x0814 5 INTC.INTC_SSCIR4_7[CLR5] INTC software settable clear flag 5

INTC_SSCIR4_7_CLR6 0x0818 6 INTC.INTC_SSCIR4_7[CLR6] INTC software settable clear flag 6

INTC_SSCIR4_7_CLR7 0x081C 7 INTC.INTC_SSCIR4_7[CLR7] INTC software settable clear flag 7

MCM_MSWTIR_SWTIC 0x0820 8 MCM.MSWTIR[SWTIC] MCM software watchdog interrupt flag

MCM_ESR_COMB 0x0824 9
MCM.ESR[PRNCE] ||
MCM.ESR[PFNCE]

MCM combined interrupt request of the
platform RAM non-correctable error and
platform flash non-correctable error
interrupt requests

+

=

IVPR

0 19 20 31
Vector base 0x000

IVOR0

0 31
0x0000_0000

Critical Interrupt Exception Handler Address

0 19 20 31
Vector base 0x000

Interrupts

MPC5510 Microcontroller Family Reference Manual, Rev. 1

8-6 Freescale Semiconductor
 Preliminary

eDMA_ERRL_ERR31_0 0x0828 10 eDMA.DMAERRL[ERR31:ERR0] eDMA channel error flags 31 - 0

eDMA_INTL_INT0 0x082C 11 eDMA.DMAINTL[INT0] eDMA channel interrupt 0

eDMA_INTL_INT1 0x0830 12 eDMA.DMAINTL[INT1] eDMA channel interrupt 1

eDMA_INTL_INT2 0x0834 13 eDMA.DMAINTL[INT2] eDMA channel interrupt 2

eDMA_INTL_INT3 0x0838 14 eDMA.DMAINTL[INT3] eDMA channel interrupt 3

eDMA_INTL_INT4 0x083C 15 eDMA.DMAINTL[INT4] eDMA channel interrupt 4

eDMA_INTL_INT5 0x0840 16 eDMA.DMAINTL[INT5] eDMA channel interrupt 5

eDMA_INTL_INT6 0x0844 17 eDMA.DMAINTL[INT6] eDMA channel interrupt 6

eDMA_INTL_INT7 0x0848 18 eDMA.DMAINTL[INT7] eDMA channel interrupt 7

eDMA_INTL_INT8 0x084C 19 eDMA.DMAINTL[INT8] eDMA channel interrupt 8

eDMA_INTL_INT9 0x0850 20 eDMA.DMAINTL[INT9] eDMA channel interrupt 9

eDMA_INTL_INT10 0x0854 21 eDMA.DMAINTL[INT10] eDMA channel interrupt 10

eDMA_INTL_INT11 0x0858 22 eDMA.DMAINTL[INT11] eDMA channel interrupt 11

eDMA_INTL_INT12 0x085C 23 eDMA.DMAINTL[INT12] eDMA channel interrupt 12

eDMA_INTL_INT13 0x0860 24 eDMA.DMAINTL[INT13] eDMA channel interrupt 13

eDMA_INTL_INT14 0x0864 25 eDMA.DMAINTL[INT14] eDMA channel interrupt 14

eDMA_INTL_INT15 0x0868 26 eDMA.DMAINTL[INT15] eDMA channel interrupt 15

Reserved 0x086C 27 Reserved Reserved

Reserved 0x0870 28 Reserved Reserved

Reserved 0x0874 29 Reserved Reserved

Reserved 0x0878 30 Reserved Reserved

Reserved 0x087C 31 Reserved Reserved

Reserved 0x0880 32 Reserved Reserved

Reserved 0x0884 33 Reserved Reserved

Reserved 0x0888 34 Reserved Reserved

Reserved 0x088C 35 Reserved Reserved

Reserved 0x0890 36 Reserved Reserved

Reserved 0x0894 37 Reserved Reserved

Reserved 0x0898 38 Reserved Reserved

Reserved 0x089C 39 Reserved Reserved

Reserved 0x08A0 40 Reserved Reserved

Reserved 0x08A4 41 Reserved Reserved

Table 8-2. Interrupt Summary for External Input to e200z1 or e200z0 (Sheet 2 of 14)

Interrupt Offset1

V
ec

to
r

P
ri

o
ri

ty
2

Source Description

Interrupts

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 8-7
 Preliminary

Reserved 0x08A8 42 Reserved Reserved

Semaphore Int 0 0x08AC 43 Semaphore Int 0 Z1 requested semaphore has unlocked

Semaphore Int 1 0x08B0 44 Semaphore Int 1 Z0 requested semaphore has unlocked

Reserved 0x08B4 45 Reserved Reserved

CRP Interrupt 0x08B8 46 CRP Interrupt
Combined pin wakeup, API, RTC match,
and RTC rollover

LVI Interrupt 0x08BC 47 LVI Interrupt Low-voltage inhibit interrupt

IIC_A_IBSR_IBIF 0x08C0 48 IIC_A.IBSR[IBIF]
IIC_A arbitration lost, or byte transfer
complete, or addressed as slave, or no
acknowledge from slave.

Reserved 0x08C4 49 Reserved Reserved

PLL_SYNSR_LOCF 0x08C8 50 PLL.SYNSR[LOCF] FNPLL loss-of-clock flag

PLL_SYNSR_LOLF 0x08CC 51 PLL.SYNSR[LOLF] FNPLL loss-of-lock flag

SIU_OSR_OVER 0x08D0 52 SIU.SIU_OSR[OVF15:OVF0]
SIU combined overrun interrupt request of
the external interrupt overrun flags.

SIU_EISR_EIF0 0x08D4 53 SIU.SIU_EISR[EIF0] SIU external interrupt flag 0

SIU_EISR_EIF1 0x08D8 54 SIU.SIU_EISR[EIF1] SIU external interrupt flag 1

SIU_EISR_EIF2 0x08DC 55 SIU.SIU_EISR[EIF2] SIU external interrupt flag 2

SIU_EISR_EIF3 0x08E0 56 SIU.SIU_EISR[EIF3] SIU external interrupt flag 3

SIU_EISR_EIF15_4 0x08E4 57 SIU.SIU_EISR[EIF15:EIF4] SIU external interrupt flags 15–4

eMIOS200_FLAG_F0 0x08E8 58 eMIOS200.eMIOS200FLAG[F0] eMIOS200 channel 0 flag

eMIOS200_FLAG_F1 0x08EC 59 eMIOS200.eMIOS200FLAG[F1] eMIOS200 channel 1 flag

eMIOS200_FLAG_F2 0x08F0 60 eMIOS200.eMIOS200FLAG[F2] eMIOS200 channel 2 flag

eMIOS200_FLAG_F3 0x08F4 61 eMIOS200.eMIOS200FLAG[F3] eMIOS200 channel 3 flag

eMIOS200_FLAG_F4 0x08F8 62 eMIOS200.eMIOS200FLAG[F4] eMIOS200 channel 4 flag

eMIOS200_FLAG_F5 0x08FC 63 eMIOS200.eMIOS200FLAG[F5] eMIOS200 channel 5 flag

eMIOS200_FLAG_F6 0x0900 64 eMIOS200.eMIOS200FLAG[F6] eMIOS200 channel 6 flag

eMIOS200_FLAG_F7 0x0904 65 eMIOS200.eMIOS200FLAG[F7] eMIOS200 channel 7 flag

eMIOS200_FLAG_F8 0x0908 66 eMIOS200.eMIOS200FLAG[F8] eMIOS200 channel 8 flag

eMIOS200_FLAG_F9 0x090C 67 eMIOS200.eMIOS200FLAG[F9] eMIOS200 channel 9 flag

eMIOS200_FLAG_F10 0x0910 68 eMIOS200.eMIOS200FLAG[F10] eMIOS200 channel 10 flag

eMIOS200_FLAG_F11 0x0914 69 eMIOS200.eMIOS200FLAG[F11] eMIOS200 channel 11 flag

eMIOS200_FLAG_F12 0x0918 70 eMIOS200.eMIOS200FLAG[F12] eMIOS200 channel 12 flag

Table 8-2. Interrupt Summary for External Input to e200z1 or e200z0 (Sheet 3 of 14)

Interrupt Offset1

V
ec

to
r

P
ri

o
ri

ty
2

Source Description

Interrupts

MPC5510 Microcontroller Family Reference Manual, Rev. 1

8-8 Freescale Semiconductor
 Preliminary

eMIOS200_FLAG_F13 0x091C 71 eMIOS200.eMIOS200FLAG[F13] eMIOS200 channel 13 flag

eMIOS200_FLAG_F14 0x0920 72 eMIOS200.eMIOS200FLAG[F14] eMIOS200 channel 14 flag

eMIOS200_FLAG_F15 0x0924 73 eMIOS200.eMIOS200FLAG[F15] eMIOS200 channel 15 flag

eMIOS200_FLAG_F16 0x0928 74 eMIOS200.eMIOS200FLAG[F16] eMIOS200 channel 16 flag

eMIOS200_FLAG_F17 0x092C 75 eMIOS200.eMIOS200FLAG[F17] eMIOS200 channel 17 flag

eMIOS200_FLAG_F18 0x0930 76 eMIOS200.eMIOS200FLAG[F18] eMIOS200 channel 18 flag

eMIOS200_FLAG_F19 0x0934 77 eMIOS200.eMIOS200FLAG[F19] eMIOS200 channel 19 flag

eMIOS200_FLAG_F20 0x0938 78 eMIOS200.eMIOS200FLAG[F20] eMIOS200 channel 20 flag

eMIOS200_FLAG_F21 0x093C 79 eMIOS200.eMIOS200FLAG[F21] eMIOS200 channel 21 flag

eMIOS200_FLAG_F22 0x0940 80 eMIOS200.eMIOS200FLAG[F22] eMIOS200 channel 22 flag

eMIOS200_FLAG_F23 0x0944 81 eMIOS200.eMIOS200FLAG[F23] eMIOS200 channel 23 flag

eQADC_FISR_OVER 0x0948 82
eQADC.eQADC_FISRx[TORF] ||
eQADC.eQADC_FISRx[RFOF] ||
eQADC.eQADC_FISRx[CFUF]

eQADC combined overrun interrupt
request of the trigger overrun, receive
FIFO overflow, and command FIFO
underflow interrupt requests from all of the
FIFOs

eQADC_FISR0_NCF0 0x094C 83 eQADC.eQADC_FISR0[NCF0]
eQADC command FIFO 0 non-coherency
flag

eQADC_FISR0_PF0 0x0950 84 eQADC.eQADC_FISR0[PF0] eQADC command FIFO 0 pause flag

eQADC_FISR0_EOQF0 0x0954 85 eQADC.eQADC_FISR0[EOQF0]
eQADC command FIFO 0 command
queue end-of-queue flag

eQADC_FISR0_CFFF0 0x0958 86 eQADC.eQADC_FISR0[CFFF0] eQADC command FIFO 0 fill flag

eQADC_FISR0_RFDF0 0x095C 87 eQADC.eQADC_FISR0[RFDF0] eQADC receive FIFO 0 drain flag

eQADC_FISR1_NCF1 0x0960 88 eQADC.eQADC_FISR1[NCF1]
eQADC command FIFO 1 non-coherency
flag

eQADC_FISR1_PF1 0x0964 89 eQADC.eQADC_FISR1[PF1] eQADC command FIFO 1 pause flag

eQADC_FISR1_EOQF1 0x0968 90 eQADC.eQADC_FISR1[EOQF1]
eQADC command FIFO 1 command
queue end-of-queue flag

eQADC_FISR1_CFFF1 0x096C 91 eQADC.eQADC_FISR1[CFFF1] eQADC command FIFO 1 fill flag

eQADC_FISR1_RFDF1 0x0970 92 eQADC.eQADC_FISR1[RFDF1] eQADC receive FIFO 1 drain flag

eQADC_FISR2_NCF2 0x0974 93 eQADC.eQADC_FISR2[NCF2]
eQADC command FIFO 2 non-coherency
flag

eQADC_FISR2_PF2 0x0978 94 eQADC.eQADC_FISR2[PF2] eQADC command FIFO 2 pause flag

eQADC_FISR2_EOQF2 0x097C 95 eQADC.eQADC_FISR2[EOQF2]
eQADC command FIFO 2 command
queue end-of-queue flag

Table 8-2. Interrupt Summary for External Input to e200z1 or e200z0 (Sheet 4 of 14)

Interrupt Offset1

V
ec

to
r

P
ri

o
ri

ty
2

Source Description

Interrupts

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 8-9
 Preliminary

eQADC_FISR2_CFFF2 0x0980 96 eQADC.eQADC_FISR2[CFFF2] eQADC command FIFO 2 fill flag

eQADC_FISR2_RFDF2 0x0984 97 eQADC.eQADC_FISR2[RFDF2] eQADC receive FIFO 2 drain flag

eQADC_FISR3_NCF3 0x0988 98 eQADC.eQADC_FISR3[NCF3]
eQADC command FIFO 3 non-coherency
flag

eQADC_FISR3_PF3 0x098C 99 eQADC.eQADC_FISR3[PF3] eQADC command FIFO 3 pause flag

eQADC_FISR3_EOQF3 0x0990 100 eQADC.eQADC_FISR3[EOQF3]
eQADC command FIFO 3 command
queue end-of-queue flag

eQADC_FISR3_CFFF3 0x0994 101 eQADC.eQADC_FISR3[CFFF3] eQADC command FIFO 3 fill flag

eQADC_FISR3_RFDF3 0x0998 102 eQADC.eQADC_FISR3[RFDF3] eQADC receive FIFO 3 drain flag

eQADC_FISR4_NCF4 0x099C 103 eQADC.eQADC_FISR4[NCF4]
eQADC command FIFO 4 non-coherency
flag

eQADC_FISR4_PF4 0x09A0 104 eQADC.eQADC_FISR4[PF4] eQADC command FIFO 4 pause flag

eQADC_FISR4_EOQF4 0x09A4 105 eQADC.eQADC_FISR4[EOQF4]
eQADC command FIFO 4 command
queue end-of-queue flag

eQADC_FISR4_CFFF4 0x09A8 106 eQADC.eQADC_FISR4[CFFF4] eQADC command FIFO 4 fill flag

eQADC_FISR4_RFDF4 0x09AC 107 eQADC.eQADC_FISR4[RFDF4] eQADC receive FIFO 4 drain flag

eQADC_FISR5_NCF5 0x09B0 108 eQADC.eQADC_FISR5[NCF5]
eQADC command FIFO 5 non-coherency
flag

eQADC_FISR5_PF5 0x09B4 109 eQADC.eQADC_FISR5[PF5] eQADC command FIFO 5 pause flag

eQADC_FISR5_EOQF5 0x09B8 110 eQADC.eQADC_FISR5[EOQF5]
eQADC command FIFO 5 command
queue end-of-queue flag

eQADC_FISR5_CFFF5 0x09BC 111 eQADC.eQADC_FISR5[CFFF5] eQADC Command FIFO 5 fill flag

eQADC_FISR5_RFDF5 0x09C0 112 eQADC.eQADC_FISR5[RFDF5] eQADC receive FIFO 5 drain flag

SCI_A_COMB 0x09C4 113

SCI_A.SCISR1[TDRE] ||
SCI_A.SCISR1[TC] ||

SCI_A.SCISR1[RDRF] ||
SCI_A.SCISR1[IDLE] ||
SCI_A.SCISR1[OR] ||
SCI_A.SCISR1[NF] ||
SCI_A.SCISR1[FE] ||
SCI_A.SCISR1[PF] ||

SCI_A.SCISR2[BERR] ||
SCI_A.LINSTAT1[RXRDY] ||
SCI_A.LINSTAT1[TXRDY] ||
SCI_A.LINSTAT1[LWAKE] ||

SCI_A.LINSTAT1[STO] ||
SCI_A.LINSTAT1[PBERR] ||
SCI_A.LINSTAT1[CERR] ||

SCI_A.LINSTAT1[CKERR] ||
SCI_A.LINSTAT1[FRC] ||
SCI_A.LINSTAT2[OVFL]

SCI_A combined interrupt request of the
SCI status register 1 transmit data register
empty, transmit complete, receive data
register full, idle line, overrun, noise, frame
error, and parity error interrupt requests,
SCI status register 2 bit error interrupt
request, LIN status register 1 receive data
ready, transmit data ready, received LIN
wakeup signal, slave timeout, physical bus
error, CRC error, checksum error, frame
complete interrupts requests, and LIN
status register 2 receive register overflow
interrupt request

Table 8-2. Interrupt Summary for External Input to e200z1 or e200z0 (Sheet 5 of 14)

Interrupt Offset1

V
ec

to
r

P
ri

o
ri

ty
2

Source Description

Interrupts

MPC5510 Microcontroller Family Reference Manual, Rev. 1

8-10 Freescale Semiconductor
 Preliminary

SCI_B_COMB 0x09C8 114

SCI_B.SCISR1[TDRE] ||
SCI_B.SCISR1[TC] ||

SCI_B.SCISR1[RDRF] ||
SCI_B.SCISR1[IDLE] ||
SCI_B.SCISR1[OR] ||
SCI_B.SCISR1[NF] ||
SCI_B.SCISR1[FE] ||
SCI_B.SCISR1[PF] ||

SCI_B.SCISR2[BERR] ||
SCI_B.LINSTAT1[RXRDY] ||
SCI_B.LINSTAT1[TXRDY] ||
SCI_B.LINSTAT1[LWAKE] ||

SCI_B.LINSTAT1[STO] ||
SCI_B.LINSTAT1[PBERR] ||
SCI_B.LINSTAT1[CERR] ||

SCI_B.LINSTAT1[CKERR] ||
SCI_B.LINSTAT1[FRC] ||
SCI_B.LINSTAT2[OVFL]

SCI_B combined interrupt request of the
SCI status register 1 transmit data register
empty, transmit complete, receive data
register full, idle line, overrun, noise, frame
error, and parity error interrupt requests,
SCI status register 2 bit error interrupt
request, LIN status register 1 receive data
ready, transmit data ready, received LIN
wakeup signal, slave timeout, physical bus
error, CRC error, checksum error, frame
complete interrupts requests, and LIN
status register 2 receive register overflow
interrupt request

SCI_C_COMB 0x09CC 115

SCI_C.SCISR1[TDRE] ||
SCI_C.SCISR1[TC] ||

SCI_C.SCISR1[RDRF] ||
SCI_C.SCISR1[IDLE] ||
SCI_C.SCISR1[OR] ||
SCI_C.SCISR1[NF] ||
SCI_C.SCISR1[FE] ||
SCI_C.SCISR1[PF] ||

SCI_C.SCISR2[BERR] ||
SCI_C.LINSTAT1[RXRDY] ||
SCI_C.LINSTAT1[TXRDY] ||
SCI_C.LINSTAT1[LWAKE] ||

SCI_C.LINSTAT1[STO] ||
SCI_C.LINSTAT1[PBERR] ||
SCI_C.LINSTAT1[CERR] ||

SCI_C.LINSTAT1[CKERR] ||
SCI_C.LINSTAT1[FRC] ||
SCI_C.LINSTAT2[OVFL]

SCI_C combined interrupt request of the
SCI status register 1 transmit data register
empty, transmit complete, receive data
register full, idle line, overrun, noise, frame
error, and parity error interrupt requests,
SCI status register 2 bit error interrupt
request, LIN status register 1 receive data
ready, transmit data ready, received LIN
wakeup signal, slave timeout, physical bus
error, CRC error, checksum error, frame
complete interrupts requests, and LIN
status register 2 receive register overflow
interrupt request

SCI_D_COMB 0x09D0 116

SCI_D.SCISR1[TDRE] ||
SCI_D.SCISR1[TC] ||

SCI_D.SCISR1[RDRF] ||
SCI_D.SCISR1[IDLE] ||
SCI_D.SCISR1[OR] ||
SCI_D.SCISR1[NF] ||
SCI_D.SCISR1[FE] ||
SCI_D.SCISR1[PF] ||

SCI_D.SCISR2[BERR] ||
SCI_D.LINSTAT1[RXRDY] ||
SCI_D.LINSTAT1[TXRDY] ||
SCI_D.LINSTAT1[LWAKE] ||

SCI_D.LINSTAT1[STO] ||
SCI_D.LINSTAT1[PBERR] ||
SCI_D.LINSTAT1[CERR] ||

SCI_D.LINSTAT1[CKERR] ||
SCI_D.LINSTAT1[FRC] ||
SCI_D.LINSTAT2[OVFL]

SCI_D combined interrupt request of the
SCI status register 1 transmit data register
empty, transmit complete, receive data
register full, idle line, overrun, noise, frame
error, and parity error interrupt requests,
SCI status register 2 bit error interrupt
request, LIN status register 1 receive data
ready, transmit data ready, received LIN
wakeup signal, slave timeout, physical bus
error, CRC error, checksum error, frame
complete interrupts requests, and LIN
status register 2 receive register overflow
interrupt request

Table 8-2. Interrupt Summary for External Input to e200z1 or e200z0 (Sheet 6 of 14)

Interrupt Offset1

V
ec

to
r

P
ri

o
ri

ty
2

Source Description

Interrupts

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 8-11
 Preliminary

DSPI_A_ISR_OVER 0x09D4 117
DSPI_A.DSPI_ISR[TFUF] ||
DSPI_A.DSPI_ISR[RFOF]

DSPI_A combined overrun interrupt
request of the transmit FIFO underflow
and receive FIFO overflow interrupt
requests

DSPI_A_ISR_EOQF 0x09D8 118 DSPI_A.DSPI_ISR[EOQF] DSPI_A transmit FIFO end-of-queue flag

DSPI_A_ISR_TFFF 0x09DC 119 DSPI_A.DSPI_ISR[TFFF] DSPI_A transmit FIFO fill flag

DSPI_A_ISR_TCF 0x09E0 120 DSPI_A.DSPI_ISR[TCF] DSPI_A transfer complete flag

DSPI_A_ISR_RFDF 0x09E4 121 DSPI_A.DSPI_ISR[RFDF] DSPI_A receive FIFO drain flag

DSPI_B_ISR_OVER 0x09E8 122
DSPI_B.DSPI_ISR[TFUF] ||
DSPI_B.DSPI_ISR[RFOF]

DSPI_B combined overrun interrupt
request of the transmit FIFO underflow
and receive FIFO overflow interrupt
requests

DSPI_B_ISR_EOQF 0x09EC 123 DSPI_B.DSPI_ISR[EOQF] DSPI_B transmit FIFO end-of-queue flag

DSPI_B_ISR_TFFF 0x09F0 124 DSPI_B.DSPI_ISR[TFFF] DSPI_B transmit FIFO fill flag

DSPI_B_ISR_TCF 0x09F4 125 DSPI_B.DSPI_ISR[TCF] DSPI_B transfer complete flag

DSPI_B_ISR_RFDF 0x09F8 126 DSPI_B.DSPI_ISR[RFDF] DSPI_B receive FIFO drain flag

FLEXCAN_A_ESR_BOFF_INT 0x09FC 127
FLEXCAN_A.ESR[BOFF_INT] ||
FLEXCAN_A.ESR[TWRN_INT] ||
FLEXCAN_A.ESR[RWRN_INT]

FLEXCAN_A bus off interrupt,
FLEXCAN_A transmit warning interrupt,
FLEXCAN_A receive warning interrupt

FLEXCAN_A_ESR_ERR_INT 0x0A00 128 FLEXCAN_A.ESR[ERR_INT] FLEXCAN_A error interrupt

Reserved 0x0A04 129 Reserved Reserved

FLEXCAN_A_IFLAG1_BUF0I 0x0A08 130 FLEXCAN_A.IFLAG1[BUF0I] FLEXCAN_A buffer 0 interrupt

FLEXCAN_A_IFLAG1_BUF1I 0x0A0C 131 FLEXCAN_A.IFLAG1[BUF1I] FLEXCAN_A buffer 1 interrupt

FLEXCAN_A_IFLAG1_BUF2I 0x0A10 132 FLEXCAN_A.IFLAG1[BUF2I] FLEXCAN_A buffer 2 interrupt

FLEXCAN_A_IFLAG1_BUF3I 0x0A14 133 FLEXCAN_A.IFLAG1[BUF3I] FLEXCAN_A buffer 3 interrupt

FLEXCAN_A_IFLAG1_BUF4I 0x0A18 134 FLEXCAN_A.IFLAG1[BUF4I] FLEXCAN_A buffer 4 interrupt

FLEXCAN_A_IFLAG1_BUF5I 0x0A1C 135 FLEXCAN_A.IFLAG1[BUF5I] FLEXCAN_A buffer 5 interrupt

FLEXCAN_A_IFLAG1_BUF6I 0x0A20 136 FLEXCAN_A.IFLAG1[BUF6I] FLEXCAN_A buffer 6 interrupt

FLEXCAN_A_IFLAG1_BUF7I 0x0A24 137 FLEXCAN_A.IFLAG1[BUF7I] FLEXCAN_A buffer 7 interrupt

FLEXCAN_A_IFLAG1_BUF8I 0x0A28 138 FLEXCAN_A.IFLAG1[BUF8I] FLEXCAN_A buffer 8 interrupt

FLEXCAN_A_IFLAG1_BUF9I 0x0A2C 139 FLEXCAN_A.IFLAG1[BUF9I] FLEXCAN_A buffer 9 interrupt

FLEXCAN_A_IFLAG1_BUF10I 0x0A30 140 FLEXCAN_A.IFLAG1[BUF10I] FLEXCAN_A buffer 10 interrupt

FLEXCAN_A_IFLAG1_BUF11I 0x0A34 141 FLEXCAN_A.IFLAG1[BUF11I] FLEXCAN_A buffer 11 interrupt

FLEXCAN_A_IFLAG1_BUF12I 0x0A38 142 FLEXCAN_A.IFLAG1[BUF12I] FLEXCAN_A buffer 12 interrupt

FLEXCAN_A_IFLAG1_BUF13I 0x0A3C 143 FLEXCAN_A.IFLAG1[BUF13I] FLEXCAN_A buffer 13 interrupt

Table 8-2. Interrupt Summary for External Input to e200z1 or e200z0 (Sheet 7 of 14)

Interrupt Offset1

V
ec

to
r

P
ri

o
ri

ty
2

Source Description

Interrupts

MPC5510 Microcontroller Family Reference Manual, Rev. 1

8-12 Freescale Semiconductor
 Preliminary

FLEXCAN_A_IFLAG1_BUF14I 0x0A40 144 FLEXCAN_A.IFLAG1[BUF14I] FLEXCAN_A buffer 14 interrupt

FLEXCAN_A_IFLAG1_BUF15I 0x0A44 145 FLEXCAN_A.IFLAG1[BUF15I] FLEXCAN_A buffer 15 interrupt

FLEXCAN_A_IFLAG1_BUF31_16I 0x0A48 146
FLEXCAN_A.IFLAG1

[BUF31I:BUF16I]
FLEXCAN_A buffers 31–16 interrupts

FLEXCAN_A_IFLAG2_BUF63_32I 0x0A4C 147
FLEXCAN_A.IFLAG2

[BUF63I:BUF32I]
FLEXCAN_A buffers 63–32 interrupts

PIT_PITFLG_RTIF 0x0A50 148 PIT.PITFLG[RTIF] Real-time counter interrupt

PIT_PITFLG_PIT1 0x0A54 149 PIT.PITFLG[PIT1] Programmable interrupt timer 1 interrupt

PIT_PITFLG_PIT2 0x0A58 150 PIT.PITFLG[PIT2] Programmable interrupt timer 2 interrupt

PIT_PITFLG_PIT3 0x0A5C 151 PIT.PITFLG[PIT3] Programmable interrupt timer 3 interrupt

PIT_PITFLG_PIT4 0x0A60 152 PIT.PITFLG[PIT4] Programmable interrupt timer 4 interrupt

PIT_PITFLG_PIT5 0x0A64 153 PIT.PITFLG[PIT5] Programmable interrupt timer 5 interrupt

PIT_PITFLG_PIT6 0x0A68 154 PIT.PITFLG[PIT6] Programmable interrupt timer 6 interrupt

PIT_PITFLG_PIT7 0x0A6C 155 PIT.PITFLG[PIT7] Programmable interrupt timer 7 interrupt

PIT_PITFLG_PIT8 0x0A70 156 PIT.PITFLG[PIT8] Programmable interrupt Timer 8 interrupt

FLEXCAN_B_ESR_BOFF_INT 0x0A74 157
FLEXCAN_B.ESR[BOFF_INT] ||
FLEXCAN_B.ESR[TWRN_INT] ||
FLEXCAN_B.ESR[RWRN_INT]

FLEXCAN_B bus off interrupt,
FLEXCAN_B transmit warning interrupt,
FLEXCAN_B receive warning interrupt

FLEXCAN_B_ESR_ERR_INT 0x0A78 158 FLEXCAN_B.ESR[ERR_INT] FLEXCAN_B error interrupt

Reserved 0x0A7C 159 Reserved Reserved

FLEXCAN_B_IFLAG1_BUF0I 0x0A80 160 FLEXCAN_B.IFLAG1[BUF0I] FLEXCAN_B buffer 0 interrupt

FLEXCAN_B_IFLAG1_BUF1I 0x0A84 161 FLEXCAN_B.IFLAG1[BUF1I] FLEXCAN_B buffer 1 interrupt

FLEXCAN_B_IFLAG1_BUF2I 0x0A88 162 FLEXCAN_B.IFLAG1[BUF2I] FLEXCAN_B buffer 2 interrupt

FLEXCAN_B_IFLAG1_BUF3I 0x0A8C 163 FLEXCAN_B.IFLAG1[BUF3I] FLEXCAN_B buffer 3 interrupt

FLEXCAN_B_IFLAG1_BUF4I 0x0A90 164 FLEXCAN_B.IFLAG1[BUF4I] FLEXCAN_B buffer 4 interrupt

FLEXCAN_B_IFLAG1_BUF5I 0x0A94 165 FLEXCAN_B.IFLAG1[BUF5I] FLEXCAN_B buffer 5 interrupt

FLEXCAN_B_IFLAG1_BUF6I 0x0A98 166 FLEXCAN_B.IFLAG1[BUF6I] FLEXCAN_B buffer 6 interrupt

FLEXCAN_B_IFLAG1_BUF7I 0x0A9C 167 FLEXCAN_B.IFLAG1[BUF7I] FLEXCAN_B buffer 7 interrupt

FLEXCAN_B_IFLAG1_BUF8I 0x0AA0 168 FLEXCAN_B.IFLAG1[BUF8I] FLEXCAN_B buffer 8 interrupt

FLEXCAN_B_IFLAG1_BUF9I 0x0AA4 169 FLEXCAN_B.IFLAG1[BUF9I] FLEXCAN_B buffer 9 interrupt

FLEXCAN_B_IFLAG1_BUF10I 0x0AA8 170 FLEXCAN_B.IFLAG1[BUF10I] FLEXCAN_B buffer 10 interrupt

FLEXCAN_B_IFLAG1_BUF11I 0x0AAC 171 FLEXCAN_B.IFLAG1[BUF11I] FLEXCAN_B buffer 11 interrupt

FLEXCAN_B_IFLAG1_BUF12I 0x0AB0 172 FLEXCAN_B.IFLAG1[BUF12I] FLEXCAN_B buffer 12 interrupt

Table 8-2. Interrupt Summary for External Input to e200z1 or e200z0 (Sheet 8 of 14)

Interrupt Offset1

V
ec

to
r

P
ri

o
ri

ty
2

Source Description

Interrupts

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 8-13
 Preliminary

FLEXCAN_B_IFLAG1_BUF13I 0x0AB4 173 FLEXCAN_B.IFLAG1[BUF13I] FLEXCAN_B buffer 13 interrupt

FLEXCAN_B_IFLAG1_BUF14I 0x0AB8 174 FLEXCAN_B.IFLAG1[BUF14I] FLEXCAN_B buffer 14 interrupt

FLEXCAN_B_IFLAG1_BUF15I 0x0ABC 175 FLEXCAN_B.IFLAG1[BUF15I] FLEXCAN_B buffer 15 interrupt

FLEXCAN_B_IFLAG1_BUF31_16I 0x0AC0 176
FLEXCAN_B.IFLAG1

[BUF31I:BUF16I]
FLEXCAN_B buffers 31–16 Interrupts

FLEXCAN_B_IFLAG2_BUF63_32I 0x0AC4 177
FLEXCAN_B.IFLAG2

[BUF63I:BUF32I]
FLEXCAN_B buffers 63– 32 interrupts

FLEXCAN_C_ESR_BOFF_INT 0x0AC8 178
FLEXCAN_C.ESR[BOFF_INT] ||
FLEXCAN_C.ESR[TWRN_INT] ||
FLEXCAN_C.ESR[RWRN_INT]

FLEXCAN_C bus off interrupt,
FLEXCAN_C transmit warning interrupt,
FLEXCAN_C receive warning interrupt

FLEXCAN_C_ESR_ERR_INT 0x0ACC 179 FLEXCAN_C.ESR[ERR_INT] FLEXCAN_C error interrupt

Reserved 0x0AD0 180 Reserved Reserved

FLEXCAN_C_IFLAG1_BUF0I 0x0AD4 181 FLEXCAN_C.IFLAG1[BUF0I] FLEXCAN_C buffer 0 Interrupt

FLEXCAN_C_IFLAG1_BUF1I 0x0AD8 182 FLEXCAN_C.IFLAG1[BUF1I] FLEXCAN_C buffer 1 interrupt

FLEXCAN_C_IFLAG1_BUF2I 0x0ADC 183 FLEXCAN_C.IFLAG1[BUF2I] FLEXCAN_C buffer 2 interrupt

FLEXCAN_C_IFLAG1_BUF3I 0x0AE0 184 FLEXCAN_C.IFLAG1[BUF3I] FLEXCAN_C buffer 3 interrupt

FLEXCAN_C_IFLAG1_BUF4I 0x0AE4 185 FLEXCAN_C.IFLAG1[BUF4I] FLEXCAN_C buffer 4 interrupt

FLEXCAN_C_IFLAG1_BUF5I 0x0AE8 186 FLEXCAN_C.IFLAG1[BUF5I] FLEXCAN_C buffer 5 interrupt

FLEXCAN_C_IFLAG1_BUF6I 0x0AEC 187 FLEXCAN_C.IFLAG1[BUF6I] FLEXCAN_C buffer 6 interrupt

FLEXCAN_C_IFLAG1_BUF7I 0x0AF0 188 FLEXCAN_C.IFLAG1[BUF7I] FLEXCAN_C buffer 7 interrupt

FLEXCAN_C_IFLAG1_BUF8I 0x0AF4 189 FLEXCAN_C.IFLAG1[BUF8I] FLEXCAN_C buffer 8 interrupt

FLEXCAN_C_IFLAG1_BUF9I 0x0AF8 190 FLEXCAN_C.IFLAG1[BUF9I] FLEXCAN_C buffer 9 interrupt

FLEXCAN_C_IFLAG1_BUF10I 0x0AFC 191 FLEXCAN_C.IFLAG1[BUF10I] FLEXCAN_C buffer 10 interrupt

FLEXCAN_C_IFLAG1_BUF11I 0x0B00 192 FLEXCAN_C.IFLAG1[BUF11I] FLEXCAN_C buffer 11 interrupt

FLEXCAN_C_IFLAG1_BUF12I 0x0B04 193 FLEXCAN_C.IFLAG1[BUF12I] FLEXCAN_C buffer 12 interrupt

FLEXCAN_C_IFLAG1_BUF13I 0x0B08 194 FLEXCAN_C.IFLAG1[BUF13I] FLEXCAN_C buffer 13 interrupt

FLEXCAN_C_IFLAG1_BUF14I 0x0B0C 195 FLEXCAN_C.IFLAG1[BUF14I] FLEXCAN_C buffer 14 interrupt

FLEXCAN_C_IFLAG1_BUF15I 0x0B10 196 FLEXCAN_C.IFLAG1[BUF15I] FLEXCAN_C buffer 15 interrupt

FLEXCAN_C_IFLAG1_BUF31_16I 0x0B14 197
FLEXCAN_C.IFLAG1

[BUF31I:BUF16I]
FLEXCAN_C buffers 31–16 interrupts

FLEXCAN_C_IFLAG2_BUF63_32I 0x0B18 198
FLEXCAN_C.IFLAG2

[BUF63I:BUF32I]
FLEXCAN_C buffers 63–32 interrupts

FLEXCAN_D_ESR_BOFF_INT 0x0B1C 199
FLEXCAN_D.ESR[BOFF_INT] ||
FLEXCAN_D.ESR[TWRN_INT] ||
FLEXCAN_D.ESR[RWRN_INT]

FLEXCAN_D bus off interrupt,
FLEXCAN_D transmit warning interrupt,
FLEXCAN_D receive warning interrupt

Table 8-2. Interrupt Summary for External Input to e200z1 or e200z0 (Sheet 9 of 14)

Interrupt Offset1

V
ec

to
r

P
ri

o
ri

ty
2

Source Description

Interrupts

MPC5510 Microcontroller Family Reference Manual, Rev. 1

8-14 Freescale Semiconductor
 Preliminary

FLEXCAN_D_ESR_ERR_INT 0x0B20 200 FLEXCAN_D.ESR[ERR_INT] FLEXCAN_D error interrupt

Reserved 0x0B24 201 Reserved Reserved

FLEXCAN_D_IFLAG1_BUF0I 0x0B28 202 FLEXCAN_D.IFLAG1[BUF0I] FLEXCAN_D buffer 0 interrupt

FLEXCAN_D_IFLAG1_BUF1I 0x0B2C 203 FLEXCAN_D.IFLAG1[BUF1I] FLEXCAN_D buffer 1 interrupt

FLEXCAN_D_IFLAG1_BUF2I 0x0B30 204 FLEXCAN_D.IFLAG1[BUF2I] FLEXCAN_D buffer 2 interrupt

FLEXCAN_D_IFLAG1_BUF3I 0x0B34 205 FLEXCAN_D.IFLAG1[BUF3I] FLEXCAN_D buffer 3 interrupt

FLEXCAN_D_IFLAG1_BUF4I 0x0B38 206 FLEXCAN_D.IFLAG1[BUF4I] FLEXCAN_D buffer 4 interrupt

FLEXCAN_D_IFLAG1_BUF5I 0x0B3C 207 FLEXCAN_D.IFLAG1[BUF5I] FLEXCAN_D buffer 5 interrupt

FLEXCAN_D_IFLAG1_BUF6I 0x0B40 208 FLEXCAN_D.IFLAG1[BUF6I] FLEXCAN_D buffer 6 interrupt

FLEXCAN_D_IFLAG1_BUF7I 0x0B44 209 FLEXCAN_D.IFLAG1[BUF7I] FLEXCAN_D buffer 7 interrupt

FLEXCAN_D_IFLAG1_BUF8I 0x0B48 210 FLEXCAN_D.IFLAG1[BUF8I] FLEXCAN_D buffer 8 interrupt

FLEXCAN_D_IFLAG1_BUF9I 0x0B4C 211 FLEXCAN_D.IFLAG1[BUF9I] FLEXCAN_D buffer 9 interrupt

FLEXCAN_D_IFLAG1_BUF10I 0x0B50 212 FLEXCAN_D.IFLAG1[BUF10I] FLEXCAN_D buffer 10 interrupt

FLEXCAN_D_IFLAG1_BUF11I 0x0B54 213 FLEXCAN_D.IFLAG1[BUF11I] FLEXCAN_D buffer 11 interrupt

FLEXCAN_D_IFLAG1_BUF12I 0x0B58 214 FLEXCAN_D.IFLAG1[BUF12I] FLEXCAN_D buffer 12 interrupt

FLEXCAN_D_IFLAG1_BUF13I 0x0B5C 215 FLEXCAN_D.IFLAG1[BUF13I] FLEXCAN_D buffer 13 interrupt

FLEXCAN_D_IFLAG1_BUF14I 0x0B60 216 FLEXCAN_D.IFLAG1[BUF14I] FLEXCAN_D buffer 14 interrupt

FLEXCAN_D_IFLAG1_BUF15I 0x0B64 217 FLEXCAN_D.IFLAG1[BUF15I] FLEXCAN_D buffer 15 interrupt

FLEXCAN_D_IFLAG1_BUF31_16I 0x0B68 218
FLEXCAN_D.IFLAG1

[BUF31I:BUF16I]
FLEXCAN_D buffers 31–16 interrupts

FLEXCAN_D_IFLAG2_BUF63_32I 0x0B6C 219
FLEXCAN_D.IFLAG2

[BUF63I:BUF32I]
FLEXCAN_D buffers 63–32 interrupts

FLEXCAN_E_ESR_BOFF_INT 0x0B70 220
FLEXCAN_E.ESR[BOFF_INT] ||
FLEXCAN_E.ESR[TWRN_INT] ||
FLEXCAN_E.ESR[RWRN_INT]

FLEXCAN_E bus off interrupt,
FLEXCAN_E transmit warning interrupt,
FLEXCAN_E receive warning interrupt

FLEXCAN_E_ESR_ERR_INT 0x0B74 221 FLEXCAN_E.ESR[ERR_INT] FLEXCAN_E error interrupt

Reserved 0x0B78 222 Reserved Reserved

FLEXCAN_E_IFLAG1_BUF0I 0x0B7C 223 FLEXCAN_E.IFLAG1[BUF0I] FLEXCAN_E buffer 0 interrupt

FLEXCAN_E_IFLAG1_BUF1I 0x0B80 224 FLEXCAN_E.IFLAG1[BUF1I] FLEXCAN_E buffer 1 interrupt

FLEXCAN_E_IFLAG1_BUF2I 0x0B84 225 FLEXCAN_E.IFLAG1[BUF2I] FLEXCAN_E buffer 2 interrupt

FLEXCAN_E_IFLAG1_BUF3I 0x0B88 226 FLEXCAN_E.IFLAG1[BUF3I] FLEXCAN_E buffer 3 interrupt

FLEXCAN_E_IFLAG1_BUF4I 0x0B8C 227 FLEXCAN_E.IFLAG1[BUF4I] FLEXCAN_E buffer 4 interrupt

FLEXCAN_E_IFLAG1_BUF5I 0x0B90 228 FLEXCAN_E.IFLAG1[BUF5I] FLEXCAN_E buffer 5 interrupt

Table 8-2. Interrupt Summary for External Input to e200z1 or e200z0 (Sheet 10 of 14)

Interrupt Offset1

V
ec

to
r

P
ri

o
ri

ty
2

Source Description

Interrupts

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 8-15
 Preliminary

FLEXCAN_E_IFLAG1_BUF6I 0x0B94 229 FLEXCAN_E.IFLAG1[BUF6I] FLEXCAN_E buffer 6 interrupt

FLEXCAN_E_IFLAG1_BUF7I 0x0B98 230 FLEXCAN_E.IFLAG1[BUF7I] FLEXCAN_E buffer 7 interrupt

FLEXCAN_E_IFLAG1_BUF8I 0x0B9C 231 FLEXCAN_EC.IFLAG1[BUF8I] FLEXCAN_E buffer 8 interrupt

FLEXCAN_E_FLAG1_BUF9I 0x0BA0 232 FLEXCAN_E.IFLAG1[BUF9I] FLEXCAN_E buffer 9 interrupt

FLEXCAN_E_IFLAG1_BUF10I 0x0BA4 233 FLEXCAN_E.IFLAG1[BUF10I] FLEXCAN_E buffer 10 interrupt

FLEXCAN_E_IFLAG1_BUF11I 0x0BA8 234 FLEXCAN_E.IFLAG1[BUF11I] FLEXCAN_E buffer 11 interrupt

FLEXCAN_E_IFLAG1_BUF12I 0x0BAC 235 FLEXCAN_E.IFLAG1[BUF12I] FLEXCAN_E buffer 12 interrupt

FLEXCAN_E_IFLAG1_BUF13I 0x0BB0 236 FLEXCAN_E.IFLAG1[BUF13I] FLEXCAN_E buffer 13 interrupt

FLEXCAN_E_IFLAG1_BUF14I 0x0BB4 237 FLEXCAN_E.IFLAG1[BUF14I] FLEXCAN_E buffer 14 interrupt

FLEXCAN_E_IFLAG1_BUF15I 0x0BB8 238 FLEXCAN_E.IFLAG1[BUF15I] FLEXCAN_E buffer 15 interrupt

FLEXCAN_E_IFLAG1_BUF31_16I 0x0BBC 239
FLEXCAN_E.IFLAG1

[BUF31I:BUF16I]
FLEXCAN_E buffers 31–16 interrupts

FLEXCAN_E_IFLAG2_BUF63_32I 0x0BC0 240
FLEXCAN_E.IFLAG2

[BUF63I:BUF32I]
FLEXCAN_E buffers 63–32 interrupts

FLEXCAN_F_ESR_BOFF_INT 0x0BC4 241
FLEXCAN_F.ESR[BOFF_INT] ||
FLEXCAN_F.ESR[TWRN_INT] ||
FLEXCAN_F.ESR[RWRN_INT]

FLEXCAN_F bus off interrupt,
FLEXCAN_F transmit warning interrupt,
FLEXCAN_F receive warning interrupt

FLEXCAN_F_ESR_ERR_INT 0x0BC8 242 FLEXCAN_F.ESR[ERR_INT] FLEXCAN_F error interrupt

Reserved 0x0BCC 243 Reserved Reserved

FLEXCAN_F_IFLAG1_BUF0I 0x0BD0 244 FLEXCAN_F.IFLAG1[BUF0I] FLEXCAN_F buffer 0 interrupt

FLEXCAN_F_IFLAG1_BUF1I 0x0BD4 245 FLEXCAN_F.IFLAG1[BUF1I] FLEXCAN_F buffer 1 interrupt

FLEXCAN_F_IFLAG1_BUF2I 0x0BD8 246 FLEXCAN_F.IFLAG1[BUF2I] FLEXCAN_F buffer 2 interrupt

FLEXCAN_F_IFLAG1_BUF3I 0x0BDC 247 FLEXCAN_F.IFLAG1[BUF3I] FLEXCAN_F buffer 3 interrupt

FLEXCAN_F_IFLAG1_BUF4I 0x0BE0 248 FLEXCAN_F.IFLAG1[BUF4I] FLEXCAN_F buffer 4 interrupt

FLEXCAN_F_IFLAG1_BUF5I 0x0BE4 249 FLEXCAN_F.IFLAG1[BUF5I] FLEXCAN_F buffer 5 interrupt

FLEXCAN_F_IFLAG1_BUF6I 0x0BE8 250 FLEXCAN_F.IFLAG1[BUF6I] FLEXCAN_F buffer 6 interrupt

FLEXCAN_F_IFLAG1_BUF7I 0x0BEC 251 FLEXCAN_F.IFLAG1[BUF7I] FLEXCAN_F buffer 7 interrupt

FLEXCAN_F_IFLAG1_BUF8I 0x0BF0 252 FLEXCAN_F.IFLAG1[BUF8I] FLEXCAN_F buffer 8 interrupt

FLEXCAN_F_IFLAG1_BUF9I 0x0BF4 253 FLEXCAN_F.IFLAG1[BUF9I] FLEXCAN_F buffer 9 interrupt

FLEXCAN_F_IFLAG1_BUF10I 0x0BF8 254 FLEXCAN_F.IFLAG1[BUF10I] FLEXCAN_F buffer 10 interrupt

FLEXCAN_F_IFLAG1_BUF11I 0x0BFC 255 FLEXCAN_F.IFLAG1[BUF11I] FLEXCAN_F buffer 11 interrupt

FLEXCAN_F_IFLAG1_BUF12I 0x0C00 256 FLEXCAN_F.IFLAG1[BUF12I] FLEXCAN_F buffer 12 interrupt

FLEXCAN_F_IFLAG1_BUF13I 0x0C04 257 FLEXCAN_F.IFLAG1[BUF13I] FLEXCAN_F buffer 13 interrupt

Table 8-2. Interrupt Summary for External Input to e200z1 or e200z0 (Sheet 11 of 14)

Interrupt Offset1

V
ec

to
r

P
ri

o
ri

ty
2

Source Description

Interrupts

MPC5510 Microcontroller Family Reference Manual, Rev. 1

8-16 Freescale Semiconductor
 Preliminary

FLEXCAN_F_IFLAG1_BUF14I 0x0C08 258 FLEXCAN_F.IFLAG1[BUF14I] FLEXCAN_F buffer 14 interrupt

FLEXCAN_F_IFLAG1_BUF15I 0x0C0C 259 FLEXCAN_F.IFLAG1[BUF15I] FLEXCAN_F buffer 15 interrupt

FLEXCAN_F_IFLAG1_BUF31_16I 0x0C10 260
FLEXCAN_F.IFLAG1

[BUF31I:BUF16I]
FLEXCAN_F buffers 31–16 interrupts

FLEXCAN_F_IFLAG2_BUF63_32I 0x0C14 261
FLEXCAN_F.IFLAG2

[BUF63I:BUF32I]
FLEXCAN_F buffers 63–32 interrupts

Reserved 0x0C18 262 Reserved Reserved

Reserved 0x0C1C 263 Reserved Reserved

Reserved 0x0C20 264 Reserved Reserved

Reserved 0x0C24 265 Reserved Reserved

Reserved 0x0C28 266 Reserved Reserved

Reserved 0x0C2C 267 Reserved Reserved

Reserved 0x0C30 268 Reserved Reserved

Reserved 0x0C34 269 Reserved Reserved

SCI_E_COMB 0x0C38 270

SCI_E.SCISR1[TDRE] ||
SCI_E.SCISR1[TC] ||

SCI_E.SCISR1[RDRF] ||
SCI_E.SCISR1[IDLE] ||
SCI_E.SCISR1[OR] ||
SCI_E.SCISR1[NF] ||
SCI_E.SCISR1[FE] ||
SCI_E.SCISR1[PF] ||

SCI_E.SCISR2[BERR] ||
SCI_E.LINSTAT1[RXRDY] ||
SCI_E.LINSTAT1[TXRDY] ||
SCI_E.LINSTAT1[LWAKE] ||

SCI_E.LINSTAT1[STO] ||
SCI_E.LINSTAT1[PBERR] ||
SCI_E.LINSTAT1[CERR] ||

SCI_E.LINSTAT1[CKERR] ||
SCI_E.LINSTAT1[FRC] ||
SCI_E.LINSTAT2[OVFL]

SCI_E combined interrupt request of the
SCI status register 1 transmit data register
empty, transmit complete, receive data
register full, idle line, overrun, noise, frame
error, and parity error interrupt requests,
SCI status register 2 bit error interrupt
request, LIN status register 1 receive data
ready, transmit data ready, received LIN
wakeup signal, slave timeout, physical bus
error, CRC error, checksum error, frame
complete interrupts requests, and LIN
status register 2 receive register overflow
interrupt request

Table 8-2. Interrupt Summary for External Input to e200z1 or e200z0 (Sheet 12 of 14)

Interrupt Offset1

V
ec

to
r

P
ri

o
ri

ty
2

Source Description

Interrupts

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 8-17
 Preliminary

SCI_F_COMB 0x0C3C 271

SCI_F.SCISR1[TDRE] ||
SCI_F.SCISR1[TC] ||

SCI_F.SCISR1[RDRF] ||
SCI_F.SCISR1[IDLE] ||
SCI_F.SCISR1[OR] ||
SCI_F.SCISR1[NF] ||
SCI_F.SCISR1[FE] ||
SCI_F.SCISR1[PF] ||

SCI_F.SCISR2[BERR] ||
SCI_F.LINSTAT1[RXRDY] ||
SCI_F.LINSTAT1[TXRDY] ||
SCI_F.LINSTAT1[LWAKE] ||

SCI_F.LINSTAT1[STO] ||
SCI_F.LINSTAT1[PBERR] ||
SCI_F.LINSTAT1[CERR] ||

SCI_F.LINSTAT1[CKERR] ||
SCI_F.LINSTAT1[FRC] ||
SCI_F.LINSTAT2[OVFL]

SCI_F combined interrupt request of the
SCI status register 1 transmit data register
empty, transmit complete, receive data
register full, idle line, overrun, noise, frame
error, and parity error interrupt requests,
SCI status register 2 bit error interrupt
request, LIN status register 1 receive data
ready, transmit data ready, received LIN
wakeup signal, slave timeout, physical bus
error, CRC error, checksum error, frame
complete interrupts requests, and LIN
status register 2 receive register overflow
interrupt request

SCI_G_COMB 0x0C40 272

SCI_G.SCISR1[TDRE] ||
SCI_G.SCISR1[TC] ||

SCI_G.SCISR1[RDRF] ||
SCI_G.SCISR1[IDLE] ||
SCI_G.SCISR1[OR] ||
SCI_G.SCISR1[NF] ||
SCI_G.SCISR1[FE] ||
SCI_G.SCISR1[PF] ||

SCI_G.SCISR2[BERR] ||
SCI_G.LINSTAT1[RXRDY] ||
SCI_G.LINSTAT1[TXRDY] ||
SCI_G.LINSTAT1[LWAKE] ||

SCI_G.LINSTAT1[STO] ||
SCI_G.LINSTAT1[PBERR] ||
SCI_G.LINSTAT1[CERR] ||

SCI_G.LINSTAT1[CKERR] ||
SCI_G.LINSTAT1[FRC] ||
SCI_G.LINSTAT2[OVFL]

SCI_G combined interrupt request of the
SCI status register 1 transmit data register
empty, transmit complete, receive data
register full, idle line, overrun, noise, frame
error, and parity error interrupt requests,
SCI status register 2 bit error interrupt
request, LIN status register 1 receive data
ready, transmit data ready, received LIN
wakeup signal, slave timeout, physical bus
error, CRC error, checksum error, frame
complete interrupts requests, and LIN
status register 2 receive register overflow
interrupt request

SCI_H_COMB 0x0C44 273

SCI_H.SCISR1[TDRE] ||
SCI_H.SCISR1[TC] ||

SCI_H.SCISR1[RDRF] ||
SCI_H.SCISR1[IDLE] ||
SCI_H.SCISR1[OR] ||
SCI_H.SCISR1[NF] ||
SCI_H.SCISR1[FE] ||
SCI_H.SCISR1[PF] ||

SCI_H.SCISR2[BERR] ||
SCI_H.LINSTAT1[RXRDY] ||
SCI_H.LINSTAT1[TXRDY] ||
SCI_H.LINSTAT1[LWAKE] ||

SCI_H.LINSTAT1[STO] ||
SCI_H.LINSTAT1[PBERR] ||
SCI_H.LINSTAT1[CERR] ||

SCI_H.LINSTAT1[CKERR] ||
SCI_H.LINSTAT1[FRC] ||
SCI_H.LINSTAT2[OVFL]

SCI_H combined interrupt request of the
SCI status register 1 transmit data register
empty, transmit complete, receive data
register full, idle line, overrun, noise, frame
error, and parity error interrupt requests,
SCI status register 2 bit error interrupt
request, LIN status register 1 receive data
ready, transmit data ready, received LIN
wakeup signal, slave timeout, physical bus
error, CRC error, checksum error, frame
complete interrupts requests, and LIN
status register 2 receive register overflow
interrupt request

Table 8-2. Interrupt Summary for External Input to e200z1 or e200z0 (Sheet 13 of 14)

Interrupt Offset1

V
ec

to
r

P
ri

o
ri

ty
2

Source Description

Interrupts

MPC5510 Microcontroller Family Reference Manual, Rev. 1

8-18 Freescale Semiconductor
 Preliminary

DSPI_C_ISR_OVER 0x0C48 274
DSPI_C.DSPI_ISR[TFUF] ||
DSPI_C.DSPI_ISR[RFOF]

DSPI_C combined overrun interrupt
request of the transmit FIFO underflow
and receive FIFO overflow interrupt
requests

DSPI_C_ISR_EOQF 0x0C4C 275 DSPI_C.DSPI_ISR[EOQF] DSPI_C transmit FIFO end-of-queue flag

DSPI_C_ISR_TFFF 0x0C50 276 DSPI_C.DSPI_ISR[TFFF] DSPI_C transmit FIFO fill flag

DSPI_C_ISR_TCF 0x0C54 277 DSPI_C.DSPI_ISR[TCF] DSPI_C transfer complete flag

DSPI_C_ISR_RFDF 0x0C58 278 DSPI_C.DSPI_ISR[RFDF] DSPI_C receive FIFO drain flag

DSPI_D_ISR_OVER 0x0C5C 279
DSPI_D.DSPI_ISR[TFUF] ||
DSPI_D.DSPI_ISR[RFOF]

DSPI_D combined overrun interrupt
request of the Transmit FIFO Underflow
and Receive FIFO Overflow interrupt
requests

DSPI_D_ISR_EOQF 0x0C60 280 DSPI_D.DSPI_ISR[EOQF] DSPI_D transmit FIFO End Of Queue flag

DSPI_D_ISR_TFFF 0x0C64 281 DSPI_D.DSPI_ISR[TFFF] DSPI_D Transmit FIFO Fill flag

DSPI_D_ISR_TCF 0x0C68 282 DSPI_D.DSPI_ISR[TCF] DSPI_D Transfer Complete flag

DSPI_D_ISR_RFDF 0x0C6C 283 DSPI_D.DSPI_ISR[RFDF] DSPI_D Receive FIFO Drain flag

FlexRay_GLOB 0x0C70 284 FLEXRAY.CIFRR[7] Global FlexRay module interrupt flag

FlexRay_PRIF 0x0C74 285 FLEXRAY.CIFRR[6]
FlexRay protocol status and error interrupt
flag

FlexRay_CHIF 0x0C78 286 FLEXRAY.CIFRR[5]
FlexRay controller host interface error
interrupt flag

FlexRay_WUP_IF 0x0C7C 287 FLEXRAY.CIFRR[4] FlexRay wakeup interrupt flag

FlexRay_FBNE_F 0x0C80 288 FLEXRAY.CIFRR[3]
FlexRay receive FIFO B not empty intr.
flag

FlexRay_FANE_F 0x0C84 289 FLEXRAY.CIFRR[2]
FlexRay Receive FIFO A not Empty intr.
flag

FlexRay_RBIF 0x0C88 290 FLEXRAY.CIFRR[1] FlexRay combined receive buffer intr. flag

FlexRay_TBIF 0x0C8C 291 FLEXRAY.CIFRR[0]
FlexRay combined transmit buffer intr.
flag.

Reserved 0x0C90 292 Reserved Reserved

MLB_Service_Request 0x0C94 293 MLB.MSR[MSVRQS] MLB Service Request

1 Offsets are for hardware vector mode only. In software vector mode all interrupts have the same offset of 0x0040.
2 The priorities are selected in INTC_PSRx_x, where the specific select register is assigned according to the vector. This

column is for the user to fill in how they set their specific priorities.

Table 8-2. Interrupt Summary for External Input to e200z1 or e200z0 (Sheet 14 of 14)

Interrupt Offset1

V
ec

to
r

P
ri

o
ri

ty
2

Source Description

Interrupts

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 8-19
 Preliminary

8.4 Interrupt Operation

8.4.1 Software Vector Mode

In software vector mode, the interrupt exception handler acknowledges the interrupt request to the
e200z1/0 from the INTC by reading the INTC_IACKR. The e200z1/0 is enabled again to recognize the
external input by setting the EE bit of the MSR. The prolog of the interrupt exception handler must
acknowledge the interrupt request before the e200z1/0 is enabled again to recognize the external input.
Otherwise, the e200z1/0 will attempt to service the same source of the interrupt request.

The INTC’s LIFO is popped by writing to the INTC_EOIR. The e200z1/0’s recognition of the external
input is disabled by clearing the EE bit of the MSR. In the epilog of the interrupt exception handler, the
timing relationship between popping the LIFO and disabling recognition of the external input has no
restrictions. The writes can happen in either order. However, disabling recognition of the external input
before popping the LIFO eases the calculation of the maximum pipe depth at the cost of postponing the
servicing of the next interrupt request.

8.4.2 Hardware Vector Mode

In hardware vector mode, the interrupt request to the e200z1/0 from the INTC is acknowledged before the
e200z1/0 starts to execute the exception handler. The INTC_IACKR does not need to be read to
acknowledge the interrupt request before the e200z1/0 is enabled again to recognize the external input.

As in software vector mode, the timing relationship between popping the LIFO and disabling recognition
of the external input has no restrictions. Also, as in software vector mode, disabling recognition of the
external input before popping the LIFO eases the calculation of the maximum pipe depth at the cost of
postponing the servicing of the next interrupt request.

8.4.3 Non Maskable Interrupt (NMI)

The MPC5510 can be configured to use the pins PD[10] and PD[11] as non maskable interrupts (NMI) by
providing a path to the critical interrupt input of the e200Z1 and e200z0 cores, respectively.

After the SIU is configured by user code, an NMI cannot be prevented from reaching the assigned core.
The only possible way of disabling the critical interrupt is by clearing the critical interrupt enable (CE) bit
in the core’s machine state register (MSR). The NMI will have a higher priority than any interrupt request
generated by the INTC, and will not be blocked or preempted by any other INTC interrupt request.

After the SIU is properly configured, the operation of the NMI always generates an interrupt request when
the programmed edge transition occurs on the pin, regardless of the selected muxing on that pin. It is the
user’s responsibility to assign pin multiplexing correctly for use with an NMI, which would normally mean
selecting it as a port pin rather than a peripheral function.

Figure 8-5 shows the various system level connections needed to create the NMI.

Interrupts

MPC5510 Microcontroller Family Reference Manual, Rev. 1

8-20 Freescale Semiconductor
 Preliminary

Figure 8-5. NMI Connections

8.4.4 Dynamic Priority Elevation

Zen Core processors support critical and external interrupts. Each processor can be configured to employ
priority elevation on critical and/or external interrupt events. Critical interrupts come from external pins
PD10 or PD11 or the SoftMLB interface logic, and are routed to the processor’s critical interrupt input.
External interrupts come from the peripherals and are routed through the interrupt controller. In addition
to the interrupt notification signals, various processor specific configuration flags from the Zen processor’s
Machine Check Register (MCR[ee,ce]) and the Hardware Implementation register (HID1) are sent to the
Miscellaneous Control Module (MCM) to determine when interrupt servicing is enabled and when
high-priority elevation should be enabled. If the corresponding processor is configured to allow
high-priority elevation on critical interrupt events, the MCM generates the high-priority signal upon
critical interrupt detection and holds it active for the duration of interrupt servicing until a return from
critical interrupt (rfci) is detected. If the corresponding processor is configured to allow high-priority
elevation on external interrupt events, the MCM generates the high-priority signal upon external interrupt
detection and holds it active for the duration of interrupt servicing, until a return from interrupt (rfi) is
detected.

Great care must be taken when using the priority elevation as it can enable a master to starve the rest of
the masters in the system.

8.4.4.1 Hardware Implementation Dependent Register 1

The HID1 register is used for bus configuration and system control. HID1 is shown in Figure 8-6.

•••• Interrupt
controller

D
M

A
/In

te
rr

up
t

S
e

le
ct

EIF0

EIF1

EIF2

EIF3

EIF4

EIF15

IMUX

Interrupt
request

DMA
request

eDMA

OVF0

OVF1

OVF15

SIU_OSR

SIU_EISR

External
IRQ pins or

internal
sources

••
•

•
•

SIU_DIRSR
SIU

NMI1

NMI0

PD11

PD10

•••

Secondary
CPU

Primary
CPU

••

Overrun
request Critical

interrupt

EIF5–EIF15

DIRS1

DIRS2

DIRS3

DIRS4

DIRS1
DIRS2
DIRS3
DIRS4

DIRS1

DIRS2

DIRS3

DIRS4

Interrupts

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 8-21
 Preliminary

The HID1 fields are defined in Table 8-3.

 Zen Core SPR 1009 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

B
A

E
C

E

B
A

E
E

E

0 0 0 0 0 0

AT
S 0 0 0 0 0 0 0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-6. Hardware Implementation Dependent Register 1 (HID1)

Table 8-3. HID1 Field Description

Field Description

bits 0–15 Reserved.1

1 These bits are not implemented and should be written with zero for future compatibility.

BAECE Bus Arbitration Elevation for Critical Interrupts Enable. This bit enables the dynamic elevation of the processor’s
system bus arbitration priority during critical interrupt processing. If set, this bit enables the elevated arbitration
priority during the time when the critical interrupt request is asserted. If cleared, the processor’s arbitration priority
does not change when the critical interrupt request is asserted.

BAEEE Bus Arbitration Elevation for External Interrupts Enable. This bit enables the dynamic elevation of the processor’s
system bus arbitration priority during external interrupt processing. If set, this bit enables the elevated arbitration
priority during the time when the external interrupt request is asserted. If cleared, the processor’s arbitration priority
does not change when the external interrupt request is asserted.

bits 18–23 Reserved.1

ATS Atomic status (read-only). Indicates state of the reservation bit in the load/store unit.

bit 31 Reserved.1

Interrupts

MPC5510 Microcontroller Family Reference Manual, Rev. 1

8-22 Freescale Semiconductor
 Preliminary

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 9-1
 Preliminary

Chapter 9
Interrupt Controller (INTC)

9.1 Introduction
The INTC provides priority-based preemptive scheduling of interrupt service requests (ISRs). This
scheduling scheme is suitable for statically scheduled hard real-time systems. The INTC supports 294
interrupt requests. It is targeted to work with Power Architecture technology and automotive applications
where the ISRs nest to multiple levels, but it also can be used with other processors and applications.

For high-priority interrupt requests in these target applications, the time from the assertion of the
peripheral’s interrupt request to when the processor is performing useful work to service the interrupt
request needs to be minimized. The INTC supports this goal by providing a unique vector for each
interrupt request source. It also provides 16 priorities so that lower priority ISRs do not delay the execution
of higher priority ISRs. Because each individual application will have different priorities for each source
of interrupt request, the priority of each interrupt request is configurable.

When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC
supports the priority ceiling protocol for coherent accesses. By providing a modifiable priority mask, the
priority can be raised temporarily so that all tasks which share the resource can not preempt each other.

Multiple processors can assert interrupt requests to each other through software settable interrupt requests.
These software settable interrupt requests can also be used to separate the work involved in servicing an
interrupt request into a high-priority portion and a low-priority portion. The high-priority portion is
initiated by a peripheral interrupt request, but then the ISR can assert a software settable interrupt request
to finish the servicing in a lower priority ISR. Therefore these software settable interrupt requests can be
used instead of the peripheral ISR scheduling a task through the RTOS.

9.1.1 Features
• Supports 286 peripheral and eight software-settable interrupt request sources.

• Each interrupt source can be steered by software to processor 0 (Z1), processor 1 (Z0) or both
processors interrupt request outputs.

NOTE
By default, processor 0 (Z1) receives all interrupt requests, so backward
compatibility with single processor systems is maintained.

When sending an interrupt to both cores, the user must take care to prevent
the interrupt from going away from the other core when not expected.

• 9-bit vector

— Unique vector for each interrupt request source

Interrupt Controller (INTC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

9-2 Freescale Semiconductor
 Preliminary

— Hardware connection to processor or read from register

• Each interrupt source can be programmed to one of 16 priorities

• Preemption

— Preemptive prioritized interrupt requests to processor

— ISR at a higher priority preempts ISRs or tasks at lower priorities

— Automatic pushing or popping of preempted priority to or from a LIFO

— Ability to modify the ISR or task priority; modifying the priority can be used to implement the
priority ceiling protocol for accessing shared resources.

• Low latency—three clocks from receipt of interrupt request from peripheral to interrupt request to
processor.

9.1.2 Block Diagram

Figure 9-1 is a block diagram of the interrupt controller (INTC).

Interrupt Controller (INTC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 9-3
 Preliminary

Figure 9-1. INTC Block Diagram

Peripheral
Bus

Processor 0
Hardware

Vector Enable

Software
Set/Clear
Interrupt
Registers

Flag Bits

Priority
Select

Registers

Peripheral
Interrupt
Requests

Priority
Arbitrator

Request
Selector

Block
Configuration

Register

1

Highest Priority4

Priority
Comparator

Slave
Interface

for Reads
& Writes

1Processor 0 Push/Update/Acknowledge

1

1

1Update Interrupt Vector

1

Interrupt
Request to
Processor 0

Memory Mapped Registers

Non-Memory Mapped Logic

Pushed
Priority

Processor 1
Current
Priority

Register

4

Popped
Priority

4

New
Priority

4

Current
Priority

4

Priority
Comparator

Highest Priority 4

Highest
Priority

Interrupt
Requests

294 Vector
Encoder

Processor 1
Interrupt

Acknowledge
Register

Processor 1
End of

Interrupt
Register

Processor 0
End of

Interrupt
Register

1

Processor 1
Interrupt
Vector

9294

Interrupt
Vector

9

Request
Selector

Priority
Arbitrator

Highest
Priority

Interrupt
Requests

294 294 Vector
Encoder

Interrupt
Vector

9
Processor 0

Interrupt
Acknowledge

Register

Processor 0
Interrupt
Vector

9286 294

Processor 1
Hardware

Vector Enable
Vector Table

Entry Size

Processor 1 Push/Update/Acknowledge

Interrupt
Request to
Processor 1

Processor 1 Pop

1

1

1

Update Interrupt
Vector

1

1

Interrupt
Acknowledge

from
Processor 1

8

294 x
6-bits

294 x
6-bits

New
Priority

4

Current
Priority

4

Processor 0
Current
Priority

Register

Processor 0
Priority
LIFO

Processor 0 Pop

Processor 1 Pop

Processor 1 Push/Update/Acknowledge 1

1

Interrupt
Acknowledge

from
Processor 0

1

Lowest
Vector

Interrupt
Request

Lowest
Vector

Interrupt
Request

Processor 1
Priority
LIFO

1Vector Table
Entry Size

Pushed
Priority

4

Popped
Priority

4

NOTE: Processor 0 is Z1 and Processor 1 is Z0.

Interrupt Controller (INTC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

9-4 Freescale Semiconductor
 Preliminary

9.1.3 Modes of Operation

9.1.3.1 Normal Mode

In normal mode, the INTC has two handshaking modes with the processor: software vector mode and
hardware vector mode.

9.1.3.1.1 Software Vector Mode

In software vector mode, the interrupt exception handler software must read a register in the INTC to
obtain the vector associated with the interrupt request to the processor. The INTC will use software vector
mode for a given processor when its associated HVEN_PRC0 or HVEN_PRC1 bit in INTC_MCR is
negated. The hardware vector enable signal to processor 0 or processor 1 is driven as negated when its
associated HVEN_PRCn bit is negated. The vector is read from INC_IACKR_PRC0 or
INTC_IACKR_PRC1. Reading the INTC_IACKR_PRCn negates the interrupt request to the associated
processor. Even if a higher priority interrupt request arrived while waiting for this interrupt acknowledge,
the interrupt request to the processor will negate for at least one clock. The reading also pushes the PRI
value in INTC_CPR_PRC0 or INTC_CPR_PRC1 onto the associated LIFO and updates PRI in the
associated INTC_CPR_PRCn with the new priority.

Furthermore, the interrupt vector to the processor is driven as all 0s. The interrupt acknowledge signal
from the associated processor is ignored.

9.1.3.1.2 Hardware Vector Mode

In hardware vector mode, the hardware signals the interrupt vector from the INTC in conjunction with a
processor that can use that vector. This hardware causes the first instruction to be executed in handling the
interrupt request to the processor to be specific to that vector. Therefore, the interrupt exception handler is
specific to a peripheral or software settable interrupt request rather than being common to all of them. The
INTC uses hardware vector mode for a given processor when the associated HVEN_PRC0 or
HVEN_PRC1 bit in the INTC_MCR is asserted. The hardware vector enable signal to the associated
processor is driven as asserted. When the interrupt request to the associated processor asserts, the interrupt
vector signal is updated. The value of that interrupt vector is the unique vector associated with the
preempting peripheral or software settable interrupt request. The vector value matches the value of the
INTVEC_PRC0 field in the INTC_IACKR_PRC0 or the INTVEC_PRC1 field in the
INTC_IACKR_PRC1, depending on which processor was assigned to handle a given interrupt source.

The processor negates the interrupt request to the processor driven by the INTC by asserting the interrupt
acknowledge signal for one clock. Even if a higher priority interrupt request arrived while waiting for the
interrupt acknowledge, the interrupt request to the processor will negate for at least one clock.

The assertion of the interrupt acknowledge signal for a given processor pushes the associated PRI value in
the associated INTC_CPR_PRCn register onto the associated LIFO and updates the associated PRI in the
associated INTC_CPR_PRCn register with the new priority. This pushing of the PRI value onto the
associated LIFO and updating PRI in the associated INTC_CPR_PRCn does not occur when the associated
interrupt acknowledge signal asserts and INTC_SSCIR0_3–INTC_SSCIR4_7 is written at a time such that
the PRI value in the associated INTC_CPR_PRCn register would need to be pushed and the previously

Interrupt Controller (INTC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 9-5
 Preliminary

last pushed PRI value would need to be popped simultaneously. In this case, PRI in the associated
INTC_CPR_PRCn is updated with the new priority, and the associated LIFO is neither pushed or popped.

9.1.3.2 Debug Mode

The INTC operation in debug mode is identical to its operation in normal mode.

9.1.3.3 Stop Mode

The INTC supports stop mode. The INTC can have its clock input disabled at any time by the clock driver
on the device. While its clocks are disabled, the INTC registers are not accessible.

The INTC requires clocking in order for a peripheral interrupt request to generate an interrupt request to
the processor. Since the INTC is not clocked in stop mode, peripheral interrupt requests can not be used as
a wakeup source, unless the clock, reset, and power module (CRP) supports that interrupt request as a
wakeup source.

9.2 Signal Description
The INTC has no external signals.

9.3 Memory Map and Registers

9.3.1 Module Memory Map

Table 9-1 shows the INTC memory map.

Table 9-1. INTC Memory Map

Offset from
INTC_BASE_ADDR

(0xFFF4_8000)
Register Access

Reset
Value

Section/Page

0x0000 INTC_MCR—INTC module configuration register R/W 0x0000_0000 9.3.2.1/9-6

0x0004 Reserved — — —

0x0008 INTC_CPR_PRC0—INTC current priority register for
processor 0 (Z1)

R/W 0x0000_000F 9.3.2.2/9-7

0x00C INTC_CPR_PRC1—INTC current priority register for
processor 1 (Z0)

R/W 0x0000_000F 9.3.2.3/9-8

0x0010 INTC_IACKR_PRC0—INTC interrupt acknowledge register
for processor 0 (Z1)

R1/W 0x0000_0000 9.3.2.4/9-9

0x0014 INTC_IACKR_PRC1—INTC interrupt acknowledge register
for processor 1 (Z0)

R1/W 0x0000_0000 9.3.2.5/9-10

0x0018 INTC_EOIR_PRC0—INTC end of interrupt register for
processor 0 (Z1)

W 0x0000_0000 9.3.2.6/9-10

0x001C INTC_EOIR_PRC1—INTC end of interrupt register for
processor 1 (Z0)

W 0x0000_0000 9.3.2.7/9-11

Interrupt Controller (INTC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

9-6 Freescale Semiconductor
 Preliminary

9.3.2 Register Descriptions

All registers are 32 bits in width. Any combination of accessing the four bytes of a register with a single
access is supported, provided that the access does not cross a register boundary. These supported accesses
include types and sizes of eight bits, aligned 16 bits, misaligned 16 bits to the middle two bytes, and
aligned 32 bits.

In software vector mode, the side effects of a read of INTC_IACKR_PRC0 and INTC_IACR_PRC1 are
the same regardless of the size of the read. In either software or hardware vector mode, the size of a write
to either INTC_SSCIR0_3–INTC_SSCIR4_7 or INTC_EOIR_PRC0–INTC_EOIR_PRC1 does not affect
the operation of the write.

9.3.2.1 INTC Module Configuration Register (INTC_MCR)

The module configuration register is used to configure options of the INTC.

0x0020–
0x0024

INTC_SSCIR0_3—INTC software set/clear interrupt register
0–3

INTC_SSCIR4_7—INTC software set/clear interrupt register
4–7

R/W 0x0000_0000 9.3.2.8/9-11

0x0028–
0x003C

Reserved — — —

0x0040–
0x0164

INTC_PSR0_3—INTC priority select register 0–3 —

INTC_PSR292_293—INTC priority select register 292–293

R/W 0x0000_0000 9.3.2.9/9-12

1 When the HVEN bit in the INTC module configuration register (INTC_MCR) is asserted, a read of the INTC_IACKR has no
side effects.

Offset: 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 VTES_
PRC1

0 0 0 0 HVEN_
PRC1

0 0 VTES_
PRC0

0 0 0 0 HVEN_
PRC0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-2. INTC Module Configuration Register (INTC_MCR)

Table 9-1. INTC Memory Map (continued)

Offset from
INTC_BASE_ADDR

(0xFFF4_8000)
Register Access

Reset
Value

Section/Page

Interrupt Controller (INTC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 9-7
 Preliminary

9.3.2.2 INTC Current Priority Register for Processor 0 (Z1) (INTC_CPR_PRC0)

The current priority register masks any peripheral or software settable interrupt request at the same or
lower priority of the current value than the PRI field in INTC_CPR_PRC0 from generating an interrupt
request to processor 0 (Z1). When INTC_IACKR_PRC0 is read in software vector mode, or the interrupt
acknowledge signal from the processor is asserted in hardware vector mode, the value of PRI is pushed
onto the LIFO, and PRI is updated with the priority of the preempting interrupt request. When
INTC_SSCIR0_3–INTC_SSCIR4_7 is written, the LIFO is popped into the INTC_CPR_PRC0’s PRI
field. An exception case in hardware vector mode to this behavior is described in Section 9.1.3.1.2,
“Hardware Vector Mode”.”

The masking priority can be raised or lowered by writing to the PRI field, supporting the PCP. Refer to
Section 9.5.5, “Priority Ceiling Protocol.”

Table 9-2. INTC_MCR Field Descriptions

Field Description

VTES_PRC1
VTES_PRC0

For software mode only, the Vector Table Entry Size for Processor 0 (Z1) and Processor 1 (Z0). The
VTES_PRC0 bit controls the number of 0s to the right of INTVEC_PRC0 in INTC_IACKR_PRC0. The
VTES_PRC1 bit controls the number of 0s to the right of INTVEC_PRC1 in INTC_IACKR_PRC1. If the
contents of INTC_IACKR_PRC0 or INTC_IACKR_PRC1 are used as an address of an entry in a vector table,
then the number of rightmost 0s will determine the size of each vector table entry.
0 4 bytes of address offset between vectors.
1 8 bytes of address offset between vectors.
Note: A larger table may be useful if the interrupt service routines (ISR) require very few instructions;

however, more typically, the smaller 4-byte size is used as a jump table to the actual ISRs.

HVEN_PRC1
HVEN_PRC0

Hardware Vector Enable for Processor 0 (Z1) and Processor 1 (Z0). The HVEN bit controls whether the INTC
is in hardware vector mode or software vector mode. Refer to Section 9.1.3.1, “Normal Mode” for details of
handshaking with the processor in each mode.
0 Software vector mode.
1 Hardware vector mode.

Offset: 0x0008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
PRI

W

Reset 0 1 1 1 1

Figure 9-3. INTC Current Priority Register for Processor 0 (Z1) (INTC_CPR_PRC0)

Table 9-3. INTC_CPR_PRC0 Field Descriptions

Field Description

PRI Priority. PRI is the priority of the currently executing ISR according to the field values defined in Table 9-4.

Interrupt Controller (INTC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

9-8 Freescale Semiconductor
 Preliminary

NOTE
A store to modify the PRI field that closely precedes or follows an access to
a shared resource can result in a non-coherent access to the resource. Refer
to Section 9.5.5.2, “Ensuring Coherency” for example code to ensure
coherency.

9.3.2.3 INTC Current Priority Register for Processor 1 (Z0) (INTC_CPR_PRC1)

Table 9-4. PRI Values

PRI Meaning

1111 Priority 15—highest priority

1110 Priority 14

1101 Priority 13

1100 Priority 12

1011 Priority 11

1010 Priority 10

1001 Priority 9

1000 Priority 8

0111 Priority 7

0110 Priority 6

0101 Priority 5

0100 Priority 4

0011 Priority 3

0010 Priority 2

0001 Priority 1

0000 Priority 0—lowest priority

Offset: 0x000C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
PRI

W

Reset 0 1 1 1 1

Figure 9-4. INTC Current Priority Register for Processor 1 (Z0) (INTC_CPR_PRC1)

Table 9-5. INTC_CPR_PRC1 Field Descriptions

Field Description

PRI Priority. The function of this register is the same as described for processor 0 (Z1) in Section 9.3.2.2, “INTC
Current Priority Register for Processor 0 (Z1) (INTC_CPR_PRC0).”

Interrupt Controller (INTC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 9-9
 Preliminary

9.3.2.4 INTC Interrupt Acknowledge Register for Processor 0 (Z1)
(INTC_IACKR_PRC0)

The interrupt acknowledge register for processor 0 (Z1) provides a value that can be used to load the
address of an ISR from a vector table. The vector table can be composed of addresses of the ISRs specific
to their respective interrupt vectors.

In software vector mode, the INTC_IACKR_PRC0 has side effects from reads. Therefore, it must not be
speculatively read while in this mode. The side effects are the same regardless of the size of the read.
Reading the INTC_IACKR_PRC0 does not have side effects in hardware vector mode.

Offset: 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
VTBA_PRC0 (most significant 16 bits)

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R VTBA_PRC0
(least significant five bits)

INTVEC_PRC01 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 When the VTES_PRC0 bit in INTC_MCR is asserted, INTVEC_PRC0 is shifted to the left one bit. Bit 29 is read as

a 0. VTBA_PRC0 is narrowed to 20 bits in width.

Figure 9-5. INTC Interrupt Acknowledge Register for Processor 0 (Z1) (INTC_IACKR_PRC0)

Table 9-6. INTC_IACKR_PRC0 Field Descriptions

Field Description

VTBA_PRC0 Vector Table Base Address for Processor 0 (Z1). VTBAPRC0 can be the base address of a vector table of
addresses of ISRs for processor 0 (Z1). The VTBA_PRC0 only uses the leftmost 20 bits when the
VTES_PRC0 bit in INTC_MCR is asserted.

INTVEC_PRC0 Interrupt Vector for Processor 0 (Z1). INTVEC_PRC0 is the vector of the peripheral or software settable
interrupt request that caused the interrupt request to the processor. When the interrupt request to the
processor asserts, the INTVEC_PRC0 is updated, whether the INTC is in software or hardware vector mode.

Interrupt Controller (INTC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

9-10 Freescale Semiconductor
 Preliminary

9.3.2.5 INTC Interrupt Acknowledge Register for Processor 1 (Z0)
(INTC_IACKR_PRC1)

9.3.2.6 INTC End-of-Interrupt Register for Processor 0 (Z1) (INTC_EOIR_PRC0)

Writing to the end-of-interrupt register signals the end of the servicing of the interrupt request. When the
INTC_EOIR_PRC0 is written, the priority last pushed on the LIFO is popped into INTC_CPR_PRC0. An
exception to this behavior is described in Section 9.1.3.1.2, “Hardware Vector Mode.” The values and size
of data written to the INTC_EOIR_PRC0 are ignored. The values and sizes written to this register neither
update the INTC_EOIR_PRC0 contents or affect whether the LIFO pops. For possible future
compatibility, write four bytes of all 0s to the INTC_EOIR_PRC0.

Offset: 0x0014 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
VTBA_PRC1 (most significant 16 bits)

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R VTBA_PRC1
(5 least-significant bits)

INTVEC_PRC11 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 When the VTES_PRC1 bit in INTC_MCR is asserted, INTVEC_PRC1 is shifted to the left one bit. Bit 29 is read as

0. VTBA_PRC1 is narrowed to 20 bits wide

Figure 9-6. INTC Interrupt Acknowledge Register for Processor 1 (Z0) (INTC_IACKR_PRC1)

Table 9-7. INTC_IACKR_PRC1 Field Descriptions

Field Description

VTBA_PRC1 The register’s function is the same as described for processor 0 (Z1) in Section 9.3.2.4, “INTC Interrupt
Acknowledge Register for Processor 0 (Z1) (INTC_IACKR_PRC0)”

INTVEC_PRC1

Offset 0x0018 Access: write only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0

W

Reset 0

Figure 9-7. INTC End-of-Interrupt Register for Processor 0 (Z1) (INTC_EOIR_PRC0)

Interrupt Controller (INTC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 9-11
 Preliminary

9.3.2.7 INTC End-of-Interrupt Register for Processor 1 (Z0) (INTC_EOIR_PRC1)

The register’s function is the same as for processor 0 (Z1) as described in Section 9.3.2.6, “INTC
End-of-Interrupt Register for Processor 0 (Z1) (INTC_EOIR_PRC0).”

9.3.2.8 INTC Software Set/Clear Interrupt Registers
(INTC_SSCIR0_3–INTC_SSCIR4_7)

Offset: 0x001C Access: write only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0

W

Reset 0

Figure 9-8. INTC End-of-Interrupt Register for Processor 1 (Z0) (INTC_EOIR_PRC1)

Offset: 0x0020 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 CLR0 0 0 0 0 0 0 0 CLR1

W SET0 w1c SET1 w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 CLR2 0 0 0 0 0 0 0 CLR3

W SET2 w1c SET3 w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-9. INTC Software Set/Clear Interrupt Register 0–3 (INTC_SSCIR[0:3])

Offset: 0x0024 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 CLR4 0 0 0 0 0 0 0 CLR5

W SET4 w1c SET5 w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 CLR6 0 0 0 0 0 0 0 CLR7

W SET6 w1c SET7 w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-10. INTC Software Set/Clear Interrupt Register 4–7 (INTC_SSCIR[4:7])

Interrupt Controller (INTC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

9-12 Freescale Semiconductor
 Preliminary

The software set/clear interrupt registers support the setting or clearing of software settable interrupt
request. These registers contain eight independent sets of bits to set and clear a corresponding flag bit by
software. Except for being set by software, this flag bit behaves the same as a flag bit set within a
peripheral. This flag bit generates an interrupt request within the INTC like a peripheral interrupt request.
Writing a 1 to SETn will leave SETn unchanged at 0 but sets CLRn. Writing a 0 to SETn has no effect.
CLRn is the flag bit. Writing a 1 to CLRn clears it. Writing a 0 to CLRn has no effect. If a 1 is written
simultaneously to a pair of SETn and CLRn bits, CLRn will be asserted, regardless of whether CLRn was
asserted before the write.

9.3.2.9 INTC Priority Select Registers (INTC_PSR0_3–INTC_PSR292_293)

Table 9-8. INTC_SSCIR[0:7] Field Descriptions

Field Description

SETn Set Flag Bits. Writing a 1 sets the corresponding CLRn bit. Writing a 0 has no effect. Each SETn always will
be read as a 0.

CLRn Clear Flag Bits. CLRn is the flag bit. Writing a 1 to CLRn clears it provided that a 1 is not written
simultaneously to its corresponding SETn bit. Writing a 0 to CLRn has no effect.
0 Interrupt request not pending within INTC.
1 Interrupt request pending within INTC.

Offset: 0x0040 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PRC_SEL0

0 0
PRI0 PRC_SEL1

0 0
PRI1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PRC_SEL2

0 0
PRI2 PRC_SEL3

0 0
PRI3

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-11. INTC Priority Select Register 0–3 (INTC_PSR0–3)

Offset: 0x0164 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PRC_
SEL292

0 0
PRI292

PRC_
SEL293

0 0
PRI293

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-12. INTC Priority Select Register 292–293 (INTC_PSR292–293)

Interrupt Controller (INTC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 9-13
 Preliminary

Table 9-9. INTC_PSR0_3–INTC_PSR292_293 Field Descriptions

Field Description

PRC_SEL0–
PRC_SEL293

Processor Select. If an interrupt source is enabled, PRC_SELn selects whether the interrupt request
is to be sent to processor 0 (Z1), processor 1 (Z0), or both. See Table 9-11.

PRI0–
PRI293

Priority Select. PRIn selects the priority for interrupt requests. Refer to Section 9.4, “Functional
Description.”

Note: In INTC_PSR292_293, bits 16, 17, 20–25, 28–31 can be read and written; however, writing has
no effect other than to set or clear the bits. Reading returns the values written to the bits.

Table 9-10. INTC Priority Select Register Address Offsets

INTC_PSRn_n Offset Address INTC_PSRn_n Offset Address

INTC_PSR0_3 0x0040 INTC_PSR148_151 0x00D4

INTC_PSR4_7 0x0044 INTC_PSR152_155 0x00D8

INTC_PSR8_11 0x0048 INTC_PSR156_159 0x00DC

INTC_PSR12_15 0x004C INTC_PSR160_163 0x00E0

INTC_PSR16_19 0x0050 INTC_PSR164_167 0x00E4

INTC_PSR20_23 0x0054 INTC_PSR168_171 0x00E8

INTC_PSR24_27 0x0058 INTC_PSR172_175 0x00EC

INTC_PSR28_31 0x005C INTC_PSR176_179 0x00F0

INTC_PSR32_35 0x0060 INTC_PSR180_183 0x00F4

INTC_PSR36_39 0x0064 INTC_PSR184_187 0x00F8

INTC_PSR40_43 0x0068 INTC_PSR188_191 0x00FC

INTC_PSR44_47 0x006C INTC_PSR192_195 0x0100

INTC_PSR48_51 0x0070 INTC_PSR196_199 0x0104

INTC_PSR52_55 0x0074 INTC_PSR200_203 0x0108

INTC_PSR56_59 0x0078 INTC_PSR204_207 0x010C

INTC_PSR60_63 0x007C INTC_PSR208_211 0x0110

INTC_PSR64_67 0x0080 INTC_PSR212_215 0x0114

INTC_PSR68_71 0x0084 INTC_PSR216_219 0x0118

INTC_PSR72_75 0x0088 INTC_PSR220_223 0x011C

INTC_PSR76_79 0x008C INTC_PSR224_227 0x0120

INTC_PSR80_83 0x0090 INTC_PSR228_231 0x0124

INTC_PSR84_87 0x0094 INTC_PSR232_235 0x0128

INTC_PSR88_91 0x0098 INTC_PSR236_239 0x012C

INTC_PSR92_95 0x009C INTC_PSR240_243 0x0130

INTC_PSR96_99 0x00A0 INTC_PSR244_247 0x0134

Interrupt Controller (INTC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

9-14 Freescale Semiconductor
 Preliminary

The priority select registers support the selection of an individual priority for each source of interrupt
request, and whether the interrupt request is to be sent to processor 0 (Z1), processor 1, (Z0) or both. The
unique vector of each peripheral or software settable interrupt request determines which INTC_PSRn_n is
assigned to that interrupt request. The software settable interrupt requests 0–7 are assigned vectors 0–7,
and their priorities are configured in INTC_PSR0_3 and INTC_PSR4_7, respectively. The peripheral
interrupt requests are assigned vectors 8–293, and their priorities are configured in INTC_PSR8_11
through INTC_PSR292_293, respectively (see Section 8.3.1, “Interrupt Source Summary Table”).

NOTE
The PRC_SELn or PRIn field of an INTC_PSRn_n must not be modified
while the corresponding peripheral or software settable interrupt request is
asserted.

NOTE
When sending an interrupt to both cores, the user must take care to prevent
the interrupt from going away from the other core when not expected.

INTC_PSR100_103 0x00A4 INTC_PSR248_251 0x0138

INTC_PSR104_107 0x00A8 INTC_PSR252_255 0x013C

INTC_PSR108_111 0x00AC INTC_PSR256_259 0x0140

INTC_PSR112_115 0x00B0 INTC_PSR260_263 0x0144

INTC_PSR116_119 0x00B4 INTC_PSR264_267 0x0148

INTC_PSR120_123 0x00B8 INTC_PSR268_271 0x014C

INTC_PSR124_127 0x00BC INTC_PSR272_275 0x0150

INTC_PSR128_131 0x00C0 INTC_PSR276_279 0x0154

INTC_PSR132_135 0x00C4 INTC_PSR280_283 0x0158

INTC_PSR136_139 0x00C8 INTC_PSR284_287 0x015C

INTC_PSR140_143 0x00CC INTC_PSR288_291 0x0160

INTC_PSR144_147 0x00D0 INTC_PSR292_293 0x0164

Table 9-11. Selected Processor for Interrupt Request

PRC_SELn Meaning

00 Interrupt request sent to processor 0 (Z1)

01 Interrupt request sent to both processors

10 Reserved

11 Interrupt request sent to processor 1 (Z0)

Table 9-10. INTC Priority Select Register Address Offsets

INTC_PSRn_n Offset Address INTC_PSRn_n Offset Address

Interrupt Controller (INTC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 9-15
 Preliminary

9.4 Functional Description
The functional description involves the areas of interrupt request sources, priority management, and
handshaking with the processor.

9.4.1 Interrupt Request Sources

The INTC has two types of interrupt requests, peripheral and software settable. These interrupt requests
can assert on any clock cycle.

NOTE
The INTC has no spurious vector support. Therefore, if an asserted
peripheral or software settable interrupt request whose PRIn value in
INTC_PSR0_3–INTC_PSR292_293 is higher than the PRI value in
INTC_CPR_PRC0 or INTC_CPR_PRC1 negates before the interrupt
request to the processor for that peripheral or software settable interrupt
request is acknowledged, the interrupt request to the processor can assert or
remain asserted for that peripheral or software settable interrupt request. In
this case, the interrupt vector will correspond to that peripheral or software
settable interrupt request. Also, the PRI value in either the
INTC_CPR_PRC0 or INTC_CPR_PRC1 will be updated with the
corresponding PRIn value in INTC_PSRn_n. Furthermore, clearing the
peripheral interrupt request’s enable bit in the peripheral or, alternatively,
setting its mask bit has the same consequences as clearing its flag bit.
Setting its enable bit or clearing its mask bit while its flag bit is asserted has
the same effect on the INTC as an interrupt event setting the flag bit.

9.4.1.1 Peripheral Interrupt Requests

An interrupt event in a peripheral’s hardware sets a flag bit that resides in the peripheral. The interrupt
request from the peripheral is driven by that flag bit.

The time from when the peripheral starts to drive its peripheral interrupt request to the INTC to the time
that the INTC starts to drive the interrupt request to the processor is three clocks.

Interrupt requests from devices external to the MPC5510 are classified as peripheral interrupt requests in
this reference manual. External interrupts are handled by the SIU (see Section 6.4.3, “External Interrupt”).

9.4.1.2 Software Settable Interrupt Requests

An interrupt request is triggered by software by writing a 1 to a SETn bit in
INTC_SSCIR0_3–INTC_SSCIR4_7. This write sets the corresponding flag bit, CLRn, resulting in the
interrupt request. The interrupt request is cleared by writing a 1 to the CLRn bit.

The time from the write to the SETn bit to the time that the INTC starts to drive the interrupt request to the
processor is four clocks.

Interrupt Controller (INTC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

9-16 Freescale Semiconductor
 Preliminary

9.4.1.3 Unique Vector for Each Interrupt Request Source

Each peripheral and software settable interrupt request is assigned a hardwired unique 9-bit vector.
Software settable interrupts 0–7 are assigned vectors 0–7 respectively. The peripheral interrupt requests
are assigned vectors 8 to as high as needed to include all the peripheral interrupt requests. The peripheral
interrupt request input ports at the boundary of the INTC block are assigned specific hardwired vectors
within the INTC (see Section 8.3.1, “Interrupt Source Summary Table).

9.4.2 Priority Management

The asserted interrupt requests are compared to each other based on their PRIn and PRC_SELn values set
in INTC_PSR0_3–INTC_PSR292_293. The result is compared to PRI in the associated
INTC_CPR_PRC0 or INTC_CPR_PRC1. The results of those comparisons manage the priority of the ISR
executed by the associated processor. The associated LIFO also assists in managing that priority.

9.4.2.1 Current Priority and Preemption

The priority arbitrator, selector, encoder, and comparator sub-blocks shown in Figure 9-1 compare the
priority of the asserted interrupt requests to the current priority. If the priority of any asserted peripheral
or software settable interrupt request is higher than the current priority for a given processor, then the
interrupt request to the processor is asserted. A unique vector for the preempting peripheral or software
settable interrupt request is generated for the associated INTC_IACKR_PRC0 or INTC_IACKR_PRC1
and, if in hardware vector mode, for the interrupt vector given to the processor.

9.4.2.1.1 Priority Arbitrator Sub-block

The priority arbitrator sub-block for each processor compares all the priorities of all of the asserted
interrupt requests assigned to that processor, both peripheral and software settable. The output of the
priority arbitrator sub-block is the highest of those priorities assigned to a given processor. Also, any
interrupt requests which have this highest priority are output as asserted interrupt requests to the associated
request selector sub-block.

9.4.2.1.2 Request Selector Sub-block

If only one interrupt request from the associated priority arbitrator sub-block is asserted, then it is passed
as asserted to the associated vector encoder sub-block. If multiple interrupt requests from the associated
priority arbitrator sub-block are asserted, only the one with the lowest vector passes as asserted to the
associated vector encoder sub-block. The lower vector is chosen regardless of the time order of the
assertions of the peripheral or software settable interrupt requests.

9.4.2.1.3 Vector Encoder Sub-block

The vector encoder sub-block generates the unique 9-bit vector for the asserted interrupt request from the
request selector sub-block for the associated processor.

Interrupt Controller (INTC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 9-17
 Preliminary

9.4.2.1.4 Priority Comparator Sub-block

The priority comparator sub-block compares the highest priority output from the associated priority
arbitrator sub-block with PRI in the associated INTC_CPR_PRC0 or INTC_CPR_PRC1. If the priority
comparator sub-block detects that the highest priority is higher than the current priority, then it asserts the
interrupt request to the associated processor. This interrupt request to the processor asserts whether this
highest priority is raised above the value of PRI in the associated INTC_CPR_PRC0 or
INTC_CPR_PRC1, or the PRI value in the associated INTC_CPR_PRC0 or INTC_CPR_PRC1 is lowered
below this highest priority. This highest priority becomes the new priority which is written to PRI in the
associated INTC_CPR_PRC0 or INTC_CPR_PRC1 when the interrupt request to the processor is
acknowledged. Interrupt requests whose PRIn in INTC_PSRn_n are 0 will not cause a preemption because
their PRIn will not be higher than PRI in the associated INTC_CPR_PRC0 or INTC_CPR_PRC1.

9.4.2.2 Last-In First-Out (LIFO)

The LIFO stores the preempted PRI values from the associated INTC_CPR_PRC0 or INTC_CPR_PRC1.
Therefore, because these priorities are stacked within the INTC, if interrupts need to be enabled during the
ISR, at the beginning of the interrupt exception handler the PRI value in the associated INTC_CPR_PRC0
or INTC_CPR_PRC1 does not need to be loaded from the associated INTC_CPR_PRC0 or
INTC_CPR_PRC1 and stored onto the context stack. Likewise, at the end of the interrupt exception
handler, the priority does not need to be loaded from the context stack and stored into the associated
INTC_CPR_PRC0 or INTC_CPR_PRC1.

The PRI value in the associated INTC_CPR_PRC0 or INTC_CPR_PRC1 is pushed onto the LIFO when
the associated INTC_IACKR_PRC0 or INTC_IACKR_PRC1 is read in software vector mode or when the
interrupt acknowledge signal from the associated processor is asserted in hardware vector mode. The
priority is popped into PRI in the associated INTC_CPR_PRC0 or INTC_CPR_PRC1 when the associated
INTC_EOIR_PRC0 or INTC_EOIR_PRC1 is written. An exception case in hardware vector mode to this
behavior is described in Section 1.2.3.1.2, “Hardware Vector Mode.”

Although the INTC supports 16 priorities, an ISR executing with PRI in the INTC_CPR_PRC0 or
INTC_CPR_PRC1 equal to 15 will not be preempted. Therefore, the LIFO supports the stacking of 15
priorities. However, the LIFO is only 14 entries deep. An entry for a priority of 0 is not needed because of
how pushing onto a full LIFO and popping an empty LIFO are treated. If the LIFO is pushed 15 or more
times than it is popped, the first priorities pushed are overwritten. A priority of 0 would be an overwritten
priority. However, the LIFO will pop 0s if it is popped more times than pushed. Therefore, although a
priority of 0 was overwritten, it is regenerated with the popping of an empty LIFO.

The LIFO is not memory mapped, even in debug mode.

9.4.3 Handshaking with Processor

9.4.3.1 Software Vector Mode Handshaking

This section describes handshaking in software vector mode.

Interrupt Controller (INTC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

9-18 Freescale Semiconductor
 Preliminary

9.4.3.1.1 Acknowledging Interrupt Request to Processor

The software vector mode handshaking can be used with processors that support an interrupt request to
them only, or processors that support both an interrupt request to them only and/or an interrupt request and
interrupt vector to them. The software vector mode handshaking also supports processors which always
expect an interrupt vector with the interrupt request to them

A timing diagram of the interrupt request and acknowledge handshaking in software vector mode and the
handshake near the end of the interrupt exception handler, is shown in Figure 9-13. The INTC examines
the peripheral and software settable interrupt requests. When it finds an asserted peripheral or software
settable interrupt request with a higher priority than PRI in the associated INTC_CPR_PRC0 or
INTC_CPR_PRC1, it asserts the interrupt request to the associated processor. The INTVEC field in the
associated INTC_IACKR_PRC0 or INTC_IACKR_PRC1 is updated with the preempting interrupt
request’s vector when the interrupt request to the processor is asserted. The INTVEC field retains that
value until the next time the interrupt request to the processor is asserted. The handshaking process is
described in Section 9.1.3.1.1, “Software Vector Mode”.”

9.4.3.1.2 End of Interrupt Exception Handler

Before the interrupt exception handling completes, INTC_SSCIR0_3–INTC_SSCIR4_7 must be written.
When written, the associated LIFO is popped so the preempted priority is restored into PRI of the
associated INTC_CPR_PRC0 or INTC_CPR_PRC1. Before it is written, the peripheral or software
settable flag bit must be cleared so that the peripheral or software settable interrupt request is negated.

NOTE
A store to clear the peripheral or software settable interrupt flag bit that
closely precedes the store to the INTC_EOIR_PRC0 or INTC_EOIR_PRC1
can result in that peripheral or software settable interrupt request being
serviced again. If this scenario happens, preventative measures can be used
such as executing a Power Architecture isync instruction before the store to
the INTC_EOIR_PRC0 or INTC_EOIR_PRC1 as shown in
Section 9.1.3.1.1, “Software Vector Mode”.”

When returning from the preemption, the INTC does not search for the peripheral or software settable
interrupt request whose ISR was preempted. Depending on how much the ISR progressed, that interrupt
request may no longer be asserted. When PRI in the associated INTC_CPR_PRC0 or INTC_CPR_PRC1
is lowered to the priority of the preempted ISR, the interrupt request for the preempted ISR or other
asserted peripherals or software settable interrupt requests at or below that priority will not cause a
preemption. Instead, after the restoration of the preempted context, the processor returns to the instruction
address it was to execute before it was preempted. This next instruction is part of the preempted ISR or the
interrupt exception handler’s prolog or epilog.

Interrupt Controller (INTC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 9-19
 Preliminary

Figure 9-13. Software Vector Mode Handshaking Timing Diagram

9.4.3.2 Hardware Vector Mode Handshaking

A timing diagram of the interrupt request and acknowledge handshaking in hardware vector mode and the
handshake near the end of the interrupt exception handler, is shown in Figure 9-14. As in software vector
mode, the INTC examines the peripheral and software settable interrupt requests and, when it finds one
asserted with a higher priority than PRI in the associated INTC_CPR_PRC0 or INTC_CPR_PRC1, it
asserts the interrupt request to the associated processor. The INTVEC field in the associated
INTC_IACKR_PRC0 or INTC_IACKR_PRC1 is updated with the preempting peripheral or software
settable interrupt request’s vector when the interrupt request to the processor is asserted. The INTVEC
field retains that value until the next time the interrupt request to the associated processor is asserted. The
value of the interrupt vector to the associated processor also matches the value of the INTVEC field in the
associated INTC_IACKR_PRC0 or INTC_IACKR_PRC1. The handshake process is described in
Section 9.1.3.1.2, “Hardware Vector Mode.”

The handshaking near the end of the interrupt exception handler, that is written to the associated
INTC_EOIR_PRC0 or INTC_EOIR_PRC1, is the same as in software vector mode (see Section 9.4.3.1.2,
“End of Interrupt Exception Handler”).

010

Clock

Interrupt request to processor

Hardware vector enable

Interrupt vector

Interrupt acknowledge

Read INTC_IACKR_PRCn

Write INTC_EOIR_PRCn

INTVEC in INTC_IACKR_PRCn

PRI in INTC_CPR_PRCn

Peripheral interrupt request 100

0 108

0

Interrupt Controller (INTC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

9-20 Freescale Semiconductor
 Preliminary

Figure 9-14. Hardware Vector Mode Handshaking Timing Diagram

9.5 Initialization/Application Information

9.5.1 Initialization Flow

After exiting reset, all of the PRIn and PRC_SELn fields in INTC_PSR0_3–INTC_PSR292_293 will be
0, and PRI in both INTC_CPR_PRC0 and INTC_CPR_PRC1 will be 15. These reset values prevent the
INTC from asserting interrupt requests to the processors. Furthermore, the peripherals must have a bit to
enable or mask peripheral interrupt request signals. An initialization sequence for allowing the peripheral
and software settable interrupt requests to cause an interrupt request to the processor is:

interrupt_request_initialization:
configure VTES_PRC0,VTES_PRC1,HVEN_PRC0 and HVEN_PRC1 in INTC_MCR
configure VTBA_PRCn in INTC_IACKR_PRCn
raise the PRIn fields and set the PRC_SELn fields to the desired processor in INTC_PSRn_n
set the enable bits or clear the mask bits for the peripheral interrupt requests
lower PRI in INTC_CPR_PRCn to zero
enable processor(s) recognition of interrupts

9.5.2 Interrupt Exception Handler

These example interrupt exception handlers use Power Architecture assembly code.

0 108

010

Clock

Interrupt request to processor

Hardware vector enable

Interrupt vector

Interrupt acknowledge

Read INTC_IACKR_PRCn

Write INTC_EOIR_PRCn

INTVEC in INTC_IACKR_PRCn

PRI in INTC_CPR_PRCn

Peripheral interrupt request 100

0 108

Interrupt Controller (INTC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 9-21
 Preliminary

9.5.2.1 Software Vector Mode
interrupt_exception_handler:
code to save SRR0 and SRR1

lis r3,hi(INTC_IACKR_PRCn) # form INTC_IACKR_PRCn address
ori r3,r3,lo(INTC_IACKR_PRCn)
lwz r3,0x0(r3) # load INTC_IACKR_PRCn, which clears request to processor
lwz r3,0x0(r3) # load address of ISR from vector table

code to enable processor recognition of interrupts and save context required by EABI

mtlr r3 # move INTC_IACKR_PRCn contents into link register
blrl # branch to ISR; link register updated with epilog

address

epilog:
lis r3,hi(INTC_EOIR_PRCn) # form INTC_EOIR_PRC0 address
ori r3,r3,lo(INTC_EOIR_PRCn)
li r4,0x0 # form 0 to write to INTC_EOIR_PRCn
stw r4,0x0(r3) # store to INTC_EOIR_PRCn, informing INTC to lower priority

code to restore context required by EABI and disable processor recognition of interrupts
code to restore SRR0 and SRR1

rfi

vector_table_base_address:
address of ISR for interrupt with vector 0
address of ISR for interrupt with vector 1

.

.

.
address of ISR for interrupt with vector 510
address of ISR for interrupt with vector 511

ISRn:
code to service the interrupt event
code to clear flag bit which drives interrupt request to INTC

blr # return to epilog

9.5.2.2 Hardware Vector Mode
This interrupt exception handler is useful with processor and system bus implementations which
support a hardware vector. This example assumes that each interrupt_exception_handlern only has
space for four instructions, and therefore a branch to interrupt_exception_handler_continuedn
is needed.
interrupt_exception_handlern:
b interrupt_exception_handler_continuedn# 4 instructions available, branch to continue

interrupt_exception_handler_continuedn:
code to save SRR0 and SRR1
code to enable processor recognition of interrupts and save context required by EABI

Interrupt Controller (INTC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

9-22 Freescale Semiconductor
 Preliminary

bl ISRn # branch to ISR for interrupt with vector x

epilog:
lis r3,hi(INTC_EOIR_PRCn) # form INTC_EOIR_PRCn address
ori r3,r3,lo(INTC_EOIR_PRCn)
li r4,0x0 # form 0 to write to INTC_EOIR_PRCn
stw r4,0x0(r3) # store to INTC_EOIR_PRCn, informing INTC to lower priority

code to restore context required by EABI and disable processor recognition of interrupts
code to restore SRR0 and SRR1

rfi

ISRn:
code to service the interrupt event
code to clear flag bit which drives interrupt request to INTC

blr # branch to epilog

9.5.3 ISR, RTOS, and Task Hierarchy

The RTOS and all of the tasks under its control typically execute with PRI in INTC_CPR_PRC0 or
INTC_CPR_PRC1 having a value of 0. The RTOS executes the tasks according to whatever priority
scheme it may have, but that priority scheme is independent and has a lower priority of execution than the
priority scheme of the INTC. In other words, the ISRs execute above INTC_CPR_PRCn priority 0 and
outside the control of the RTOS, the RTOS executes at INTC_CPR_PRCn priority 0, and while the tasks
execute at different priorities under the control of the RTOS, they also execute at INTC_CPR_PRCn
priority 0.

If a task shares a resource with an ISR and the PCP is being used to manage that shared resource, then the
task’s priority can be elevated in the INTC_CPR_PRCn while the shared resource is being accessed.

An ISR whose PRIn in INTC_PSR0_3–INTC_PSR292_293 has a value of 0 will not cause an interrupt
request to the selected processor, even if its peripheral or software settable interrupt request is asserted. For
a peripheral interrupt request, not setting its enable bit or disabling the mask bit causes it to remain negated,
which consequently does not cause an interrupt request to the processor. Because the ISRs are outside the
control of the RTOS, this ISR will not run unless called by another ISR or the interrupt exception handler,
perhaps after executing another ISR.

9.5.4 Order of Execution

An ISR with a higher priority can preempt an ISR with a lower priority, regardless of the unique vectors
associated with each of their peripheral or software settable interrupt requests. However, if multiple
peripheral or software settable interrupt requests are asserted, more than one has the highest priority, and
that priority is high enough to cause preemption, the INTC selects the one with the lowest unique vector
regardless of the order in time that they asserted. However, the ability to meet deadlines with this
scheduling scheme is no less than if the ISRs execute in the time order that their peripheral or software
settable interrupt requests asserted.

Interrupt Controller (INTC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 9-23
 Preliminary

The example in Table 9-12 shows the order of execution of both ISRs with different priorities and the same
priority.

9.5.5 Priority Ceiling Protocol

9.5.5.1 Elevating Priority

The PRI field in INTC_CPR_PRC0 or INTC_CPR_PRC1 is elevated in the OSEK PCP to the ceiling of
all of the priorities of the ISRs that share a resource. This protocol allows coherent accesses of the ISRs to
that shared resource.

For example, ISR1 has a priority of 1, ISR2 has a priority of 2, and ISR3 has a priority of 3. They share
the same resource. Before ISR1 or ISR2 can access that resource, they must raise the PRI value in
INTC_CPR_PRCn to 3, the ceiling of all of the ISR priorities. After they release the resource, the PRI

Table 9-12. Order of ISR Execution Example

Step# Step Description

Code Executing at End of Step
PRI in

INTC_CPR
at End of

Step
RTOS ISR1081

1 ISR108 executes for peripheral interrupt request 100 because the first eight ISRs are for software settable interrupt
requests.

ISR208 ISR308 ISR408
Interrupt

Exception
Handler

1 RTOS at priority 0 is executing. X 0

2 Peripheral interrupt request 100 at priority 1
asserts. Interrupt taken.

X 1

3 Peripheral interrupt request 400 at priority 4
is asserts. Interrupt taken.

X 4

4 Peripheral interrupt request 300 at priority 3
is asserts.

X 4

5 Peripheral interrupt request 200 at priority 3
is asserts.

X 4

6 ISR408 completes. Interrupt exception
handler writes to INTC_EOIR_PRCn.

X 1

7 Interrupt taken. ISR208 starts to execute,
even though peripheral interrupt request
300 asserted first.

X 3

8 ISR208 completes. Interrupt exception
handler writes to INTC_EOIR_PRCn.

X 1

9 Interrupt taken. ISR308 starts to execute. X 3

10 ISR308 completes. Interrupt exception
handler writes to INTC_EOIR_PRCn.

X 1

11 ISR108 completes. Interrupt exception
handler writes to INTC_EOIR_PRCn.

X 0

12 RTOS continues execution. X 0

Interrupt Controller (INTC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

9-24 Freescale Semiconductor
 Preliminary

value in INTC_CPR_PRCn can be lowered. If they do not raise their priority, ISR2 can preempt ISR1, and
ISR3 can preempt ISR1 or ISR2, possibly corrupting the shared resource. Another possible failure
mechanism is deadlock if the higher priority ISR needs the lower priority ISR to release the resource before
it can continue, but the lower priority ISR cannot release the resource until the higher priority ISR
completes and execution returns to the lower priority ISR.

Using the PCP instead of disabling processor recognition of all interrupts eliminates the time when
accessing a shared resource that all higher priority interrupts are blocked. For example, while ISR3 cannot
preempt ISR1 while it is accessing the shared resource, all of the ISRs with a priority higher than 3 can
preempt ISR1.

9.5.5.2 Ensuring Coherency

A scenario can cause non-coherent accesses to the shared resource. For example, ISR1 and ISR2 are both
running on the same core and both share a resource. ISR1 has a lower priority than ISR2. ISR1 is executing
and writes to the INTC_CPR_PRCn. The instruction following this store is a store to a value in a shared
coherent data block. Either immediately before or at the same time as the first store, the INTC asserts the
interrupt request to the processor because the peripheral interrupt request for ISR2 has asserted. As the
processor is responding to the interrupt request from the INTC, and as it is aborting transactions and
flushing its pipeline, it is possible that both stores will be executed. ISR2 thereby thinks that it can access
the data block coherently, but the data block has been corrupted.

OSEK uses the GetResource and ReleaseResource system services to manage access to a shared resource.
To prevent corruption of a coherent data block, modifications to PRI in INTC_CPR_PRCn can be made
by those system services with the following code sequences. Processor recognition of interrupts must be
enabled before executing the GetResource code sequence.

GetResource:
raise PRI
mbar
isync

ReleaseResource:
mbar
lower PRI

9.5.6 Selecting Priorities According to Request Rates and Deadlines

The selection of the priorities for the ISRs can be made using rate monotonic scheduling (RMS) or a
superset of it, deadline monotonic scheduling (DMS). In RMS, the ISRs which have higher request rates
have higher priorities. In DMS, if the deadline is before the next time the ISR is requested, then the ISR is
assigned a priority according to the time from the request for the ISR to the deadline, not from the time of
the request for the ISR to the next request for it.

For example, ISR1 executes every 100 μs, ISR2 executes every 200 μs, and ISR3 executes every 300 μs.
ISR1 has a higher priority than ISR2 which has a higher priority than ISR3; however, if ISR3 has a
deadline of 150 μs, then it has a higher priority than ISR2.

The INTC has 16 priorities, which may be less than the number of ISRs. In this case, the ISRs should be
grouped with other ISRs that have similar deadlines. For example, a priority could be allocated for every

Interrupt Controller (INTC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 9-25
 Preliminary

time the request rate doubles. ISRs with request rates around 1 ms would share a priority, ISRs with request
rates around 500 μs would share a priority, ISRs with request rates around 250 μs would share a priority,
etc. With this approach, a range of ISR request rates of 216 could be included, regardless of the number of
ISRs.

Reducing the number of priorities reduces the processor’s ability to meet its deadlines. However, reducing
the number of priorities can reduce the size and latency through the interrupt controller. It also allows
easier management of ISRs with similar deadlines that share a resource. They do not need to use the PCP
to access the shared resource.

9.5.7 Software Settable Interrupt Requests

The software settable interrupt requests can be used in two ways. They can be used to schedule a lower
priority portion of an ISR and they may also be used by processors to interrupt other processors in a
multiple processor system.

9.5.7.1 Scheduling a Lower Priority Portion of an ISR

A portion of an ISR needs to be executed at the PRIn value in INTC_PSR0_3–INTC_PSR292_293, which
becomes the PRI value in either INTC_CPR_PRC0 or INTC_CPR_PRC1 with the interrupt acknowledge.
The ISR, however, can have a portion that does not need to be executed at this higher priority. Therefore,
executing the later portion that does not need to be executed at this higher priority can prevent the
execution of ISRs which do not have a higher priority than the earlier portion of the ISR but do have a
higher priority than what the later portion of the ISR needs. This preemptive scheduling inefficiency
reduces the processor’s ability to meet its deadlines.

One option is for the ISR to complete the earlier higher priority portion, but then schedule through the
RTOS a task to execute the later lower priority portion. However, some RTOSs can require a large amount
of time for an ISR to schedule a task. Therefore, a second option is for the ISR, after completing the higher
priority portion, to set a SETn bit in INTC_SSCIR0_3–INTC_SSCIR4_7.” Writing a 1 to SETn causes a
software settable interrupt request. This software settable interrupt request will usually have a lower PRIn
value in the INTC_PSRn_n and will not cause preemptive scheduling inefficiencies. After generating a
software settable interrupt request, the higher priority ISR completes. The lower priority ISR is scheduled
according to its priority. Execution of the higher priority ISR is not resumed after the completion of the
lower priority ISR.

9.5.7.2 Scheduling an ISR on Another Processor

Because the SETn bits in the INTC_SSCIRn_n are memory mapped, processors in multiple-processor
systems can schedule ISRs on the other processors. One application is that one processor wants to
command another processor to perform a piece of work and the initiating processor does not need to use
the results of that work. If the initiating processor is concerned that the processor executing the software
settable ISR has not completed the work before asking it to again execute the ISR, it can check if the
corresponding CLRn bit in INTC_SSCIRn_n is asserted before again writing a 1 to the SETn bit.

Another application is the sharing of a block of data. For example, a first processor has completed
accessing a block of data and wants a second processor to then access it. Furthermore, after the second

Interrupt Controller (INTC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

9-26 Freescale Semiconductor
 Preliminary

processor has completed accessing the block of data, the first processor again wants to access it. The
accesses to the block of data must be done coherently. To do this, the first processor writes a 1 to a SETn
bit on the second processor. After accessing the block of data, the second processor clears the
corresponding CLRn bit and then writes 1 to a SETn bit on the first processor, informing it that it can now
access the block of data.

9.5.8 Lowering Priority Within an ISR

A common method for avoiding preemptive scheduling inefficiencies with an ISR whose work spans
multiple priorities (see Section 9.5.7.1, “Scheduling a Lower Priority Portion of an ISR”) is to lower the
current priority. However, the INTC has a LIFO whose depth is determined by the number of priorities.

NOTE
Lowering the PRI value in either INTC_CPR_PRC0 or INTC_CPR_PRC1
within an ISR to below the ISR’s corresponding PRI value in
INTC_PSR0_3–INTC_PSR292_293 allows more preemptions than the
LIFO depth can support.

Therefore, the INTC does not support lowering the current priority within an ISR as a way to avoid
preemptive scheduling inefficiencies.

9.5.9 Negating an Interrupt Request Outside of its ISR

9.5.9.1 Negating an Interrupt Request as a Side Effect of an ISR

Some peripherals have flag bits that can be cleared as a side effect of servicing a peripheral interrupt
request. For example, reading a specific register can clear the flag bits and their corresponding interrupt
requests. This clearing as a side effect of servicing a peripheral interrupt request can cause the negation of
other peripheral interrupt requests besides the peripheral interrupt request whose ISR presently is
executing. This negating of a peripheral interrupt request outside of its ISR can be a desired effect.

9.5.9.2 Negating Multiple Interrupt Requests in One ISR

An ISR can clear other flag bits besides its own. One reason that an ISR clears multiple flag bits is because
it serviced those flag bits, and therefore the ISRs for these flag bits do not need to be executed.

9.5.9.3 Proper Setting of Interrupt Request Priority

Whether an interrupt request negates outside its own ISR due to the side effect of an ISR execution or the
intentional clearing a flag bit, the priorities of the peripheral or software settable interrupt requests for these
other flag bits must be selected properly. Their PRIn values in INTC_PSR0_3–INTC_PSR292_293 must
be selected to be at or lower than the priority of the ISR that cleared their flag bits. Otherwise, those flag
bits can cause the interrupt request to the processor to assert. Furthermore, the clearing of these other flag
bits also has the same timing relationship to the writing to INTC_SSCIR0_3–INTC_SSCIR4_7 as the
clearing of the flag bit that caused the present ISR to be executed (see Section 9.4.3.1.2, “End of Interrupt
Exception Handler”).

Interrupt Controller (INTC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 9-27
 Preliminary

A flag bit whose enable bit or mask bit negates its peripheral interrupt request can be cleared at any time,
regardless of the peripheral interrupt request’s PRIn value in INTC_PSRn_n.

9.5.10 Examining LIFO contents

In normal mode, the user does not need to know the contents of the LIFO. He may not even know how
deeply the LIFO is nested. However, if he wants to read the contents, such as in debug mode, they are not
memory mapped. The contents can be read by popping the LIFO and reading the PRI field in either
INTC_CPR_PRC0 or INTC_CPR_PRC1. The code sequence is:

pop_lifo:
store to INTC_EOIR_PRCn
load INTC_CPR_PRCn, examine PRI, and store onto stack
if PRI is not zero or value when interrupts were enabled, branch to pop_lifo

When the examination is complete, the LIFO can be restored using this code sequence:
push_lifo:
load stacked PRI value and store to INTC_CPR_PRCn
load INTC_IACKR_PRCn
if stacked PRI values are not depleted, branch to push_lifo

Interrupt Controller (INTC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

9-28 Freescale Semiconductor
 Preliminary

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 10-1
 Preliminary

Chapter 10
e200z1 Core (Z1)

10.1 Introduction
The e200 processor family is a set of CPU cores that implement low-cost versions of the Power
Architecture Book E architecture. e200 processors are designed for deeply embedded control applications
that require low cost solutions rather than maximum performance.

The e200z1 processors integrate an integer execution unit, branch control unit, instruction fetch and
load/store units, and a multi-ported register file capable of sustaining three read and two write operations
per clock. Most integer instructions execute in a single clock cycle. Branch target prefetching is performed
by the branch unit to allow single-cycle branches in some cases.

The e200z1 core is a single-issue, 32-bit Power Architecture Book E compliant design with 32-bit general
purpose registers (GPRs). Power Architecture Book E floating-point instructions are not supported by
e200 in hardware, but are trapped and may be emulated by software. All arithmetic instructions that
execute in the core operate on data in the general purpose registers (GPRs).

In addition to the base Power Architecture Book E instruction set support, the core also implements the
VLE (variable-length encoding) APU, providing improved code density. The VLE APU is further
documented in “PowerPC VLE APU Definition, Version 1.01”, a separate document.

In the remainder of this document, the e200z1 core is also referred to as the ‘e200z1 core’ or ‘e200 core’.

10.1.1 Features

The following is a list of some of the key features of the e200z1 core:

• 32-bit Power Architecture Book E programmer’s model

• Single issue, 32-bit CPU

• Implements the VLE APU for reduced code footprint

• In-order execution and retirement

• Precise exception handling

• Branch processing unit

— Dedicated branch address calculation adder

— Branch acceleration using Branch Target Buffer

• Supports independent instruction and data accesses to different memory subsystems, such as
SRAM and Flash memory via independent Instruction and Data BIUs.

• Load/store unit

— 1 cycle load latency

e200z1 Core (Z1)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

10-2 Freescale Semiconductor
 Preliminary

— Fully pipelined

— Big-and Little-endian support

— Misaligned access support

— Zero load-to-use pipeline bubbles for aligned transfers

• Power management

— Low power design

— Power saving modes: doze, nap, sleep, and wait

— Dynamic power management of execution units

NOTE
The MPC5510 does not use the core’s HID0[DOZE,NAP,SLEEP] bits to
enter/exit low-power modes. Entry to and exit from low-power modes is
managed by the CRP module.

10.2 Microarchitecture Summary
The execution pipeline four stages operate in an overlapped fashion, allowing single-clock instruction
execution for most instructions. These stages are as follows:

1. The instruction fetch

2. Instruction decode/register file read/effective address calculation

3. Execute/memory access

4. Register writeback

The integer execution unit consists of a 32-bit arithmetic unit (AU), a logic unit (LU), a 32-bit barrel shifter
(Shifter), a mask insertion unit (MIU), a condition register manipulation unit (CRU), a count-leading-zeros
unit (CLZ), a 32x32 hardware multiplier array, result feed-forward hardware, and a hardware divider.

Arithmetic and logical operations are executed in a single cycle with the exception of the divide
instructions. A count-leading-zeros unit operates in a single clock cycle.

The instruction unit contains a PC incrementer and a dedicated branch address adder to minimize delays
during change of flow operations. Sequential prefetching is performed to ensure a supply of instructions
into the execution pipeline. Branch target prefetching from the BTB is performed to accelerate certain
taken branches. Prefetched instructions are placed into an instruction buffer with 62 entries, each capable
of holding a single 32-bit instruction or a pair of 16-bit instructions.

Conditional branches which are not taken execute in a single clock. Branches with successful target
prefetching have an effective execution time of one clock. All other taken branches have an execution time
of two clocks.

Memory load and store operations are provided for byte, halfword, and word (32-bit) data with automatic
zero or sign extension of byte and halfword load data as well as optional byte reversal of data. These
instructions can be pipelined to allow effective single cycle throughput. Load and store multiple word
instructions allow low overhead context save and restore operations. The load/store unit contains a
dedicated effective address adder to allow effective address generation to be optimized. Also, a load-to-use
dependency does not incur any pipeline bubbles for most cases.

e200z1 Core (Z1)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 10-3
 Preliminary

The condition register unit supports the condition register (CR) and condition register operations defined
by the Power Architecture. The condition register consists of eight 4-bit fields that reflect the results of
certain operations, such as move, integer and floating-point compare, arithmetic, and logical instructions,
and provide a mechanism for testing and branching.

Vectored and autovectored interrupts are supported by the CPU. Vectored interrupt support is provided to
allow multiple interrupt sources to have unique interrupt handlers invoked with no software overhead.

Figure 10-1. e200z1 Block Diagram

10.2.1 Instruction Unit Features

The features of the e200 instruction unit are:

CPU
control logic

Load/

Data

Memory

management

unit

Address

store
unit

Instruction unit

Branch
unit

PC
Unit

Instruction buffer

GPRCRSPR

Multiply
unit

Data bus interface unit

Control

32 32 N

OnCE/Nexus
control logic

interface

Control

Data

(mtspr/mfspr)

Integer
execution

unit

External
SPR

CTR
XER

LR

DataAddress

Instruction bus interface unit

Control

32 64 N

e200z1 Core (Z1)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

10-4 Freescale Semiconductor
 Preliminary

• 32-bit instruction fetch path supports fetching of one 32-bit instruction per clock, or up to two
16-bit VLE instructions per clock.

• Instruction buffer with four entries, each holding a single 32-bit instruction, or a pair of 16-bit
instructions

• Dedicated PC incrementer supporting instruction prefetches

• Branch unit with dedicated branch address adder, and small branch target buffer logic supporting
single cycle of execution of certain branches, two cycles for all others

10.2.2 Integer Unit Features

The e200 integer unit supports single cycle execution of most integer instructions:

• 32-bit AU for arithmetic and comparison operations

• 32-bit LU for logical operations

• 32-bit priority encoder for count leading zero’s function

• 32-bit single cycle barrel shifter for shifts and rotates

• 32-bit mask unit for data masking and insertion

• Divider logic for signed and unsigned divide in 6-16 clocks with minimized execution timing

• 32x32 hardware multiplier array supports single-cycle 32x32->32 multiply

10.2.3 Load/Store Unit Features

The e200 load/store unit supports load, store, and the load multiple / store multiple instructions:

• 32-bit effective address adder for data memory address calculations

• Pipelined operation supports throughput of one load or store operation per cycle

• 32-bit interface to memory (dedicated memory interface on e200z1)

10.2.4 e200z1 System Bus Features

The features of the e200z1 system bus interface are as follows:

• Independent instruction and data buses

• 32-bit address bus plus attributes and control on each bus

• 32-bit read data bus for instruction interface

• Separate uni-directional 32-bit read data bus and 32-bit write data bus for data interface

• Overlapped, in-order accesses

10.2.5 MMU Features

The features of the MMU are as follows:

• Virtual memory support

• 32-bit virtual and physical addresses

• 8-bit process identifier

e200z1 Core (Z1)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 10-5
 Preliminary

• 8-entry fully-associative TLB

• Support for multiple page sizes from 4 Kbyte to 4 Gbyte

• Entry flush protection

NOTE
The maximum system frequency is only supported if the MMU control and
status register 0 bypass bit (MMUCSR0[Bypass]) is set to 1, so that address
translation is not performed. If the MMUCSR0[Bypass] bit is 0, then the
maximum system frequency will be less than the maximum frequency listed
in the MPC5510 Microcontroller Family Data Sheet.

10.3 Core Registers and Programmer’s Model
This section describes the registers implemented in the e200z1 core. It includes an overview of registers
defined by the Power Architecture Book E architecture, highlighting differences in how these registers are
implemented in the e200 core, and provides a detailed description of e200-specific registers. Full
descriptions of the architecture-defined register set are provided in Power Architecture Book E
Specification.

The Power Architecture Book E defines register-to-register operations for all computational instructions.
Source data for these instructions are accessed from the on-chip registers or are provided as immediate
values embedded in the opcode. The three-register instruction format allows specification of a target
register distinct from the two source registers, thus preserving the original data for use by other
instructions. Data is transferred between memory and registers with explicit load and store instructions
only.

Figure 10-2, Figure 10-3, and Figure 10-4 show the e200 register set including the registers which are
accessible while in supervisor mode, and the registers which are accessible in user mode. The number to
the right of the special-purpose registers (SPRs) is the decimal number used in the instruction syntax to
access the register (for example, the integer exception register (XER) is SPR 1).

NOTE
e200z1 is a 32-bit implementation of the Power Architecture Book E
specification. In this document, register bits are sometimes numbered from
bit 0 (most significant bit) to 31 (least significant bit), rather than the Book
E numbering scheme of 32:63, thus register bit numbers for some registers
in Book E are 32 higher.

Where appropriate, the Book E defined bit numbers are shown in
parentheses.

e200z1 Core (Z1)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

10-6 Freescale Semiconductor
 Preliminary

Figure 10-2. e200z1 Supervisor Mode Programmer’s Model SPRs

SPR General

Exception Handling/Control Registers
Save and Restore

Machine State
MSR

PVR

Processor Control Registers

SUPERVISOR Mode Program Model SPRs

Decrementer

Timers
Time Base (write only)

SPRG0

SPRG1

SPRG2

SPRG3

SPRG4

SPRG5

SPRG6

SPRG7

SPR 272

SPR 273

SPR 274

SPR 275

SPR 276

SPR 277

SPR 278

SPR 279

SRR0

SRR1

CSRR0

CSRR1

DSRR01

DSRR11

SPR 26

SPR 27

SPR 58

SPR 59

SPR 574

SPR 575

TBL SPR 284

TBU SPR 285

DEC SPR 22

Processor ID

PIR SPR 286

DECAR SPR 54

Interrupt Vector Prefix

IVPR SPR 63

Debug Registers2

Context Control1

Debug Control

DBCR0

DBCR1

DBCR2

 DBCR31

SPR 308

SPR 309

SPR 310

SPR 561

Instruction Address
Compare

IAC1

IAC2

IAC3

IAC4

SPR 312

SPR 313

SPR 314

SPR 315

Data Address Compare

DAC1

DAC2

SPR 316

SPR 317

1 - These e200-specific registers may not be supported by
other Power Architecture processors

2 - Optional registers defined by the Power Architecture
Book-E architecture

Control and Status

TCR SPR 340

TSR SPR 336

Processor Version

Hardware Implementation
Dependent1

HID0

HID1

SPR 1008

SPR 1009

Cache Registers

SPR 9

General-Purpose
Registers

Count Register

CTR

SPR 8

Link Register

LR

Condition Register

CR
GPR0

GPR1

GPR31

SPR 515

Cache Configuration
(Read-only)

L1CFG0

SPR 1

XER

XER

General Registers

SPR 256

User SPR

USPRG0

SPR 287

Debug Status

DBSR SPR 304

Debug Counter1

DBCNT SPR 562

CTXCR

ALTCTXCR

SPR 560

SPR 568System Version1

SVR SPR 1023

ESR SPR 62

Exception Syndrome

Data Exception Address

DEAR SPR 61

Machine Check
Syndrome Register

MCSR SPR 572

BTB Control1

SPR 1013BUCSR

BTB Register

MMU Assist1

Memory Management Registers

MAS0

MAS1

MAS2

MAS3

MAS4

MAS6

SPR 624

SPR 625

SPR 626

SPR 627

SPR 628

SPR 630

Process ID

PID0 SPR 48

Control & Configuration

 SPR 1012

 SPR 1015

SPR 688

SPR 689

MMUCSR0

MMUCFG

TLB0CFG

TLB1CFG

e200z1 Core (Z1)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 10-7
 Preliminary

Figure 10-3. e200 Supervisor Mode Program Model Device Control Registers (DCRs)

Figure 10-4. e200 User Mode Program Model

General purpose registers (GPRs) are accessed through instruction operands. Access to other registers can
be explicit (by using instructions for that purpose such as Move to Special Purpose Register (mtspr) and

Supervisor Mode Program Model DCRs

PSU Registers1

PSU

PSCR

PSSR

PSHR

PSLR

PSCTR

PSUHR

PSULR

DCR 272

DCR 273

DCR 274

DCR 275

DCR 276

DCR 277

DCR 278

1 - These e200-specific registers may not be
supported by other Power Architecture
processors

USER Mode Program Model

Timers (Read only)

Time Base

SPR 515

Cache Configuration

L1CFG0

TBL SPR 268

TBU SPR 269

Cache Register (Read-only)

SPR 9

General-Purpose
Registers

Count Register

CTR

SPR 8

Link Register

LR

Condition Register

CR
GPR0

GPR1

GPR31

SPR 1

XER

XER

General Registers

SPR General (Read-only)

Control Registers

SPRG4

SPRG5

SPRG6

SPRG7

SPR 260

SPR 261

SPR 262

SPR 263

SPR 256

User SPR

USPRG0

e200z1 Core (Z1)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

10-8 Freescale Semiconductor
 Preliminary

Move from Special Purpose Register (mfspr) instructions) or implicit as part of the execution of an
instruction. Some registers are accessed both explicitly and implicitly.

10.3.1 Power Architecture Book E Registers

e200 supports most of the registers defined by Power Architecture™ Book E Specification. Notable
exceptions are the Floating Point registers FPR0-FPR31 and FPSCR. e200 does not support the Book E
floating-point architecture in hardware. The e200-supported Power Architecture Book E registers are
described as follows (e200-specific registers are described in the Section 10.3.2, “e200-Specific Special
Purpose Registers):

10.3.1.1 User-Level Registers

The user-level registers can be accessed by all software with either user or supervisor privileges. They
include the following:

• General-purpose registers (GPRs). The thirty-two 32-bit GPRs (GPR0–GPR31) serve as data
source or destination registers for integer instructions and provide data for generating addresses.

• Condition register (CR). The 32-bit CR consists of eight 4-bit fields, CR0–CR7, that reflect results
of certain arithmetic operations and provide a mechanism for testing and branching. See
“Condition Register (CR),” in Chapter 3, “Branch and Condition Register Operations, Power
Architecture Book E Specification.

The remaining user-level registers are SPRs. Note that the Power Architecture Book E provides the
mtspr and mfspr instructions for accessing SPRs.

Integer exception register (XER). The XER indicates overflow and carries for integer operations.
See “XER Register (XER),” in Chapter 4, “Integer Operations” of Power Architecture Book E
Specification for more information.

• Link register (LR). The LR provides the branch target address for the Branch [Conditional] to Link
Register (bclr, bclrl, se_blr, se_blrl) instructions, and is used to hold the address of the instruction
that follows a branch and link instruction, typically used for linking to subroutines. See “Link
Register (LR)”, in Chapter 3, “Branch and Condition Register Operations” of Power Architecture
Book E Specification.

• Count register (CTR). The CTR holds a loop count that can be decremented during execution of
appropriately coded branch instructions. The CTR also provides the branch target address for the
Branch [Conditional] to Count Register (bcctr, bcctrl, se_bctr, se_bctrl) instructions. See “Count
Register (CTR)”, in Chapter 3, “Branch and Condition Register Operations” of Power Architecture
Book E Specification.

• The Time Base facility (TB) consists of two 32-bit registers—Time Base Upper (TBU) and Time
Base Lower (TBL). These two registers are accessible in a read-only fashion to user-level software.
See “Time Base”, in Chapter 8, “Timer Facilities” of Power Architecture Book E Specification.

• SPRG4-SPRG7. The Power Architecture Book E architecture defines Software-Use Special
Purpose Registers (SPRGs). SPRG4 through SPRG7 are accessible in a read-only fashion by
user-level software. e200 does not allow user mode access to the SPRG3 register (defined as
implementation dependent by Book E).

e200z1 Core (Z1)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 10-9
 Preliminary

• USPRG0. The Power Architecture Book E architecture defines User Software-Use Special
Purpose Register USPRG0 which is accessible in a read-write fashion by user-level software.

10.3.1.2 Supervisor-Level Registers

In addition to the registers accessible in user mode, Supervisor-level software has access to additional
control and status registers used for configuration, exception handling, and other operating system
functions. The Power Architecture Book E defines the following supervisor-level registers:

• Processor Control Registers

— Machine State Register (MSR). The MSR defines the state of the processor. The MSR can be
modified by the Move to Machine State Register (mtmsr), System Call (sc, se_sc), and Return
from Exception (rfi, rfci, rfdi, se_rfi, se_rfci, se_rfdi) instructions. It can be read by the Move
from Machine State Register (mfmsr) instruction. When an interrupt occurs, the contents of the
MSR are saved to one of the machine state save/restore registers (SRR1, CSRR1, DSRR1).

— Processor version register (PVR). This register is a read-only register that identifies the
processor type and version (model) and the revision level of the processor. Table 10-1 shows
the PVR values and the corresponding processor type and version numbers for the cores used
on the MPC5510 Family.

— Processor Identification Register (PIR). This read-only register is provided to distinguish the
processor from other processors in the system.

• Storage Control Register

— Process ID Register (PID, also referred to as PID0). This register is provided to indicate the
current process or task identifier. It is used by the MMU as an extension to the effective address,
and by the Nexus3 module for Ownership Trace message generation. Although the Power
Architecture Book E allows for multiple PIDs, e200z1 implements only one.

• Interrupt Registers

— Data Exception Address Register (DEAR). After most Data Storage Interrupts (DSI), or on an
Alignment Interrupt or Data TLB Miss Interrupt, the DEAR is set to the effective address (EA)
generated by the faulting instruction.

— SPRG0–SPRG7, USPRG0. The SPRG0–SPRG7 and USPRG0 registers are provided for
operating system use. e200 does not allow user mode access to the SPRG3 register (defined as
implementation dependent by Book E).

— Exception Syndrome Register (ESR). The ESR register provides a syndrome to differentiate
between the different kinds of exceptions that can generate the same interrupt.

— Interrupt Vector Prefix Register (IVPR). This register together with hardwired offsets which
replace the IVOR0-15 registers provide the address of the interrupt handler for different classes
of interrupts.

Table 10-1. PVR Values, and Processor Type and Version Numbers

Device Core PVR Value Type Version

MPC5516 e200Z1 0x8144_0000 0x14 0x4

MPC5516 e200Z0 0x8171_0000 0x17 0x1

e200z1 Core (Z1)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

10-10 Freescale Semiconductor
 Preliminary

— Save/Restore Register 0 (SRR0). The SRR0 register is used to save machine state on a
non-critical interrupt, and contains the address of the instruction at which execution resumes
when an rfi or se_rfi instruction is executed at the end of a non-critical class interrupt handler
routine.

— Critical Save/Restore register 0 (CSRR0). The CSRR0 register is used to save machine state on
a critical interrupt, and contains the address of the instruction at which execution resumes when
an rfci or se_rfci instruction is executed at the end of a critical class interrupt handler routine.

— Save/Restore register 1 (SRR1). The SRR1 register is used to save machine state from the MSR
on non-critical interrupts, and to restore machine state when rfi or se_rfi executes.

— Critical Save/Restore register 1 (CSRR1). The CSRR1 register is used to save machine state
from the MSR on critical interrupts, and to restore machine state when rfci or se_rfci executes.

• Debug Facility Registers

— Debug Control Registers (DBCR0-DBCR2). These registers provide control for enabling and
configuring debug events.

— Debug Status Register (DBSR). This register contains debug event status.

— Instruction Address Compare registers (IAC1-IAC4). These registers contain addresses and/or
masks which are used to specify Instruction Address Compare debug events.

— Data address compare registers (DAC1-2). These registers contain addresses and/or masks
which are used to specify Data Address Compare debug events.

— e200 does not implement the Data Value Compare registers (DVC1 and DVC2).

• Timer Registers

— Time base (TB). The TB is a 64-bit structure provided for maintaining the time of day and
operating interval timers. The TB consists of two 32-bit registers, Time Base Upper (TBU) and
Time Base Lower (TBL). The Time Base registers can be written to only by supervisor-level
software, but can be read by both user and supervisor-level software.

— Decrementer register (DEC). This register is a 32-bit decrementing counter that provides a
mechanism for causing a decrementer exception after a programmable delay.

— Decrementer Auto-Reload (DECAR). This register is provided to support the auto-reload
feature of the Decrementer.

— Timer Control Register (TCR). This register controls Decrementer, Fixed-Interval Timer, and
Watchdog Timer options.

— Timer Status Register (TSR). This register contains status on timer events and the most recent
Watchdog Timer-initiated processor reset.

e200z1 Core (Z1)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 10-11
 Preliminary

10.3.2 e200-Specific Special Purpose Registers

The Power Architecture Book E architecture allows implementation-specific special purpose registers.
Those incorporated in the e200 core are as follows:

10.3.2.1 User-Level Registers

The user-level registers can be accessed by all software with either user or supervisor privileges. They
include the following:

• The L1 Cache Configuration register (L1CFG0). This read-only register allows software to query
the configuration of the L1 Cache. For the e200z1, this register returns all zeros indicating no cache
is present.

10.3.2.2 Supervisor-level registers

The following supervisor-level registers are defined in e200 in addition to the Power Architecture Book E
registers described above:

• Configuration Registers

— Hardware implementation-dependent register 0 (HID0). This register controls various
processor and system functions.

— Hardware implementation-dependent register 1 (HID1). This register controls various
processor and system functions.

• Exception Handling and Control Registers

— Machine Check Syndrome register (MCSR). This register provides a syndrome to differentiate
between the different kinds of conditions which can generate a Machine Check.

— Debug Save/Restore register 0 (DSRR0). When enabled, the DSRR0 register is used to save
the address of the instruction at which execution continues when rfdi or se_rfdi executes at the
end of a debug interrupt handler routine.

— Debug Save/Restore register 1 (DSRR1). When enabled, the DSRR1 register is used to save
machine status on debug interrupts and to restore machine status when rfdi or se_rfdi executes.

• Debug Facility Registers

— Debug Control Register 3 (DBCR3)—This register provides control for debug functions not
described in Power Architecture Book E architecture.

— Debug Counter Register (DBCNT)—This register provides counter capability for debug
functions.

• L1 Cache Configuration Register (L1CFG0) is a read-only register that allows software to query
the configuration of the L1 Cache. For the e200z1, this register returns all zeros.

• MMU Configuration Register (MMUCFG) is a read-only register that allows software to query the
configuration of the MMU.

• Memory Management Registers

— MMU Assist (MAS0-MAS4, MAS6) registers. These registers provide the interface to the
e200 core from the Memory Management Unit.

e200z1 Core (Z1)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

10-12 Freescale Semiconductor
 Preliminary

— MMU Control and Status Register (MMUCSR0) controls invalidation of the MMU.

— TLB Configuration Registers (TLB0CFG, TLB1CFG) are read-only registers that allow
software to query the configuration of the TLBs.

• System version register (SVR). This register is a read-only register that identifies the version
(model) and revision level of the SoC which includes an e200 Power Architecture processor.

Note that it is not guaranteed that the implementation of e200 core-specific registers is consistent among
Power Architecture processors, although other processors may implement similar or identical registers. All
e200 SPR definitions are compliant with the Freescale EIS specification definitions.

e200z1 Core (Z1)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 10-13
 Preliminary

10.3.3 e200z1 Core Complex Features Not Supported on the MPC5510

The MPC5510 implements a subset of the e200z1 core complex features. The e200z1 core complex
features that are not supported in the MPC5510 are described in Table 10-2.

10.4 e200z1 Memory Management Unit
The e200z1 Memory Management Unit is a 32-bit Power Architecture Book E compliant implementation,
with the following feature set:

• EIS MMU architecture compliant

• Translates from 32-bit effective to 32-bit real addresses

• 8-entry fully associative TLB with support for eleven page sizes (4K, 16K, 64K, 256K, 1M, 4M,
16M, 64M, 256M, 1G, 4G)

• Hardware assist for TLB miss exceptions

• Software managed by tlbre, tlbwe, tlbsx, tlbsync, and tlbivax instructions

10.4.1 Effective to Real Address Translation

10.4.1.1 Effective Addresses

Instruction accesses are generated by sequential instruction fetches or due to a change in program flow
(branches and interrupts). Data accesses are generated by load, store, and cache management instructions.
The e200 instruction fetch, branch, and load/store units generate 32-bit effective addresses. The MMU
translates this effective address to a 32-bit real address which is then used for memory accesses.

The Power Architecture Book E architecture divides the effective (virtual) and real (physical) address
space into pages. The page represents the granularity of effective address translation, permission control,
and memory/cache attributes. The MMU supports eleven page sizes (4 KB, 16 KB, 64 KB, 256 KB,
1 MB, 4 MB, 16 MB, 64 MB, 256 MB, 1GB, 4GB). In order for an effective to real address translation to
exist, a valid entry for the page containing the effective address must be in a Translation Lookaside Buffer
(TLB). Addresses for which no TLB entry exists (a TLB miss) cause Instruction or Data TLB Errors.

Table 10-2. e200z1 Features Not Supported on the MPC5510 Family

Description Function/Category

The less significant halfword of the Processor Version Register (PVR) provides the revision
level which is comprised of the following three bit fields:
Reserved = 0x00
Revision = 0x0
ID = 0x0
The more significant halfword of the Processor Version Register (PVR) provides the
processor type and version number (see Table 10-1).

PVR Value

Nexus registers are not accessible by code running in User or Supervisor mode. Nexus
registers can be accessed only by external tools via the Nexus port.

Debug

e200z1 Core (Z1)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

10-14 Freescale Semiconductor
 Preliminary

10.4.1.2 Address Spaces

Instruction accesses are generated by sequential instruction fetches or due to a change in program flow
(branches and interrupts). Data accesses are generated by load, store, and cache management instructions.

The Power Architecture Book E architecture defines two effective address spaces for instruction accesses
and two effective address spaces for data accesses. The current effective address space for instruction or
data accesses is determined by the value of MSR[IS] and MSR[DS], respectively. The address space
indicator (the value of either MSR[IS] or MSR[DS], as appropriate) is used in addition to the effective
address generated by the processor for translation into a physical address by the TLB mechanism. Because
MSR[IS] and MSR[DS] are both cleared to ‘0’ when an interrupt occurs, an address space value of 0b0
can be used to denote interrupt-related address spaces (or possibly all system software address spaces), and
an address space value of 0b1 can be used to denote non interrupt-related (or possibly all user address
spaces) address spaces.

The address space associated with an instruction or data access is included as part of the virtual address in
the translation process (AS).

10.4.1.3 Process ID

The Power Architecture Book E architecture defines that a process ID (PID) value is associated with each
effective address (instruction or data) generated by the processor. At the Book E level, a single PID register
is defined as a 32-bit register, and it maintains the value of the PID for the current process. This PID value
is included as part of the virtual address in the translation process (PID0). For the e200 MMU, the PID is
8 bits in length. The most-significant 24 bits are unimplemented and read as ‘0’.

10.4.1.4 Translation Flow

The effective address, concatenated with the address space value of the corresponding MSR bit (MSR[IS]
or MSR[DS], is compared to the appropriate number of bits of the EPN field (depending on the page size)
and the TS field of TLB entries. If the contents of the effective address plus the address space bit matches
the EPN field and TS bit of the TLB entry, that TLB entry is a candidate for a possible translation match.
In addition to a match in the EPN field and TS, a matching TLB entry must match with the current Process
ID of the access (in PID0), or have a TID value of ‘0’, indicating the entry is globally shared among all
processes.

Figure 10-5 shows the translation match logic for the effective address plus its attributes, collectively
called the virtual address, and how it is compared with the corresponding fields in the TLB entries.

e200z1 Core (Z1)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 10-15
 Preliminary

Figure 10-5. Virtual Address and TLB-Entry Compare Process

The page size defined for a TLB entry determines how many bits of the effective address are compared
with the corresponding EPN field in the TLB entry as shown in Table 10-3. On a TLB hit, the
corresponding bits of the Real Page Number (RPN) field are used to form the real address.

On a TLB hit, the generation of the physical address occurs as shown in Figure 10-6.

Table 10-3. Page Size and EPN Field Comparison

SIZE Field
Page Size

(4SIZEKbytes)
EA to EPN Comparison

0b0001
0b0010
0b0011
0b0100
0b0101
0b0110
0b0111
0b1000
0b1001
0b1010
0b1011

4 Kbyte
16 Kbyte
64 Kbyte

256 Kbyte
1 Mbyte
4 Mbyte

16 Mbyte
64 Mbyte
256 Mbyte

1 Gbyte
4Gbyte

EA[0:19] =? EPN[0:19]
EA[0:17] =? EPN[0:17]
EA[0:15] =? EPN[0:15]
EA[0:13] =? EPN[0:13]
EA[0:11] =? EPN[0:11]
EA[0:9] =? EPN[0:9]
EA[0:7] =? EPN[0:7]
EA[0:5] =? EPN[0:5]
EA[0:3] =? EPN[0:3]
EA[0:1] =? EPN[0:1]

(none)

TLB entry Hit

=0?

private page

shared page

=?

=?

TLB_entry[V]

TLB_entry[TS]

AS (from MSR[IS] or MSR[DS])

Process ID

TLB_entry[TID]

TLB_entry[EPN]
EA page number bits

=?

e200z1 Core (Z1)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

10-16 Freescale Semiconductor
 Preliminary

Figure 10-6. Effective to Real Address Translation Flow

Address mapping may be disabled via the MMUCSR0BYPASS control bit. When bypassing is enabled, the
translation flow is still followed, and translation misses may still occur, but the real address is driven
directly from the effective address. Protection and attribute information is not affected by address
bypassing.

10.4.1.5 Permissions

An operating system may restrict access to virtual pages by selectively granting permissions for user mode
read, write, and execute, and supervisor mode read, write, and execute on a per page basis. These
permissions can be set up for a particular system (for example, program code might be execute-only, data
structures may be mapped as read/write/no-execute) and can also be changed by the operating system
based on application requests and operating system policies.

The UX, SX, UW, SW, UR, and SR access control bits are provided to support selective permissions
(access control):

• SR—Supervisor read permission. Allows load instructions to access the page while in supervisor
mode (MSR[PR=0]).

• SW—Supervisor write permission. Allows store instructions to access the page while in supervisor
mode (MSR[PR=0]).

• SX—Supervisor execute permission. Allows instruction fetches to access the page and instructions
to be executed from the page while in supervisor mode (MSR[PR=0]).

32-bit Effective Address

32-bit Real Address

Virtual Address

NOTE: n = 32–log2(page size)
n>= 20
n=20 for 4Kbyte page size.

PID Effective Page Address Offset

0 n 31

TLB
multiple-entry

MSR[IS] for instruction fetch

AS

MSR[DS] for data access

RPN field of matching entry

n–1

Real Page Number Offset

0 n 31n–1

e200z1 Core (Z1)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 10-17
 Preliminary

• UR—User read permission. Allows load instructions to access the page while in user mode
(MSR[PR=1]).

• UW—User write permission. Allows store instructions to access the page while in user mode
(MSR[PR=1]).

• UX—User execute permission. Allows instruction fetches to access the page and instructions to be
executed from the page while in user mode (MSR[PR=1]).

If the translation match was successful, the permission bits are checked as shown in Figure 10-7. If the
access is not allowed by the access permission mechanism, the processor generates an Instruction or Data
Storage interrupt (ISI or DSI).

Figure 10-7. Granting of Access Permission

10.4.2 Translation Lookaside Buffer

The EIS architecture defines support for zero or more TLBs in an implementation, each with its own
characteristics, and provides configuration information for software to query the existence and structure
of the TLB(s) through a set of special purpose registers: MMUCFG, TLB0CFG, TLB1CFG, etc. By
convention, TLB0 is used for a set associative TLB with fixed page sizes, TLB1 is used for a fully
associative TLB with variable page sizes, and TLB2 is arbitrarily defined by an implementation. The
e200z1 MMU supports a single TLB which is fully associative and supports variable page sizes, thus it
corresponds to TLB1. For the rest of this document, TLB, TLBCAM, and TLB1 are used interchangeably.

The TLB consists of an 8-entry, fully associative CAM array with support for eleven page sizes. To
perform a lookup, the CAM is searched in parallel for a matching TLB entry. The contents of this TLB
entry are then concatenated with the page offset of the original effective address. The result constitutes the
real (physical) address of the access.

A hit to multiple TLB entries is considered to be a programming error. If this occurs, the TLB generates
an invalid address and TLB entries may be corrupted (an exception will not be reported).

access granted

instruction fetch
MSR[PR]

TLB_entry[UX]

TLB_entry[SX]

load-class data access
TLB_entry[UR]

TLB_entry[SR]

store-class data access
TLB_entry[UW]

TLB_entry[SW]

TLB match (see Figure 10-5)

e200z1 Core (Z1)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

10-18 Freescale Semiconductor
 Preliminary

10.4.3 MMU Assist Registers (MAS)

e200 uses six special purpose registers (MAS0, MAS1, MAS2, MAS3, MAS4 and MAS6) to facilitate
reading, writing, and searching the TLB. The MAS registers can be read or written using the mfspr and
mtspr instructions. e200 does not implement the MAS5 register, present in other EIS Book E designs,
because the tlbsx instruction only searches based on a single SPID value.

NOTE
e200z1 is a 32-bit implementation of the Power Architecture Book E
specification. In this document, register bits are sometimes numbered from
bit 0 (Most Significant Bit) to 31 (Least Significant Bit), rather than the
Book E numbering scheme of 32:63, thus register bit numbers for some
registers in Book E are 32 higher. Where appropriate, the Book E defined
bit numbers are shown in parentheses.

The MAS0 register is shown in Figure 10-8. Fields are defined in Table 10-5.

Table 10-4. TLB Entry Bit Definitions

Field Comments

V Valid bit for entry

TS Translation address space (compared against AS bit)

TID[0:7] Translation ID (compared against PID0 or ‘0’)

EPN[0:19] Effective page number (compared against effective address)

RPN[0:19] Real page number (translated address)

SIZE[0-3] Page size (4K/16K/64K/256K/1M/4M/16M/64M/256M/1G/4G)

SX, SW, SR Supervisor execute, write, and read permission bits

UX, UW, UR User execute, write, and read permission bits

WIMGE Translation attributes (write-through required, cache-inhibited, memory coherence required,
guarded, endian)

U0-U3 User bits -- used only by software

IPROT Invalidation protect

VLE VLE page indicator

0

T
LB

S
E

L
(0

1)

0

E
S

E
LC

A
M

 0

N
V

C
A

M

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 624; Read/ Write; Reset - Unaffected

Figure 10-8. MMU Assist Register 0 (MAS0)

e200z1 Core (Z1)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 10-19
 Preliminary

The MAS1 register is shown in Figure 10-9. Fields are defined in Table 10-6.

Table 10-5. MAS0 — MMU Read/Write and Replacement Control

Bit1

1 Numbers shown in parentheses are the 64-bit register bit numbers defined in the Power
Architecture Book Specification.

Name Comments, or Function when Set

0:1
[32:33]

—
Reserved2

2 These bits are not implemented, will be read as zero, and writes are ignored.

2:3
[34:35]

TLBSEL selects TLB for access: 01=TLBCAM (ignored by Zen, should be
written to 01 for future compatibility)

4:11
[36:42]

—
Reserved2

13:15
[44:47]

ESELCAM
Entry select for TLBCAM

16:27
[48:59]

—
Reserved2

29:31
[61:63]

NVCAM Next replacement victim for TLBCAM (software managed) Software
updates this field; it is copied to the ESELCAM field on a TLB Error.

V
A

LI
D

IP
R

O
T

0

T
ID

 0

T
S

T
S

IZ 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 625; Read/ Write; Reset - Unaffected

Figure 10-9. MMU Assist Register 1 (MAS1)

Table 10-6. MAS1 —Descriptor Context and Configuration Control

Bit1 Name Comments, or Function when Set

0
[32]

VALID TLB Entry Valid
0 - This TLB entry is invalid
1 - This TLB entry is valid

1
[33]

IPROT Invalidation Protect
0 - Entry is not protected from invalidation
1 - Entry is protected from invalidation.

Protects TLB entry from invalidation by tlbivax (TLBCAM only), or
flash invalidates through MMUSCR0[TLBCAM_FI].

2:7
[34:39]

— Reserved2

8:15
[40:47]

TID Translation ID bits
This field is compared with the current process IDs of the effective

address to be translated. A TID value of 0 defines an entry as
global and matches with all process IDs.

e200z1 Core (Z1)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

10-20 Freescale Semiconductor
 Preliminary

The MAS2 register is shown in Figure 10-10. Fields are defined in Table 10-7.

16:18
[48:50]

— Reserved2

19
[51]

TS Translation address space
This bit is compared with the IS or DS fields of the MSR (depending

on the type of access) to determine if this TLB entry may be used
for translation.

20:23
[52:55]

TSIZE Entry’s page size
Supported page sizes are:

TSIZE(0:3) = 0b0001 4KB
TSIZE(0:3) = 0b0010 16KB
TSIZE(0:3) = 0b0011 64k
TSIZE(0:3) = 0b0100 256k
TSIZE(0:3) = 0b0101 1MB
TSIZE(0:3) = 0b0110 4MB
TSIZE(0:3) = 0b0111 16MB
TSIZE(0:3) = 0b1000 64MB
TSIZE(0:3) = 0b1001 256MB
TSIZE(0:3) = 0b1010 1 GB
TSIZE(0:3) = 0b1011 4 GB

All other values are undefined

24:31
[56:63]

— Reserved2

1 Numbers shown in parentheses are the 64-bit register bit numbers defined in the Power
Architecture Book Specification.

2 These bits are not implemented, will be read as zero, and writes are ignored.

EPN 0 V
L
E

W I M G E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 626; Read/ Write; Reset - Unaffected

Figure 10-10. MMU Assist Register 2 (MAS2)

Table 10-7. MAS2 - EPN and Page Attributes

Bit1 Name Comments, or Function when Set

0:19
[32:51]

EPN Effective page number [0:19]

20:25
[52:57]

— Reserved2

Table 10-6. MAS1 —Descriptor Context and Configuration Control

Bit1 Name Comments, or Function when Set

e200z1 Core (Z1)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 10-21
 Preliminary

The MAS3 register is shown in Figure 10-11. Fields are defined in Table 10-8.

26
[58]

VLE Power Architecture VLE
0 - This page is a standard Book E page
1 - This page is a Power Architecture VLE page

27
[59]

W Write-through Required
0 - This page is considered write-back with respect to the caches

in the system
1 - All stores performed to this page are written through to main

memory

28
[60]

I Cache Inhibited
0 - This page is considered cacheable
1 - This page is considered cache-inhibited

29
[61]

M Memory Coherence Required
0 - Memory Coherence is not required
1 - Memory Coherence is required

Zen Z1 does not support the Memory Coherence required attribute,
and thus it is ignored

30
[62]

G Guarded
0 - Access to this page are not guarded, and can be performed

before it is known if they are required by the sequential
execution model

1 - All loads and stores to this page are performed without
speculation (i.e. they are known to be required)

Zen Z1 ignores the guarded attribute, since no speculative or
out-of-order processing is performed.

31
[63]

E Endianness
0 - The page is accessed in big-endian byte order.
1 - The page is accessed in true little-endian byte order.

Determines endianness for the corresponding page.

1 Numbers shown in parentheses are the 64-bit register bit numbers defined in the Power
Architecture Book Specification.

2 These bits are not implemented, will be read as zero, and writes are ignored.

RPN 0 U
0

U
1

U
2

U
3

U
X

S
X

U
W

S
W

U
R

S
R

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 627; Read/ Write; Reset - Unaffected

Figure 10-11. MMU Assist Register 3 (MAS3)

Table 10-7. MAS2 - EPN and Page Attributes

Bit1 Name Comments, or Function when Set

e200z1 Core (Z1)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

10-22 Freescale Semiconductor
 Preliminary

The MAS4 register is shown in Figure 10-12. Fields are defined in Table 10-9.

Table 10-8. MAS3 - RPN and Access Control

Bit1

1 Numbers shown in parentheses are the 64-bit register bit numbers defined in the Power
Architecture Book Specification.

Name Comments, or Function when Set

0:19
[32:51]

RPN Real page number [0:19]
Only bits that correspond to a page number are valid. Bits that

represent offsets within a page are ignored and should be zero.

20:21
[52:53]

—
Reserved2

2 These bits are not implemented, will be read as zero, and writes are ignored.

22:25
[54:57]

U0-U3
User bits [0-3]

26:31
[58:63]

PERMIS
Permission bits (UX, SX, UW, SW, UR, SR)

0

T
LB

S
E

LD
 (0

1)

0

T
ID

S
E

LD

0

T
S

IZ
E

D

0

V
LE

D

W
D

ID M
D

G
D

E
D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 628; Read/ Write; Reset - Unaffected

Figure 10-12. MMU Assist Register 4 (MAS4)

Table 10-9. MAS4 - Hardware Replacement Assist Configuration Register

Bit1 Name Comments, or Function when Set

0:1
[32:33]

—
Reserved2

2:3
[34:35]

TLBSELD Default TLB selected: 01=TLBCAM (ignored by Zen, should be
written to 01 for future compatibility)

4:13
[36:45]

—
Reserved2

14:15
[46:47]

TIDSELD Default PID# to load TID from
00 - PID0
01 - Reserved, do not use
10 - Reserved, do not use
11=TIDZ (8’h00)) (Use all zeros, the globally shared value)

16:19
[48:51]

—
Reserved2

20:23
[52:55]

TSIZED
Default TSIZE value

e200z1 Core (Z1)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 10-23
 Preliminary

The MAS6 register is shown in Figure 10-13. Fields are defined in Table 10-10.

10.5 Interrupt Types
The interrupts implemented on the MPC5510 and the exception conditions that cause them are listed in
Table 10-11.

24:25
[56:57]

—
Reserved2

26
[58]

VLED
Default VLE value

27:31
[59:63]

DWIMGE
Default WIMGE values

1 Numbers shown in parentheses are the 64-bit register bit numbers defined in the Power
Architecture Book Specification.

2 These bits are not implemented, will be read as zero, and writes are ignored.

0 SPID 0

S
A

S

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 630; Read/ Write; Reset - Unaffected

Figure 10-13. MMU Assist Register 6 (MAS6)

Table 10-10. MAS6 - TLB Search Context Register 0

Bit1

1 Numbers shown in parentheses are the 64-bit register bit numbers defined in the Power
Architecture Book Specification.

Name Comments, or Function when Set

0:7
[32:39]

—
Reserved2

2 These bits are not implemented, will be read as zero, and writes are ignored.

8:15
[40:47]

SPID
PID value for searches

16:30
[48:62]

—
Reserved2

31
[63]

SAS
AS value for searches

Table 10-9. MAS4 - Hardware Replacement Assist Configuration Register

Bit1 Name Comments, or Function when Set

e200z1 Core (Z1)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

10-24 Freescale Semiconductor
 Preliminary

Table 10-11. Exceptions and Conditions

Interrupt Type
 Interrupt Vector
Offset Register

Causing Conditions

System reset
none, vector to
address determined
by CRP_Z1VEC

1. Reset.
2. Watchdog Timer Reset Control.

3. Debug Reset Control.

Critical Input IVOR 01 Non maskable interrupt request and MSR[CE]=1.

Machine check IVOR 1

1. Machine check error and MSR[ME] =1.

2. ISI, ITLB Error on first instruction fetch for an exception handler and
current MSR[ME]=1.

3. Bus error (XTE) with MSR[EE]=0 and current MSR[ME]=1

Data Storage IVOR 2

1. Access control.

2. Byte ordering due to misaligned access across page boundary to
pages with mismatched E bits.

3. Precise external termination error and MSR[EE]=1.

Instruction
Storage

IVOR 3

1. Access control.

2. Byte ordering due to misaligned instruction across page boundary to
pages with mismatched VLE bits, or access to page with VLE set and
E indicating little-endian.

3. Misaligned Instruction fetch due to a change of flow to an odd
halfword instruction boundary on a Book E (non-VLE) instruction
page

4. Precise external termination error and MSR[EE]=1.

External Input IVOR 41 Interrupt request and MSR[EE]=1.

Alignment IVOR 5

1. lmw, stmw not word aligned.

2. dcbz with disabled cache or no cache present, or to W or I storage.
3. lwarx or stwcx. not word aligned.

Program IVOR 6
Illegal, Privileged, Trap, FP enabled, AP enabled, Unimplemented
Operation.

Floating-point
unavailable

IVOR 7 MSR[FP]=0 and attempt to execute a Book E floating point operation.

System call IVOR 8 Execution of the System Call (sc, se_sc) instruction

AP unavailable IVOR 9 Unused

Decrementer IVOR 10
As specified in Book E: Enhanced PowerPC™ Architecture v0.99, Ch. 8,
pg. 190-191

Fixed Interval
Timer

IVOR 11
As specified in Book E: Enhanced PowerPC™ Architecture v0.99, Ch. 8,
pg. 191-192

Watchdog Timer IVOR 12
As specified in Book E: Enhanced PowerPC™ Architecture v0.99, Ch. 8,
pg. 192-194

Data TLB Error IVOR 13 Data translation lookup did not match a valid entry in the TLB

Instruction TLB
Error

IVOR 14 Instruction translation lookup did not match a valid entry in the TLB

e200z1 Core (Z1)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 10-25
 Preliminary

10.6 Bus Interface Unit (BIU)
The BIU encompasses control and data signals supporting instruction and data transfers, support for
interrupts, including vectored interrupt logic, reset support, power management interface signals, debug
event signals, time base control and status information, processor state information, Nexus / OnCE / JTAG
interface signals, and a test interface.

The memory portion of the e200 core interface is comprised of a pair of 32-bit wide system buses, one for
instructions and the other for data. The data memory interface supports read and write transfers of 8, 16,
24, and 32 bits, supports misaligned transfers, supports true big- and little-endian operating modes, and
operates in a pipelined fashion. The instruction memory interface supports read transfers of 16 and 32 bits,
supports misaligned transfers, supports true big- and little-endian operating modes, and operates in a
pipelined fashion.

Single-beat and misaligned transfers are supported for read and write cycles. Incrementing burst transfers
are supported for instruction prefetch operations.

Debug IVOR 15
Trap, Instruction Address Compare, Data Address Compare, Instruction
Complete, Branch Taken, Return from Interrupt, Interrupt Taken, Debug
Counter, External Debug Event, Unconditional Debug Event

Reserved IVOR 16-31 —

1 Autovectored External and Critical Input interrupts use this IVOR. Vectored interrupts supply an interrupt vector offset
directly.

Table 10-11. Exceptions and Conditions (continued)

Interrupt Type
 Interrupt Vector
Offset Register

Causing Conditions

e200z1 Core (Z1)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

10-26 Freescale Semiconductor
 Preliminary

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 11-1
 Preliminary

Chapter 11
e200z0 Core (Z0)

11.1 Introduction
The e200 processor family is a set of CPU cores that implement low-cost versions of the Power
Architecture Book E architecture. e200 processors are designed for deeply embedded control applications
that require low cost solutions rather than maximum performance.

The e200z0 processors integrate an integer execution unit, branch control unit, instruction fetch and
load/store units, and a multi-ported register file capable of sustaining three read and two write operations
per clock. Most integer instructions execute in a single clock cycle.

The e200z0 core is a single-issue, 32-bit Power Architecture VLE-only design with 32-bit general purpose
registers (GPRs). All arithmetic instructions that execute in the core operate on data in the general purpose
registers (GPRs).

Instead of the base Power Architecture Book E instruction set support, the e200z0 core implements only
the VLE (variable-length encoding) APU, providing improved code density. The VLE APU is further
documented in “PowerPC VLE APU Definition, Version 1.01”, a separate document.

In the remainder of this document, the e200z0 core is also referred to as the ‘e200z0 core’ or ‘e200 core’.

11.1.1 Features

The following is a list of some of the key features of the e200z0 core:

• 32-bit Power Architecture VLE-only programmer’s model

• Single issue, 32-bit CPU

• Implements the VLE APU for reduced code footprint

• In-order execution and retirement

• Precise exception handling

• Branch processing unit

— Dedicated branch address calculation adder

• Supports instruction and data access via a unified 32-bit Instruction/Data BIU (e200z0 only).

• Load/store unit

— 1 cycle load latency

— Fully pipelined

— Big-endian support only

— Misaligned access support

e200z0 Core (Z0)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

11-2 Freescale Semiconductor
 Preliminary

— Zero load-to-use pipeline bubbles for aligned transfers

• Power management

— Low power design

— Power saving modes: doze, nap, sleep, and wait

— Dynamic power management of execution units

NOTE
The MPC5510 does not use the core’s HID0[DOZE,NAP,SLEEP] bits to
enter/exit low-power modes. Entry to and exit from low-power modes is
managed by the CRP module.

11.2 Microarchitecture Summary
The execution pipeline four stages operate in an overlapped fashion, allowing single-clock instruction
execution for most instructions. These stages are as follows:

1. The instruction fetch

2. Instruction decode/register file read/effective address calculation

3. Execute/memory access

4. Register writeback

The integer execution unit consists of a 32-bit arithmetic unit (AU), a logic unit (LU), a 32-bit barrel shifter
(Shifter), a mask insertion unit (MIU), a condition register manipulation unit (CRU), a count-leading-zeros
unit (CLZ), an 8x32 hardware multiplier array, result feed-forward hardware, and a hardware divider.

Arithmetic and logical operations are executed in a single cycle with the exception of the divide and
multiply instructions. A count-leading-zeros unit operates in a single clock cycle.

The instruction unit contains a PC incrementer and a dedicated branch address adder to minimize delays
during change of flow operations. Sequential prefetching is performed to ensure a supply of instructions
into the execution pipeline. Prefetched instructions are placed into an instruction buffer with 62 entries,
each capable of holding a single 32-bit instruction or a pair of 16-bit instructions.

Conditional branches which are not taken execute in a single clock. All taken branches have an execution
time of two clocks.

Memory load and store operations are provided for byte, halfword, and word (32-bit) data with automatic
zero or sign extension of byte and halfword load data as well as optional byte reversal of data. These
instructions can be pipelined to allow effective single cycle throughput. Load and store multiple word
instructions allow low overhead context save and restore operations. The load/store unit contains a
dedicated effective address adder to allow effective address generation to be optimized. Also, a load-to-use
dependency does not incur any pipeline bubbles for most cases.

The condition register unit supports the condition register (CR) and condition register operations defined
by the Power Architecture. The condition register consists of eight 4-bit fields that reflect the results of
certain operations, such as move, integer and floating-point compare, arithmetic, and logical instructions,
and provide a mechanism for testing and branching.

e200z0 Core (Z0)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 11-3
 Preliminary

Vectored and autovectored interrupts are supported by the CPU. Vectored interrupt support is provided to
allow multiple interrupt sources to have unique interrupt handlers invoked with no software overhead.

Figure 11-1. e200z0 Block Diagram

11.2.1 Instruction Unit Features

The features of the e200 Instruction unit are:

• 32-bit instruction fetch path supports fetching of one 32-bit instruction per clock, or up to two
16-bit VLE instructions per clock.

• Instruction buffer with two entries, each holding a single 32-bit instruction, or a pair of 16-bit
instructions

• Dedicated PC incrementer supporting instruction prefetches

• Branch unit with dedicated branch address adder supporting single cycle of execution of certain
branches, two cycles for all others

11.2.2 Integer Unit Features

The e200 integer unit supports single cycle execution of most integer instructions:

CPU
control logic

Load/
store
unit

Instruction Unit

Branch
unit

PC
unit

Instruction Buffer

GPRCRSPR

Multiply
unit

OnCE/Nexus

control logic

interface

Control

Data

(mtspr/mfspr)

Integer
execution

unit

External
SPR

CTR
XER

LR

DataAddress

Instruction bus interface unit

Control

32 64 N

e200z0 Core (Z0)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

11-4 Freescale Semiconductor
 Preliminary

• 32-bit AU for arithmetic and comparison operations

• 32-bit LU for logical operations

• 32-bit priority encoder for count leading zero’s function

• 32-bit single cycle barrel shifter for shifts and rotates

• 32-bit mask unit for data masking and insertion

• Divider logic for signed and unsigned divide in 5 to 34 clocks with minimized execution timing

• 8x32 hardware multiplier array supports 1 to 4 cycle 32x32->32 multiply (early out)

11.2.3 Load/Store Unit Features

The e200 load/store unit supports load, store, and the load multiple / store multiple instructions:

• 32-bit effective address adder for data memory address calculations

• Pipelined operation supports throughput of one load or store operation per cycle

• 32-bit interface to memory

11.2.4 e200z0 System Bus Features

The features of the e200z0 System Bus interface are as follows:

• Unified instruction/data bus

• 32-bit address bus plus attributes and control

• Separate uni-directional 32-bit read data bus and 32-bit write data bus

• Overlapped, in-order accesses

11.3 Core Registers and Programmer’s Model
This section describes the registers implemented in the e200z0 core. It includes an overview of registers
defined by the Power Architecture Book E architecture, highlighting differences in how these registers are
implemented in the e200 core, and provides a detailed description of e200-specific registers. Full
descriptions of the architecture-defined register set are provided in Power Architecture Book E
Specification.

The Power Architecture Book E defines register-to-register operations for all computational instructions.
Source data for these instructions are accessed from the on-chip registers or are provided as immediate
values embedded in the opcode. The three-register instruction format allows specification of a target
register distinct from the two source registers, thus preserving the original data for use by other
instructions. Data is transferred between memory and registers with explicit load and store instructions
only.

Figure 11-2 and Figure 11-3 show the e200 register set including the registers which are accessible while
in supervisor mode, and the registers which are accessible in user mode. The number to the right of the
special-purpose registers (SPRs) is the decimal number used in the instruction syntax to access the register
(for example, the integer exception register (XER) is SPR 1).

e200z0 Core (Z0)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 11-5
 Preliminary

NOTE
e200z0 is a 32-bit implementation of the Power Architecture Book E
specification. In this document, register bits are sometimes numbered from
bit 0 (most significant bit) to 31 (least significant bit), rather than the Book
E numbering scheme of 32:63, thus register bit numbers for some registers
in Book E are 32 higher.

Where appropriate, the Book E defined bit numbers are shown in
parentheses.

e200z0 Core (Z0)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

11-6 Freescale Semiconductor
 Preliminary

Figure 11-2. e200z0 Supervisor Mode Programmer’s Model

SPR General

Exception Handling/Control Registers
Save and Restore

Machine State
MSR

PVR

Processor Control Registers

SUPERVISOR Mode Program Model

SPRG0

SPRG1

SPR 272

SPR 273

SRR0

SRR1

CSRR0

CSRR1

DSRR0

DSRR1

SPR 26

SPR 27

SPR 58

SPR 59

SPR 574

SPR 575

Processor ID

PIR SPR 286

Interrupt Vector Prefix

IVPR SPR 63

Debug Registers2 -

Debug Control

DBCR0

DBCR1

DBCR2

SPR 308

SPR 309

SPR 310

Instruction Address
Compare

IAC1

IAC2

IAC3

IAC4

SPR 312

SPR 313

SPR 314

SPR 315

Data Address Compare

DAC1

DAC2

SPR 316

SPR 317

1 - These e200-specific registers may not be
supported by other Power Architecture
processors

2 - Optional registers defined by the Power
Architecture Book E

Processor Version

Hardware Implementation
Dependent1

HID0

HID1

SPR 1008

SPR 1009

SPR 9

General-Purpose
Registers

Count Register

CTR

SPR 8

Link Register

LR

Condition Register

CR
GPR0

GPR1

GPR31

SPR 1

XER

XER

General Registers

SPR 287

Debug Status

DBSR SPR 304

System Version1

SVR SPR 1023

ESR SPR 62

Exception Syndrome

Data Exception Address

DEAR SPR 61

Machine Check
Syndrome Register

MCSR SPR 572

Memory Management Registers

Process ID

PID0 SPR 48

Configuration (Read-only

MMUCFG SPR 1015

Cache Registers

SPR 515

Cache Configuration
(Read-only)

L1CFG0

e200z0 Core (Z0)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 11-7
 Preliminary

Figure 11-3. e200 User Mode Program Model

General purpose registers (GPRs) are accessed through instruction operands. Access to other registers can
be explicit (by using instructions for that purpose such as Move to Special Purpose Register (mtspr) and
Move from Special Purpose Register (mfspr) instructions) or implicit as part of the execution of an
instruction. Some registers are accessed both explicitly and implicitly.

11.3.1 Power Architecture Book E Registers

e200 supports a subset of the registers defined by Power Architecture™ Book E Specification. Notable
exceptions are the Floating Point registers FPR0-FPR31 and FPSCR. e200z0 does not support the Book E
floating-point architecture. The e200-supported Power Architecture Book E registers are described as
follows (e200-specific registers are described in Section 11.3.2, “e200-Specific Special Purpose
Registers)”.

11.3.1.1 User-Level Registers

The user-level registers can be accessed by all software with either user or supervisor privileges. They
include the following:

• General-purpose registers (GPRs). The thirty-two 32-bit GPRs (GPR0–GPR31) serve as data
source or destination registers for integer instructions and provide data for generating addresses.

• Condition register (CR). The 32-bit CR consists of eight 4-bit fields, CR0–CR7, that reflect results
of certain arithmetic operations and provide a mechanism for testing and branching. See
“Condition Register (CR),” in Chapter 3, “Branch and Condition Register Operations, Power
Architecture Book E Specification.

The remaining user-level registers are SPRs. Note that the Power Architecture Book E provides the
mtspr and mfspr instructions for accessing SPRs.

USER Mode Programmer Model

SPR 9

General-Purpose
Registers

Count Register

CTR

SPR 8

Link Register

LR

Condition Register

CR
GPR0

GPR1

GPR31

SPR 1

XER

XER

General Registers

Cache Registers

SPR 515

Cache Configuration
(Read-only)

L1CFG0

e200z0 Core (Z0)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

11-8 Freescale Semiconductor
 Preliminary

Integer exception register (XER). The XER indicates overflow and carries for integer operations.
See “XER Register (XER),” in Chapter 4, “Integer Operations” of Power Architecture Book E
Specification for more information.

• Link register (LR). The LR provides the branch target address for the Branch to Link Register
(se_blr, se_blrl) instructions, and is used to hold the address of the instruction that follows a branch
and link instruction, typically used for linking to subroutines. See “Link Register (LR)”, in
Chapter 3, “Branch and Condition Register Operations” of Power Architecture Book E
Specification.

• Count register (CTR). The CTR holds a loop count that can be decremented during execution of
appropriately coded branch instructions. The CTR also provides the branch target address for the
Branch to Count Register (se_bctr, se_bctrl) instructions. See “Count Register (CTR)”, in
Chapter 3, “Branch and Condition Register Operations” of Power Architecture Book E
Specification.

11.3.1.2 Supervisor-Level Registers

In addition to the registers accessible in user mode, Supervisor-level software has access to additional
control and status registers used for configuration, exception handling, and other operating system
functions. The Power Architecture Book E defines the following supervisor-level registers:

• Processor Control Registers

— Machine State Register (MSR). The MSR defines the state of the processor. The MSR can be
modified by the Move to Machine State Register (mtmsr), System Call (se_sc), and Return from
Exception (se_rfi, se_rfci, se_rfdi) instructions. It can be read by the Move from Machine State
Register (mfmsr) instruction. When an interrupt occurs, the contents of the MSR are saved to
one of the machine state save/restore registers (SRR1, CSRR1, DSRR1).

— Processor version register (PVR). This register is a read-only register that identifies the
processor type and version (model) and the revision level of the processor. Table 11-1 shows
the PVR values and the corresponding processor type and version numbers for the cores used
on the MPC5510 Family.

— Processor Identification Register (PIR). This read-only register is provided to distinguish the
processor from other processors in the system.

• Storage Control Register

— Process ID Register (PID, also referred to as PID0). This register is provided to indicate the
current process or task identifier. It is used by the Nexus2 module for Ownership Trace message
generation. Although the Power Architecture Book E allows for multiple PIDs, e200z0
implements only one.

• Interrupt Registers

Table 11-1. PVR Values, and Processor Type and Version Numbers

Device Core PVR Value Type Version

MPC5516 e200Z1 0x8144_0000 0x14 0x4

MPC5516 e200Z0 0x8171_0000 0x17 0x1

e200z0 Core (Z0)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 11-9
 Preliminary

— Data Exception Address Register (DEAR). After most Data Storage Interrupts (DSI), or on an
Alignment Interrupt, the DEAR is set to the effective address (EA) generated by the faulting
instruction.

— SPRG0-SPRG1. The SPRG0-SPRG1 registers are provided for operating system or interrupt
handler use.

— Exception Syndrome Register (ESR). The ESR register provides a syndrome to differentiate
between the different kinds of exceptions which can generate the same interrupt.

— Interrupt Vector Prefix Register (IVPR). This register together with hardwired offsets which
replace the IVOR0-15 registers provide the address of the interrupt handler for different classes
of interrupts.

— Save/Restore Register 0 (SRR0). The SRR0 register is used to save machine state on a
non-critical interrupt, and contains the address of the instruction at which execution resumes
when an se_rfi instruction is executed at the end of a non-critical class interrupt handler routine.

— Critical Save/Restore register 0 (CSRR0). The CSRR0 register is used to save machine state on
a critical interrupt, and contains the address of the instruction at which execution resumes when
an se_rfci instruction is executed at the end of a critical class interrupt handler routine.

— Save/Restore register 1 (SRR1). The SRR1 register is used to save machine state from the MSR
on non-critical interrupts, and to restore machine state when se_rfi executes.

— Critical Save/Restore register 1 (CSRR1). The CSRR1 register is used to save machine state
from the MSR on critical interrupts, and to restore machine state when se_rfci executes.

• Debug Facility Registers

— Debug Control Registers (DBCR0-DBCR2). These registers provide control for enabling and
configuring debug events.

— Debug Status Register (DBSR). This register contains debug event status.

— Instruction Address Compare registers (IAC1-IAC4). These registers contain addresses and/or
masks which are used to specify Instruction Address Compare debug events.

— Data address compare registers (DAC1-2). These registers contain addresses and/or masks
which are used to specify Data Address Compare debug events.

— e200 does not implement the Data Value Compare registers (DVC1 and DVC2).

11.3.2 e200-Specific Special Purpose Registers

The Power Architecture Book E architecture allows implementation-specific special purpose registers.
Those incorporated in the e200 core are as follows:

11.3.2.1 User-Level Registers

The user-level registers can be accessed by all software with either user or supervisor privileges. They
include the following:

• The L1 Cache Configuration register (L1CFG0). This read-only register allows software to query
the configuration of the L1 Cache. For the e200z0, this register returns all zeros indicating no cache
is present.

e200z0 Core (Z0)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

11-10 Freescale Semiconductor
 Preliminary

11.3.2.2 Supervisor-level registers

The following supervisor-level registers are defined in e200 in addition to the Power Architecture Book E
registers described above:

• Configuration Registers

— Hardware implementation-dependent register 0 (HID0). This register controls various
processor and system functions.

— Hardware implementation-dependent register 1 (HID1). This register controls various
processor and system functions.

• Exception Handling and Control Registers

— Machine Check Syndrome register (MCSR). This register provides a syndrome to differentiate
between the different kinds of conditions which can generate a Machine Check.

— Debug Save/Restore register 0 (DSRR0). When enabled, the DSRR0 register is used to save
the address of the instruction at which execution continues when se_rfdi executes at the end of
a debug interrupt handler routine.

— Debug Save/Restore register 1 (DSRR1). When enabled, the DSRR1 register is used to save
machine status on debug interrupts and to restore machine status when se_rfdi executes.

• L1 Cache Configuration Register (L1CFG0) is a read-only register that allows software to query
the configuration of the L1 Cache. For the e200z0, this register returns all zeros.

• System version register (SVR). This register is a read-only register that identifies the version
(model) and revision level of the SoC which includes an e200 Power Architecture processor.

Note that it is not guaranteed that the implementation of e200 core-specific registers is consistent among
Power Architecture processors, although other processors may implement similar or identical registers. All
e200 SPR definitions are compliant with the Freescale EIS specification definitions.

e200z0 Core (Z0)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 11-11
 Preliminary

11.3.3 e200z0 Core Complex Features Not Supported on the MPC5510

The MPC5510 implements a subset of the e200z0 core complex features. The e200z0 core complex
features that are not supported in the MPC5510 are described in Table 11-2.

11.4 Interrupt Types
the interrupts implemented on the MPC5510 and the exception conditions that cause them are listed in
Table 11-3.

Table 11-2. e200z0 Features Not Supported on the MPC5510 Family

Description Function/Category

The less significant halfword of the Processor Version Register (PVR) provides the revision
level which is comprised of the following three bit fields:
Reserved = 0x00
Revision = 0x0
ID = 0x0
The more significant halfword of the Processor Version Register (PVR) provides the
processor type and version number (see Table 11-1).

PVR Value

Nexus registers are not accessible by code running in User or Supervisor mode. Nexus
registers can be accessed only by external tools via the Nexus port.

Debug

Table 11-3. Exceptions and Conditions

Interrupt Type
 Interrupt Vector
Offset Register

Causing Conditions

System reset
none, vector to
address determined
by CRP_Z0VEC

1. Reset.

2. Debug Reset Control.

Critical Input IVOR 01 Non maskable interrupt request and MSR[CE]=1.

Machine check IVOR 1
1. Machine check error and MSR[ME] =1.

2. Bus error (XTE) with MSR[EE]=0 and current MSR[ME]=1

Data Storage IVOR 2
1. Access control. (unused on e200z0)

2. Precise external termination error and MSR[EE]=1.

Instruction
Storage

IVOR 3
1. Access control. (unused on e200z0)

2. Precise external termination error and MSR[EE]=1.

External Input IVOR 41 Interrupt request and MSR[EE]=1.

Alignment IVOR 5
1. lmw, stmw not word aligned.
2. lwarx or stwcx. not word aligned.

Program IVOR 6 Illegal, Privileged, Trap, Unimplemented Operation.

Floating-point
unavailable

IVOR 7 Unused

System call IVOR 8 Execution of the System Call (se_sc) instruction

AP unavailable IVOR 9 Unused

Decrementer IVOR 10 Unused

e200z0 Core (Z0)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

11-12 Freescale Semiconductor
 Preliminary

11.5 Bus Interface Unit (BIU)
The BIU encompasses control and data signals supporting instruction and data transfers, support for
interrupts, including vectored interrupt logic, reset support, power management interface signals, debug
event signals, processor state information, Nexus /OnCE / JTAG interface signals, and a test interface.

The memory portion of the e200 core interface is comprised of a 32-bit wide system bus and a unified bus.
The memory interface supports read and write transfers of 8, 16, 24, and 32 bits, supports misaligned
transfers, and operates in a pipelined fashion.

Single-beat and misaligned transfers are supported for read and write cycles. Incrementing burst transfers
are supported for instruction prefetch operations.

Fixed Interval
Timer

IVOR 11 Unused

Watchdog Timer IVOR 12 Unused

Data TLB Error IVOR 13 Unused

Instruction TLB
Error

IVOR 14 Unused

Debug IVOR 15
Trap, Instruction Address Compare, Data Address Compare, Instruction
Complete, Branch Taken, Return from Interrupt, Interrupt Taken,
External Debug Event, Unconditional Debug Event

Reserved IVOR 16-31 —

1 Autovectored External and Critical Input interrupts use this IVOR. Vectored interrupts supply an interrupt vector offset
directly.

Table 11-3. Exceptions and Conditions (continued)

Interrupt Type
 Interrupt Vector
Offset Register

Causing Conditions

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 12-1
 Preliminary

Chapter 12
Enhanced Direct Memory Access (eDMA)

12.1 Introduction
The enhanced direct memory access controller (eDMA) is a second-generation platform block capable of
performing complex data movements through 16 programmable channels, with minimal intervention from
the host processor. The hardware microarchitecture includes a DMA engine that performs source and
destination address calculations, and the actual data movement operations, along with an SRAM-based
memory containing the transfer control descriptors (TCD) for the channels. This implementation
minimizes the overall block size.

12.1.1 Block Diagram

A simplified block diagram of the eDMA illustrates the functionality and interdependence of major blocks
(see Figure 12-1).

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

12-2 Freescale Semiconductor
 Preliminary

Figure 12-1. eDMA Block Diagram

12.1.2 Features

The eDMA has these major features:

• All data movement via dual-address transfers: read from source, write to destination
— Programmable source, destination addresses, transfer size, and support for enhanced

addressing modes

• Transfer control descriptor organized to support two-deep, nested transfer operations

— An inner data transfer loop defined by a minor byte transfer count

— An outer data transfer loop defined by a major iteration count

• Channel activation via one of three methods:

— Explicit software initiation

— Initiation via a channel-to-channel linking mechanism for continuous transfers

— Peripheral-paced hardware requests (one per channel)

All three methods require one activation per execution of the minor loop
• Support for fixed-priority and round-robin channel arbitration

S
la

ve
 in

te
rf

ac
e

eDMA

eDMA Done

S
ys

te
m

 b
us

Data path Control
Address

Program model/

Slave write data

Slave write address

Bus write data

Slave read data

Bus address

eDMA engine

TCD0

TCDn-1*

eDMA Peripheral

Bus read data

channel arbitration

Request

path

SRAM
transfer control descriptor

(TCD)

SRAM

*n = 16 channels

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 12-3
 Preliminary

• Channel completion reported via optional interrupt requests

— One interrupt per channel, optionally asserted at completion of major iteration count

— Error terminations are optionally enabled per channel and logically summed together to form
a single error interrupt.

• Support for scatter-gather DMA processing

• Any channel can be programmed to be suspended by a higher priority channel’s activation, before
completion of a minor loop.

12.1.3 Modes of Operation

There are two main operating modes of eDMA: normal mode and debug mode. These modes are briefly
described in this section.

12.1.3.1 Normal Mode

In normal mode, the eDMA is used to transfer data between a source and a destination. The source and
destination can be a memory block or an I/O block capable of operation with the eDMA.

12.1.3.2 Debug Mode

In debug mode, the eDMA will not accept new transfer requests when its debug input signal is asserted. If
the signal is asserted during transfer of a block of data described by a minor loop in the current active
channel’s TCD, the eDMA will continue operation until completion of the minor loop.

12.2 External Signal Description
The eDMA has no external signals.

12.3 Memory Map and Registers
This section provides a detailed description of all eDMA registers.

12.3.1 Module Memory Map

The eDMA memory map is shown in Table 12-1. The address of each register is given as an offset to the
eDMA base address. Registers are listed in address order, identified by complete name and mnemonic, and
list the type of accesses allowed. Table 12-2 shows a graphical representation of the same memory map.

The eDMA’s programming model is partitioned into two regions: the first region defines a number of
registers providing control functions; however, the second region corresponds to the local transfer control
descriptor memory.

Some registers are implemented as two 32-bit registers, and include H and L suffixes, signaling the high
and low portions of the control function.

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

12-4 Freescale Semiconductor
 Preliminary

Table 12-1. eDMA Memory Map

Offset from
EDMA_BASE

(0xFFF4_4000)
Register Access Reset Value Section/Page Size

0x0000 EDMA_CR — eDMA control register R/W 0x0000_0000 12.3.2.1/12-7 32

0x0004 EDMA_ESR — eDMA error status register R 0x0000_0000 12.3.2.2/12-8 32

0x0008 Reserved

0x000E EDMA_ERQRL — eDMA enable request low register
(channels 15–00)

R/W 0x0000 12.3.2.3/12-10 16

0x0010 Reserved

0x0016 EDMA_EEIRL — eDMA enable error interrupt low register
(channels 15–00)

R/W 0x0000 12.3.2.4/12-11 16

0x0018 EDMA_SERQR — eDMA set enable request register W 0x00 12.3.2.5/12-11 8

0x0019 EDMA_CERQR — eDMA clear enable request register W 0x00 12.3.2.6/12-12 8

0x001A EDMA_SEEIR — eDMA set enable error interrupt register W 0x00 12.3.2.7/12-13 8

0x001B EDMA_CEEIR — eDMA clear enable error interrupt register W 0x00 12.3.2.8/12-13 8

0x001C EDMA_CIRQR — eDMA clear interrupt request register W 0x00 12.3.2.9/12-14 8

0x001D EDMA_CER — eDMA clear error register W 0x00 12.3.2.10/12-15 8

0x001E EDMA_SSBR — eDMA set start bit register W 0x00 12.3.2.11/12-15 8

0x001F EDMA_CDSBR — eDMA clear done status bit register W 0x00 12.3.2.12/12-16 8

0x0020 Reserved

0x0026 EDMA_IRQRL — eDMA interrupt request low register R/W 0x0000 12.3.2.13/12-16 16

0x0028 Reserved

0x002E EDMA_ERL — eDMA error low register R/W 0x0000 12.3.2.14/12-17 16

0x0030 Reserved

0x0100 EDMA_CPR0 — eDMA channel 0 priority register R/W —1 12.3.2.15/12-18 8

0x0101 EDMA_CPR1 — eDMA channel 1 priority register R/W —1 12.3.2.15/12-18 8

0x0102 EDMA_CPR2 — eDMA channel 2 priority register R/W —1 12.3.2.15/12-18 8

0x0103 EDMA_CPR3 — eDMA channel 3 priority register R/W —1 12.3.2.15/12-18 8

0x0104 EDMA_CPR4 — eDMA channel 4 priority register R/W —1 12.3.2.15/12-18 8

0x0105 EDMA_CPR5 — eDMA channel 5 priority register R/W —1 12.3.2.15/12-18 8

0x0106 EDMA_CPR6 — eDMA channel 6 priority register R/W —1 12.3.2.15/12-18 8

0x0107 EDMA_CPR7 — eDMA channel 7 priority register R/W —1 12.3.2.15/12-18 8

0x0108 EDMA_CPR8 — eDMA channel 8 priority register R/W —1 12.3.2.15/12-18 8

0x0109 EDMA_CPR9 — eDMA channel 9 priority register R/W —1 12.3.2.15/12-18 8

0x010A EDMA_CPR10 — eDMA channel 10 priority register R/W —1 12.3.2.15/12-18 8

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 12-5
 Preliminary

0x010B EDMA_CPR11 — eDMA channel 11 priority register R/W —1 12.3.2.15/12-18 8

0x010C EDMA_CPR12 — eDMA channel 12 priority register R/W —1 12.3.2.15/12-18 8

0x010D EDMA_CPR13 — eDMA channel 13 priority register R/W —1 12.3.2.15/12-18 8

0x010E EDMA_CPR14 — eDMA channel 14 priority register R/W —1 12.3.2.15/12-18 8

0x010F EDMA_CPR15 — eDMA channel 15 priority register R/W —1 12.3.2.15/12-18 8

0x0110 Reserved

0x1000 TCD00 — eDMA transfer control descriptor 00 R/W —1 12.3.2.16/12-19 256

0x1020 TCD01 — eDMA transfer control descriptor 01 R/W —1 12.3.2.16/12-19 256

0x1040 TCD02 — eDMA transfer control descriptor 02 R/W —1 12.3.2.16/12-19 256

0x1060 TCD03 — eDMA transfer control descriptor 03 R/W —1 12.3.2.16/12-19 256

0x1080 TCD04 — eDMA transfer control descriptor 04 R/W —1 12.3.2.16/12-19 256

0x10A0 TCD05 — eDMA transfer control descriptor 05 R/W —1 12.3.2.16/12-19 256

0x10C0 TCD06 — eDMA transfer control descriptor 06 R/W —1 12.3.2.16/12-19 256

0x10E0 TCD07 — eDMA transfer control descriptor 07 R/W —1 12.3.2.16/12-19 256

0x1100 TCD08 — eDMA transfer control descriptor 08 R/W —1 12.3.2.16/12-19 256

0x1120 TCD09 — eDMA transfer control descriptor 09 R/W —1 12.3.2.16/12-19 256

0x1140 TCD10 — eDMA transfer control descriptor 10 R/W —1 12.3.2.16/12-19 256

0x1160 TCD11 — eDMA transfer control descriptor 11 R/W —1 12.3.2.16/12-19 256

0x1180 TCD12 — eDMA transfer control descriptor 12 R/W —1 12.3.2.16/12-19 256

0x11A0 TCD13 — eDMA transfer control descriptor 13 R/W —1 12.3.2.16/12-19 256

0x11C0 TCD14 — eDMA transfer control descriptor 14 R/W —1 12.3.2.16/12-19 256

0x11E0 TCD15 — eDMA transfer control descriptor 15 R/W —1 12.3.2.16/12-19 256

0x1200 Reserved

1 Refer to the register description for the reset value.

Table 12-2. eDMA 32-bit Memory Map—Graphical View

Address Register

0xFFF4_4000 eDMA Control Register (EDMA_CR)

0xFFF4_4004 eDMA Error Status (EDMA_ESR)

0xFFF4_4008 Reserved

0xFFF4_400C Reserved eDMA Enable Request Low
(EDMA_ERQRL, channels 15-00)

Table 12-1. eDMA Memory Map (continued)

Offset from
EDMA_BASE

(0xFFF4_4000)
Register Access Reset Value Section/Page Size

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

12-6 Freescale Semiconductor
 Preliminary

0xFFF4_4010 Reserved

0xFFF4_4014 Reserved eDMA Enable Error Interrupt Low
(EDMA_EEIRL, Channels 15-00)

0xFFF4_4018 eDMA Set Enable
Request

(EDMA_SERQR)

eDMA Clear Enable
Request

(EDMA_CERQR)

eDMA Set Enable
Error Interrupt

(EDMA_SEEIR)

eDMA Clear Enable
Error Interrupt

 (EDMA_CEEIR)

0xFFF4_401C eDMA Clear Interrupt
Request

(EDMA_CIRQR)

eDMA Clear
 Error

(EDMA_CER)

eDMA Set Start Bit,
Activate Channel
(EDMA_SSBR)

eDMA Clear Done
Status Bit

(EDMA_CDSBR)

0xFFF4_4020 Reserved

0xFFF4_4024 Reserved eDMA Interrupt Request Low
(EDMA_IRQRL, Channels 15-00)

0xFFF4_4028 Reserved

0xFFF4_402C Reserved eDMA Error Low
(EDMA_ERL, Channels 15-00)

0xFFF4_4030 –
0xFFF4_40FC

Reserved

0xFFF4_4100 eDMA Channel 0
 Priority

(EDMA_CPR0)

eDMA Channel 1
 Priority

(EDMA_CPR1)

eDMA Channel 2
 Priority

(EDMA_CPR2)

eDMA Channel 3
Priority

(EDMA_CPR3)

0xFFF4_4104 eDMA Channel 4
 Priority

(EDMA_CPR4)

eDMA Channel 5
 Priority

(EDMA_CPR5)

eDMA Channel 6
 Priority

(EDMA_CPR6)

eDMA Channel 7
 Priority

EDMA_CPR7)

0xFFF4_4108 eDMA Channel 8
 Priority

(EDMA_CPR8)

eDMA Channel 9
 Priority

(EDMA_CPR9)

eDMA Channel 10
 Priority

(EDMA_CPR10)

eDMA Channel 11
Priority

(EDMA_CPR11)

0xFFF4_410C eDMA Channel 12
 Priority

(EDMA_CPR12)

eDMA Channel 13
 Priority

(EDMA_CPR13)

eDMA Channel 14
 Priority

(EDMA_CPR14)

eDMA Channel 15
 Priority

(EDMA_CPR15)

0xFFF4_4110 Reserved

0xFFF4_5000 –
0xFFF4_51FC

TCD00-TCD15

0xFFF4_5200 Reserved

Table 12-2. eDMA 32-bit Memory Map—Graphical View (continued)

Address Register

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 12-7
 Preliminary

12.3.2 Register Descriptions

This section lists the eDMA registers in address order and describes the registers and their bit fields.

Reading reserved bits in a register will return the value of zero. Writes to reserved bits in a register will be
ignored. Reading or writing to a reserved memory location will generate a bus error.

Many of the control registers have a bit width that matches the number of channels implemented in the
module, or 16-bits in size.

12.3.2.1 eDMA Control Register (EDMA_CR)

The 32-bit EDMA_CR defines the basic operating configuration of the eDMA.

Arbitration among the channels can be configured to use a fixed priority or a round robin. In fixed-priority
arbitration, the highest priority channel requesting service is selected to execute. The priorities are
assigned by the channel priority registers (see Section 12.3.2.15, “eDMA Channel n Priority Registers
(EDMA_CPRn)”). In round-robin arbitration mode, the channel priorities are ignored and the channels are
cycled through, from channel 15 down to channel 0, without regard to priority.

Offset: EDMA_BASE + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
ERCA EDBG

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 12-2. eDMA Control Register (EDMA_CR)

Table 12-3. EDMA_CR Field Descriptions

Field Description

0–28, 31 Reserved.
Note: Bits 28 and 31can be read and written; however, writing has no effect other than to set or clear the

bits. Reading returns the values written to the bits.

29
ERCA

Enable Round-Robin Channel Arbitration.
0 Fixed-priority arbitration is used for channel selection.
1 Round-robin arbitration is used for channel selection.

30
EDBG

Enable Debug.
0 The assertion of the system debug control input is ignored.
1 The assertion of the system debug control input causes the eDMA to stall the start of a new channel.

Executing channels are allowed to complete. Channel execution will resume when either the system
debug control input is negated or the EDBG bit is cleared.

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

12-8 Freescale Semiconductor
 Preliminary

12.3.2.2 eDMA Error Status Register (EDMA_ESR)

The EDMA_ESR provides information about the last recorded channel error. Channel errors can be caused
by a configuration error (an illegal setting in the transfer control descriptor or an illegal priority register
setting in fixed-arbitration mode) or an error termination to a bus master read or write cycle.

A configuration error is caused when the starting source or destination address, source or destination
offsets, minor loop byte count, and the transfer size represent an inconsistent state. The addresses and
offsets must be aligned on 0-modulo-transfer_size boundaries, and the minor loop byte count must be a
multiple of the source and destination transfer sizes. All source reads and destination writes must be
configured to the natural boundary of the programmed transfer size respectively.

In fixed-arbitration mode, a configuration error is generated when any two channel priority levels are equal
and any channel is activated. The ERRCHN field is undefined for this type of error. All channel priority
levels must be unique before any service requests are made.

If a scatter-gather operation is enabled on channel completion, a configuration error is reported if the
scatter-gather address (DLAST_SGA) is not aligned on a 32-byte boundary. If minor loop channel linking
is enabled on channel completion, a configuration error is reported when the link is attempted if the
TCD.CITER.E_LINK bit is not equal to the TCD.BITER.E_LINK bit. All configuration error conditions
except scatter-gather and minor loop link error are reported as the channel is activated and assert an error
interrupt request if enabled. When properly enabled, a scatter-gather configuration error is reported when
the scatter-gather operation begins at major loop completion. A minor loop channel link configuration
error is reported when the link operation is serviced at minor loop completion.

If a system bus read or write is terminated with an error, the data transfer is immediately stopped and the
appropriate bus error flag is set. In this case, the state of the channel’s transfer control descriptor is updated
by the DMA engine with the current source address, destination address, and minor loop byte count at the
point of the fault. If a bus error occurs on the last read prior to beginning the write sequence, the write will
execute using the data captured during the bus error. If a bus error occurs on the last write prior to switching
to the next read sequence, the read sequence will execute before the channel is terminated due to the
destination bus error.

The occurrence of any type of error causes the DMA engine to stop the active channel and the appropriate
channel bit in the eDMA error register to be asserted. At the same time, the details of the error condition
are loaded into the EDMA_ESR. The major loop complete indicators, setting the transfer control
descriptor DONE flag and the possible assertion of an interrupt request, are not affected when an error is
detected. After the error status has been updated, the DMA engine continues to operate by servicing the
next appropriate channel. A channel that experiences an error condition is not automatically disabled. If a
channel is terminated by an error and then issues another service request before the error is fixed, that
channel will execute and terminate with the same error condition.

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 12-9
 Preliminary

Offset: EDMA_BASE + 0x0004 Access: User read only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R VLD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 CPE ERRCHN SAE SOE DAE DOE NCE SGE SBE DBE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 12-3. eDMA Error Status Register (EDMA_ESR)

Table 12-4. EDMA_ESR Field Descriptions

Field Description

VLD Valid Bit. Logical OR of all EDMA_ERL status bits.
0 No EDMA_ER bits are set.
1 At least one EDMA_ER bit is set indicating a valid error exists that has not been cleared.

bits 1–16 Reserved.

CPE Channel-Priority Error.
0 No channel-priority error.
1 The last recorded error was a configuration error in the channel priorities, indicating not all channel

priorities are unique.

ERRCHN Error Channel Number. Channel number of the last recorded error (excluding CPE errors).
Note: Do not rely on the number in the ERRCHN field for channel-priority errors. Channel-priority errors

must be resolved by inspection. The application code must interrogate the priority registers to find
channels with duplicate priority level.

SAE Source Address Error.
0 No source address configuration error.
1 The last recorded error was a configuration error detected in the TCD.SADDR field, indicating

TCD.SADDR is inconsistent with TCD.SSIZE.

SOE Source Offset Error.
0 No source offset configuration error.
1 The last recorded error was a configuration error detected in the TCD.SOFF field, indicating

TCD.SOFF is inconsistent with TCD.SSIZE.

DAE Destination Address Error.
0 No destination address configuration error.
1 The last recorded error was a configuration error detected in the TCD.DADDR field, indicating

TCD.DADDR is inconsistent with TCD.DSIZE.

DOE Destination Offset Error.
0 No destination offset configuration error.
1 The last recorded error was a configuration error detected in the TCD.DOFF field, indicating

TCD.DOFF is inconsistent with TCD.DSIZE.

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

12-10 Freescale Semiconductor
 Preliminary

12.3.2.3 eDMA Enable Request Register (EDMA_ERQRL)

The EDMA_ERQRL provides a bit map for the 16 channels to enable the request signal for each channel.
EDMA_ERQRL maps to channels 15–0.

The state of any given channel enable is directly affected by writes to this register; the state is also affected
by writes to the EDMA_SERQR and EDMA_CERQR. The EDMA_CERQR and EDMA_SERQR are
provided so that the request enable for a single channel can be modified without performing a
read-modify-write sequence to the EDMA_ERQRL.

Both the eDMA request input signal and this enable request flag must be asserted before a channel’s
hardware service request is accepted. The state of the eDMA enable request flag does not affect a channel
service request made through software or a linked channel request.

NCE NBYTES/CITER Configuration Error.
0 No NBYTES/CITER configuration error.
1 The last recorded error was a configuration error detected in the TCD.NBYTES or TCD.CITER fields,

indicating the following conditions exist:
 • TCD.NBYTES is not a multiple of TCD.SSIZE and TCD.DSIZE, or
 • TCD.CITER is equal to zero, or
 • TCD.CITER.E_LINK is not equal to TCD.BITER.E_LINK.

SGE Scatter-Gather Configuration Error.
0 No scatter-gather configuration error.
1 The last recorded error was a configuration error detected in the TCD.DLAST_SGA field, indicating

TCD.DLAST_SGA is not on a 32-byte boundary. This field is checked at the beginning of a
scatter-gather operation after major loop completion if TCD.E_SG is enabled.

SBE Source Bus Error.
0 No source bus error.
1 The last recorded error was a bus error on a source read.

DBE Destination Bus Error.
0 No destination bus error.
1 The last recorded error was a bus error on a destination write.

Offset: EDMA_BASE + 0x000E Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R ERQ
15

ERQ
14

ERQ
13

ERQ
12

ERQ
11

ERQ
10

ERQ
09

ERQ
08

ERQ
07

ERQ
06

ERQ
05

ERQ
04

ERQ
03

ERQ
02

ERQ
01

ERQ
00W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 12-4. eDMA Enable Request Low Register (EDMA_ERQRL)

Table 12-4. EDMA_ESR Field Descriptions (continued)

Field Description

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 12-11
 Preliminary

As a given channel completes processing its major iteration count, there is a flag in the transfer control
descriptor that may affect the ending state of the EDMA_ERQR bit for that channel. If the TCD.D_REQ
bit is set, then the corresponding EDMA_ERQR bit is cleared after the major loop is complete, disabling
the eDMA hardware request. Otherwise if the D_REQ bit is cleared, the state of the EDMA_ERQR bit is
unaffected.

12.3.2.4 eDMA Enable Error Interrupt Register (EDMA_EEIRL)

The EDMA_EEIRL provides a bit map for the 16 channels to enable the error interrupt signal for each
channel. EDMA_EEIRL maps to channels 15–0.

The state of any given channel’s error interrupt enable is directly affected by writes to these registers; it is
also affected by writes to the EDMA_SEEIR and EDMA_CEEIR. The EDMA_SEEIR and
EDMA_CEEIR are provided so that the error interrupt enable for a single channel can be modified without
the performing a read-modify-write sequence to the EDMA_EEIRL.

Both the eDMA error indicator and this error interrupt enable flag must be asserted before an error
interrupt request for a given channel is asserted.

12.3.2.5 eDMA Set Enable Request Register (EDMA_SERQR)

The EDMA_SERQR provides a simple memory-mapped mechanism to set a given bit in the
EDMA_ERQRL to enable the eDMA request for a given channel. The data value on a register write causes
the corresponding bit in the EDMA_ERQRL to be set. Setting bit 1 (SERQ[0]) provides a global set

Table 12-5. EDMA_ERQRL Field Descriptions

Field Description

ERQn Enable eDMA Hardware Service Request n.
0 The eDMA request signal for channel n is disabled.
1 The eDMA request signal for channel n is enabled.

Offset: EDMA_BASE + 0x0016 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
EEI15 EEI14 EEI13 EEI12 EEI11 EEI10 EEI09 EEI08 EEI07 EEI06 EEI05 EEI04 EEI03 EEI02 EEI01 EEI00

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 12-5. eDMA Enable Error Interrupt Low Register (EDMA_EEIRL)

Table 12-6. EDMA_EEIRL Field Descriptions

Field Description

EEIn Enable Error Interrupt n.
0 The error signal for channel n does not generate an error interrupt.
1 The assertion of the error signal for channel n generate an error interrupt request.

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

12-12 Freescale Semiconductor
 Preliminary

function, forcing the entire contents of EDMA_ERQRL to be asserted. Reads of this register return all
zeroes.

12.3.2.6 eDMA Clear Enable Request Register (EDMA_CERQR)

The EDMA_CERQR provides a simple memory-mapped mechanism to clear a given bit in the
EDMA_ERQRL to disable the eDMA request for a given channel. The data value on a register write
causes the corresponding bit in the EDMA_ERQRL to be cleared. Setting bit 1 (CERQ[0]) provides a
global clear function, forcing the entire contents of the EDMA_ERQRL to be zeroed, disabling all eDMA
request inputs. Reads of this register return all zeroes.

Offset: EDMA_BASE + 0x0018 Access: User write only

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W SERQ[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 12-6. eDMA Set Enable Request Register (EDMA_SERQR)

Table 12-7. EDMA_SERQR Field Descriptions

Field Descriptions

bit 0 Reserved

SERQ[0:6] Set Enable Request.
0–15 Set corresponding bit in EDMA_ERQRL
16–63 Reserved
64–127 Set all bits in EDMA_ERQRL

Note: Bits 2 and 3(SERQR[1:2]) are not used.

Offset: EDMA_BASE + 0x0019 Access: User write only

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W CERQ[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 12-7. eDMA Clear Enable Request Register (EDMA_CERQR)

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 12-13
 Preliminary

12.3.2.7 eDMA Set Enable Error Interrupt Register (EDMA_SEEIR)

The EDMA_SEEIR provides a memory-mapped mechanism to set a given bit in the EDMA_EEIRL to
enable the error interrupt for a given channel. The data value on a register write causes the corresponding
bit in the EDMA_EEIRL to be set. Setting bit 1 (SEEI[0]) provides a global set function, forcing the entire
contents of EDMA_EEIRL to be asserted. Reads of this register return all zeroes.

12.3.2.8 eDMA Clear Enable Error Interrupt Register (EDMA_CEEIR)

The EDMA_CEEIR provides a memory-mapped mechanism to clear a given bit in the EDMA_EEIRL to
disable the error interrupt for a given channel. The data value on a register write causes the corresponding
bit in the EDMA_EEIRL to be cleared. Setting bit 1 (CEEI[0]) provides a global clear function, forcing
the entire contents of the EDMA_EEIRL to be zeroed, disabling error interrupts for all channels. Reads of
this register return all zeroes.

Table 12-8. EDMA_CERQR Field Descriptions

Field Description

bit 0 Reserved.

CERQ[0:6] Clear Enable Request.
0–15 Clear corresponding bit in EDMA_ERQRL
16–63 Reserved
64–127 Clear all bits in EDMA_ERQRL

Note: Bits 2 and 3(CERQR[1:2]) are not used.

Offset: EDMA_BASE + 0x001A Access: User write only

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W SEEI[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 12-8. eDMA Set Enable Error Interrupt Register (EDMA_SEEIR)

Table 12-9. EDMA_SEEIR Field Descriptions

Field Description

bit 0 Reserved.

SEEI[0:6] Set Enable Error Interrupt.
0–15 Set corresponding bit in EDMA_EIRRL
16–63 Reserved
64–127 Set all bits in EDMA_EEIRL

Note: Bits 2 and 3(SEEIRR[1:2]) are not used.

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

12-14 Freescale Semiconductor
 Preliminary

12.3.2.9 eDMA Clear Interrupt Request Register (EDMA_CIRQR)

The EDMA_CIRQR provides a memory-mapped mechanism to clear a given bit in the EDMA_IRQRL to
disable the interrupt request for a given channel. The given value on a register write causes the
corresponding bit in the EDMA_IRQRL to be cleared. Setting bit 1 (CINT[0]) provides a global clear
function, forcing the entire contents of the EDMA_IRQRL to be zeroed, disabling all eDMA interrupt
requests. Reads of this register return all zeroes.

Offset: EDMA_BASE + 0x001B Access: User write only

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W CEEI[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 12-9. eDMA Clear Enable Error Interrupt Register (EDMA_CEEIR)

Table 12-10. EDMA_CEEIR Field Descriptions

Field Description

bit 0 Reserved.

CEEI[0:6] Clear Enable Error Interrupt.
0–15 Clear corresponding bit in EDMA_EEIRL
16–63 Reserved
64–127 Clear all bits in EDMA_EEIRL

Note: Bits 2 and 3(CEEIR[1:2]) are not used.

Offset: EDMA_BASE + 0X001C Access: User write only

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W CINT[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 12-10. eDMA Clear Interrupt Request (EDMA_CIRQR)

Table 12-11. EDMA_CIRQR Field Descriptions

Field Description

bit 0 Reserved.

CINT[0:6] Clear Interrupt Request.
0–15 Clear corresponding bit in EDMA_IRQRL
16–63 Reserved
64–127 Clear all bits in EDMA_IRQRL

Note: Bits 2 and 3(CIRQR[1:2]) are not used.

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 12-15
 Preliminary

12.3.2.10 eDMA Clear Error Register (EDMA_CER)

The EDMA_CER provides a memory-mapped mechanism to clear a given bit in the EDMA_ERL to
disable the error condition flag for a given channel. The given value on a register write causes the
corresponding bit in the EDMA_ERL to be cleared. Setting bit 1 (CERR[0]) provides a global clear
function, forcing the entire contents of the EDMA_ERL to be zeroed, clearing all channel error indicators.
Reads of this register return all zeroes.

12.3.2.11 eDMA Set START Bit Register (EDMA_SSBR)

The EDMA_SSBR provides a memory-mapped mechanism to set the START bit in the TCD of the given
channel. The data value on a register write causes the START bit in the corresponding transfer control
descriptor to be set. Setting bit 1 (SSB[0]) provides a global set function, forcing all START bits to be set.
Reads of this register return all zeroes.

Offset: EDMA_BASE + 0x001D Access: User write only

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W CERR[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 12-11. eDMA Clear Error Register (EDMA_CER)

Table 12-12. EDMA_CER Field Descriptions

Field Description

bit 0 Reserved.

CERR[0:6] Clear Error Indicator.
0–15 Clear corresponding bit in EDMA_ERL
16–63 Reserved
64–127 Clear all bits in EDMA_ERL
Note: Bits 2 and 3(CER[1:2]) are not used.

Offset: EDMA_BASE + 0x001E Access: User write only

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W SSB[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 12-12. eDMA Set START Bit Register (EDMA_SSBR)

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

12-16 Freescale Semiconductor
 Preliminary

12.3.2.12 eDMA Clear DONE Status Bit Register (EDMA_CDSBR)

The EDMA_CDSBR provides a memory-mapped mechanism to clear the DONE bit in the TCD of the
given channel. The data value on a register write causes the DONE bit in the corresponding transfer control
descriptor to be cleared. Setting bit 1 (CDSB[0]) provides a global clear function, forcing all DONE bits
to be cleared.

12.3.2.13 eDMA Interrupt Request Register (EDMA_IRQRL)

The EDMA_IRQRL provides a bit map for the 16 channels signaling the presence of an interrupt request
for each channel. EDMA_IRQRL maps to channels 15–0.

The DMA engine signals the occurrence of a programmed interrupt on the completion of a data transfer
as defined in the transfer control descriptor by setting the appropriate bit in this register. The outputs of
this register are directly routed to the interrupt controller (INTC). During the execution of the interrupt
service routine associated with any given channel, software must clear the appropriate bit, negating the
interrupt request. Typically, a write to the EDMA_CIRQR in the interrupt service routine is used for this
purpose.

Table 12-13. EDMA_SSBR Field Descriptions

Field Description

bit 0 Reserved.

SSB[0:6] Set START Bit (channel service request).
0–15 Set the corresponding channel’s TCD START bit
16–63 Reserved
64–127 Set all TCD START bits
Note: Bits 2 and 3(SSBR[1:2]) are not used.

Offset: EDMA_BASE + 0x001F Access: User write only

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W CDSB[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 12-13. eDMA Clear DONE Status Bit Register (EDMA_CDSBR)

Table 12-14. EDMA_CDSBR Field Descriptions

Field Description

bit 0 Reserved.

CDSB[0:6] Clear DONE Status Bit.
0–15 Clear the corresponding channel’s DONE bit
16–63 Reserved
64–127 Clear all TCD DONE bits

Note: Bits 2 and 3(CDSBR[1:2]) are not used.

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 12-17
 Preliminary

The state of any given channel’s interrupt request is directly affected by writes to this register; it is also
affected by writes to the EDMA_CIRQR. On writes to the EDMA_IRQRL, a 1 in any bit position clears
the corresponding channel’s interrupt request. A 0 in any bit position has no affect on the corresponding
channel’s current interrupt status. The EDMA_CIRQR is provided so the interrupt request for a single
channel can be cleared without performing a read-modify-write sequence to the EDMA_IRQRL.

12.3.2.14 eDMA Error Register (EDMA_ERL)

The EDMA_ERL provides a bit map for the 16 channels signaling the presence of an error for each
channel. EDMA_ERL maps to channels 15-0.

The DMA engine signals the occurrence of a error condition by setting the appropriate bit in this register.
The outputs of this register are enabled by the contents of the EDMA_EEIR, then logically summed across
16 channels to form an error interrupt request, which is then routed to the interrupt controller. During the
execution of the interrupt service routine associated with any eDMA errors, it is software’s responsibility
to clear the appropriate bit, negating the error interrupt request. Typically, a write to the EDMA_CER in
the interrupt service routine is used for this purpose. The normal eDMA channel completion indicators,
setting the transfer control descriptor DONE flag and the possible assertion of an interrupt request, are not
affected when an error is detected.

The contents of this register can also be polled and a non-zero value indicates the presence of a channel
error, regardless of the state of the EDMA_EEIR. The EDMA_ESR[VLD] bit is a logical OR of all bits in
this register and it provides a single bit indication of any errors. The state of any given channel’s error
indicators is affected by writes to this register; it is also affected by writes to the EDMA_CER. On writes
to EDMA_ERL, a 1 in any bit position clears the corresponding channel’s error status. A 0 in any bit
position has no affect on the corresponding channel’s current error status. The EDMA_CER is provided
so the error indicator for a single channel can be cleared.

Offset: EDMA_BASE + 0x0026 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R INT
15

INT
14

INT
13

INT
12

INT
11

INT
10

INT
09

INT
08

INT
07

INT
06

INT
05

INT
04

INT
03

INT
02

INT
01

INT
00W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 12-14. eDMA Interrupt Request Low Register (EDMA_IRQRL)

Table 12-15. EDMA_IRQRL Field Descriptions

Field Description

INTn eDMA Interrupt Request n.
0 The interrupt request for channel n is cleared.
1 The interrupt request for channel n is active.

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

12-18 Freescale Semiconductor
 Preliminary

12.3.2.15 eDMA Channel n Priority Registers (EDMA_CPRn)

When the fixed-priority channel arbitration mode is enabled (EDMA_CR[ERCA] = 0), the contents of
these registers define the unique priorities associated with each channel. The channel priorities are
evaluated by numeric value; that is, 0 is the lowest priority, 1 is the next higher priority, then 2, 3, etc. If
software modifies channel priority values, then the software must ensure that the channel priorities contain
unique values, otherwise a configuration error will be reported. The range of the priority value is limited
to the values of 0 through 15. See Figure 12-2 and Table 12-3 for the EDMA_CR definition.

Channel preemption is enabled on a per-channel basis by setting the ECP bit in the EDMA_CPRn register.
Channel preemption allows the executing channel’s data transfers to be temporarily suspended in favor of
starting a higher priority channel. After the preempting channel has completed all its minor loop data
transfers, the preempted channel is restored and resumes execution. After the restored channel completes
one read/write sequence, it is again eligible for preemption. If any higher priority channel requests service,
the restored channel will be suspended and the higher priority channel will be serviced. Nested preemption
(attempting to preempt a preempting channel) is not supported. After a preempting channel begins
execution, it cannot be preempted. Preemption is available only when fixed arbitration is selected for
channel arbitration mode.

Offset: EDMA_BASE + 0x002E Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R ERR
15

ERR
14

ERR
13

ERR
12

ERR
11

ERR
10

ERR
09

ERR
08

ERR
07

ERR
06

ERR
05

ERR
04

ERR
03

ERR
02

ERR
01

ERR
00W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 12-15. eDMA Error Low Register (EDMA_ERL)

Table 12-16. EDMA_ERL Field Descriptions

Field Description

ERRn eDMA Error n.
0 An error in channel n has not occurred.
1 An error in channel n has occurred.

Offset: EDMA_BASE + 0x0100 + n Access: User read/write

0 1 2 3 4 5 6 7

R
ECP

0 0 0
CHPRI

W

Reset 0 0 0 0 — 1

1 The reset value for the channel priority field, CHPRI[0–3], is equal
to the corresponding channel number for each priority register;
that is, EDMA_CPRI0[CHPRI] = 0b0000 and
EDMA_CPR15[CHPRI] = 0b1111.

Figure 12-16. eDMA Channel n Priority Register (EDMA_CPRn)

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 12-19
 Preliminary

12.3.2.16 Transfer Control Descriptor (TCD)

Each channel requires a 32-byte transfer control descriptor for defining the desired data movement
operation. The channel descriptors are stored in the local memory in sequential order: channel 0, channel
1,... channel 15. The definitions of the TCD are presented as eight 32-bit values. Table 12-18 is a field list
of the basic TCD structure.

Figure 12-17 and Table 12-19 define the fields of the TCDn structure.

Table 12-17. EDMA_CPRn Field Descriptions

Field Description

ECP Enable Channel Preemption.
0 Channel n cannot be suspended by a higher priority channel’s service request.
1 Channel n can be temporarily suspended by the service request of a higher priority channel.

bits 1–3 Reserved.

CHPRI Channel n Arbitration Priority. Channel priority when fixed-priority arbitration is enabled. The reset value
for the channel priority fields CHPRI[0–3], is equal to the corresponding channel number for each priority
register; that is, EDMA_CPR31[CHPRI] = 0b1111.

Table 12-18. TCDn 32-bit Memory Structure

eDMA Offset TCDn Field

0x1000+(32 x n)+0x0000 Source address (saddr)

0x1000+(32 x n)+0x0004 Transfer attributes Signed source address offset (soff)

0x1000+(32 x n)+0x0008 Inner minor byte count (nbytes)

0x1000+(32 x n)+0x000C Last source address adjustment (slast)

0x1000+(32 x n)+0x0010 Destination address (daddr)

0x1000+(32 x n)+0x0014 Current major iteration count (citer) Signed destination address offset (doff)

0x1000 (32 x n) 0x0018 Last destination address adjustment / scatter-gather address (dlast_sga)

0x1000+(32 x n)+0x001c Beginning major iteration count (biter) Channel control/status

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

12-20 Freescale Semiconductor
 Preliminary

NOTE
The TCD structures for the eDMA channels shown in Figure 12-17 are
implemented in internal SRAM. These structures are not initialized at reset;
therefore, all channel TCD parameters must be initialized by the application
code before activating that channel.

Word
Offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0000 SADDR

0x0004 SMOD SSIZE DMOD DSIZE SOFF

0x0008 NBYTES

0x000C SLAST

0x0010 DADDR

0x0014

C
IT

E
R

.E
_

LI
N

K

CITER or
CITER.LINKCH

CITER DOFF

0x0018 DLAST_SGA

0x001C

B
IT

E
R

.E
_

LI
N

K

BITER or
BITER.LINKCH

BITER BWC MAJOR LINKCH

D
O

N
E

A
C

T
IV

E

M
A

JO
R

.E
_L

IN
K

E
_S

G

D
_R

E
Q

IN
T

_H
A

LF

IN
T

_M
A

J

S
TA

R
T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 12-17. TCD Structure

Table 12-19. TCDn Field Descriptions

Bits /
Word Offset

[n:n]
Name Description

0–31 /
0x0 [0:31]

SADDR
[0:31]

Source address. Memory address pointing to the source data.
Word 0x0, bits 0–31.

32–36 /
0x4 [0:4]

SMOD
[0:4]

Source address modulo.
0 Source address modulo feature is disabled.
non-0 This value defines a specific address range that is specified to be the value after

SADDR + SOFF calculation is performed or the original register value. The setting
of this field provides the ability to easily implement a circular data queue. For data
queues requiring power-of-2 size bytes, the queue should start at a 0-modulo-size
address and the SMOD field should be set to the appropriate value for the queue,
freezing the desired number of upper address bits. The value programmed into this
field specifies the number of lower address bits that are allowed to change. For this
circular queue application, the SOFF is typically set to the transfer size to
implement post-increment addressing with the SMOD function constraining the
addresses to a 0-modulo-size range.

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 12-21
 Preliminary

37–39 /
0x4 [5:7]

SSIZE
[0:2]

Source data transfer size.
000 8-bit
001 16-bit
010 32-bit
011 Reserved
100 16-byte (32-bit, 4-beat, WRAP4 burst)
101 32-byte (32-bit, 8 beat, WRAP8 burst)
110 Reserved
111 Reserved
The attempted specification of a reserved encoding causes a configuration error.

40–44 /
0x4 [8:12]

DMOD
[0:4]

Destination address modulo. See the SMOD[0:5] definition.

45–47 /
0x4 [13:15]

DSIZE
[0:2]

Destination data transfer size. See the SSIZE[0:2] definition.

48–63 /
0x4 [16:31]

SOFF
[0:15]

Source address signed offset. Sign-extended offset applied to the current source address
to form the next-state value as each source read is completed.

64–95 /
0x8 [0:31]

NBYTES
[0:31]

Inner “minor” byte transfer count. Number of bytes to be transferred in each service
request of the channel. As a channel is activated, the contents of the appropriate TCD is
loaded into the DMA engine, and the appropriate reads and writes performed until the
complete byte transfer count has been transferred. This is an indivisible operation and
cannot be stalled or halted. After the minor count is exhausted, the current values of the
SADDR and DADDR are written back into the local memory, the major iteration count is
decremented and restored to the local memory. If the major iteration count is completed,
additional processing is performed.
Note: The NBYTES value of 0x0000_0000 is interpreted as 0x1_0000_0000, thus
specifying a 4 GB transfer.

96–127 /
0xC [0:31]

SLAST
[0:31]

Last source address adjustment. Adjustment value added to the source address at the
completion of the outer major iteration count. This value can be applied to “restore” the
source address to the initial value, or adjust the address to reference the next data
structure.

128–159 /
0x10 [0:31]

DADDR
[0:31]

Destination address. Memory address pointing to the destination data.

160 /
0x14 [0]

CITER.E_LINK Enable channel-to-channel linking on minor loop completion. As the channel completes
the inner minor loop, this flag enables the linking to another channel, defined by
CITER.LINKCH[0:5]. The link target channel initiates a channel service request via an
internal mechanism that sets the TCD.START bit of the specified channel. If channel
linking is disabled, the CITER value is extended to 15 bits in place of a link channel
number. If the major loop is exhausted, this link mechanism is suppressed in favor of the
MAJOR.E_LINK channel linking.
0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.

Note: This bit must be equal to the BITER.E_LINK bit otherwise a configuration error will
be reported.

Table 12-19. TCDn Field Descriptions (continued)

Bits /
Word Offset

[n:n]
Name Description

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

12-22 Freescale Semiconductor
 Preliminary

161–166 /
0x14 [1:6]

CITER
[0:5]
or

CITER.LINKCH
[0:5]

Current major iteration count or link channel number.
If channel-to-channel linking is disabled (TCD.CITER.E_LINK = 0), then
 • No channel-to-channel linking (or chaining) is performed after the inner minor loop is

exhausted. TCD bits [161:175] are used to form a 15-bit CITER field.
Otherwise,
 • After the minor loop is exhausted, the DMA engine initiates a channel service request

at the channel defined by CITER.LINKCH[0:5] by setting that channel’s TCD.START
bit.

167–175 /
0x14 [7:15]

CITER
[6:14]

Current major iteration count. This 9 or 15-bit count represents the current major loop
count for the channel. It is decremented each time the minor loop is completed and
updated in the transfer control descriptor memory. After the major iteration count is
exhausted, the channel performs a number of operations (for example, final source and
destination address calculations), optionally generating an interrupt to signal channel
completion before reloading the CITER field from the beginning iteration count (BITER)
field.
Note: When the CITER field is initially loaded by software, it must be set to the same
value as that contained in the BITER field.

Note: If the channel is configured to execute a single service request, the initial values
of BITER and CITER should be 0x0001.

176–191 /
0x14 [16:31]

DOFF
[0:15]

Destination address signed Offset. Sign-extended offset applied to the current destination
address to form the next-state value as each destination write is completed.

192–223 /
0x18 [0:31]

DLAST_SGA
[0:31]

Last destination address adjustment or the memory address for the next transfer control
descriptor to be loaded into this channel (scatter-gather).
If scatter-gather processing for the channel is disabled (TCD.E_SG = 0) then
 • Adjustment value added to the destination address at the completion of the outer major

iteration count.
This value can be applied to restore the destination address to the initial value, or adjust
the address to reference the next data structure.
Otherwise,
 • This address points to the beginning of a 0-modulo-32 byte region containing the next

transfer control descriptor to be loaded into this channel. This channel reload is
performed as the major iteration count completes. The scatter-gather address must be
0-modulo-32 byte, otherwise a configuration error is reported.

224 /
0x1C [0]

BITER.E_LINK Enables channel-to-channel linking on minor loop complete. As the channel completes
the inner minor loop, this flag enables the linking to another channel, defined by
BITER.LINKCH[0:5]. The link target channel initiates a channel service request via an
internal mechanism that sets the TCD.START bit of the specified channel. If channel
linking is disabled, the BITER value is extended to 15 bits in place of a link channel
number. If the major loop is exhausted, this link mechanism is suppressed in favor of the
MAJOR.E_LINK channel linking.
0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.
Note: When the TCD is first loaded by software, this field must be set equal to the
corresponding CITER field, otherwise a configuration error will be reported. As the major
iteration count is exhausted, the contents of this field is reloaded into the CITER field.

Table 12-19. TCDn Field Descriptions (continued)

Bits /
Word Offset

[n:n]
Name Description

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 12-23
 Preliminary

225–230 /
0x1C [1:6]

BITER
[0:5]
or

BITER.LINKCH[0:5]

Starting major iteration count or link channel number.
If channel-to-channel linking is disabled (TCD.BITER.E_LINK = 0), then
 • No channel-to-channel linking (or chaining) is performed after the inner minor loop is

exhausted. TCD bits [225:239] are used to form a 15-bit BITER field.
Otherwise,
 • After the minor loop is exhausted, the DMA engine initiates a channel service request

at the channel, defined by BITER.LINKCH[0:5], by setting that channel’s TCD.START
bit.

Note: When the TCD is first loaded by software, this field must be set equal to the
corresponding CITER field, otherwise a configuration error will be reported. As the major
iteration count is exhausted, the contents of this field is reloaded into the CITER field.

231–239 /
0x1C [7:15]

BITER
[6:14]

Starting major iteration count. As the transfer control descriptor is first loaded by software,
this field must be equal to the value in the CITER field. As the major iteration count is
exhausted, the contents of this field are reloaded into the CITER field.
Note: If the channel is configured to execute a single service request, the initial values
of BITER and CITER should be 0x0001.

240–241 /
0x1C [16:17]

BWC
[0:1]

Bandwidth control. This two-bit field provides a mechanism to effectively throttle the
amount of bus bandwidth consumed by the eDMA. In general, as the eDMA processes
the inner minor loop, it continuously generates read/write sequences until the minor count
is exhausted. This field forces the eDMA to stall after the completion of each read/write
access to control the bus request bandwidth seen by the system bus crossbar switch
(XBAR).
00 No DMA engine stalls
01 Reserved
10 DMA engine stalls for 4 cycles after each r/w
11 DMA engine stalls for 8 cycles after each r/w

242–247 /
0x1C [18:23]

MAJOR.LINKCH
[0:5]

Link channel number.
If channel-to-channel linking on major loop complete is disabled
(TCD.MAJOR.E_LINK = 0) then,
 • No channel-to-channel linking (or chaining) is performed after the outer major loop

counter is exhausted.
Otherwise
 • After the major loop counter is exhausted, the DMA engine initiates a channel service

request at the channel defined by MAJOR.LINKCH[0:5] by setting that channel’s
TCD.START bit.

248 /
0x1C [24]

DONE Channel done. This flag indicates the eDMA has completed the outer major loop. It is set
by the DMA engine as the CITER count reaches zero; it is cleared by software or
hardware when the channel is activated (when the DMA engine has begun processing
the channel, not when the first data transfer occurs).
Note: This bit must be cleared to write the MAJOR.E_LINK or E_SG bits.

249 /
0x1C [25]

ACTIVE Channel active. This flag signals the channel is currently in execution. It is set when
channel service begins, and is cleared by the DMA engine as the inner minor loop
completes or if any error condition is detected.

Table 12-19. TCDn Field Descriptions (continued)

Bits /
Word Offset

[n:n]
Name Description

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

12-24 Freescale Semiconductor
 Preliminary

12.4 Functional Description
This section provides an overview of the microarchitecture and functional operation of the eDMA block.

250 /
0x1C [26]

MAJOR.E_LINK Enable channel-to-channel linking on major loop completion. As the channel completes
the outer major loop, this flag enables the linking to another channel, defined by
MAJOR.LINKCH[0:5]. The link target channel initiates a channel service request via an
internal mechanism that sets the TCD.START bit of the specified channel.
NOTE: To support the dynamic linking coherency model, this field is forced to zero when
written to while the TCD.DONE bit is set.
0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.

251 /
0x1C [27]

E_SG Enable scatter-gather processing. As the channel completes the outer major loop, this
flag enables scatter-gather processing in the current channel. If enabled, the DMA engine
uses DLAST_SGA as a memory pointer to a 0-modulo-32 address containing a 32-byte
data structure which is loaded as the transfer control descriptor into the local memory.
NOTE: To support the dynamic scatter-gather coherency model, this field is forced to zero
when written to while the TCD.DONE bit is set.
0 The current channel’s TCD is normal format.
1 The current channel’s TCD specifies a scatter gather format. The DLAST_SGA field

provides a memory pointer to the next TCD to be loaded into this channel after the
outer major loop completes its execution.

252 /
0x1C [28]

D_REQ Disable hardware request. If this flag is set, the eDMA hardware automatically clears the
corresponding EDMA_ERQL bit when the current major iteration count reaches zero.
0 The channel’s EDMA_ERQL bit is not affected.
1 The channel’s EDMA_ERQL bit is cleared when the outer major loop is complete.

253 /
0x1C [29]

INT_HALF Enable an interrupt when major counter is half complete. If this flag is set, the channel
generates an interrupt request by setting the appropriate bit in the EDMA_ERQL when
the current major iteration count reaches the halfway point. Specifically, the comparison
performed by the eDMA engine is (CITER == (BITER >> 1)). This halfway point interrupt
request is provided to support double-buffered (aka ping-pong) schemes, or other types
of data movement where the processor needs an early indication of the transfer’s
progress. CITER = BITER = 1 with INT_HALF enabled will generate an interrupt as it
satisfies the equation (CITER == (BITER >> 1)) after a single activation.
0 The half-point interrupt is disabled.
1 The half-point interrupt is enabled.

254 /
0x1C [30]

INT_MAJ Enable an interrupt when major iteration count completes. If this flag is set, the channel
generates an interrupt request by setting the appropriate bit in the EDMA_ERQL when
the current major iteration count reaches zero.
0 The end-of-major loop interrupt is disabled.
1 The end-of-major loop interrupt is enabled.

255 /
0x1C [31]

START Channel start. If this flag is set the channel is requesting service. The eDMA hardware
automatically clears this flag after the channel begins execution.
0 The channel is not explicitly started.
1 The channel is explicitly started via a software initiated service request.

Table 12-19. TCDn Field Descriptions (continued)

Bits /
Word Offset

[n:n]
Name Description

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 12-25
 Preliminary

The eDMA module is partitioned into two major modules: the DMA engine and the transfer control
descriptor local memory. The DMA engine is further partitioned into four submodules, which are detailed
below.

• DMA engine

— Address path: This module implements registered versions of two channel transfer control
descriptors: channel x and channel y, and is responsible for all the master bus address
calculations. All the implemented channels provide the same functionality. This hardware
structure allows the data transfers associated with one channel to be preempted after the
completion of a read/write sequence if a higher priority channel service request is asserted
while the first channel is active. After a channel is activated, it runs until the minor loop is
completed unless preempted by a higher priority channel. This capability provides a
mechanism (optionally enabled by EDMA_CPRn[ECP]) where a large data move operation
can be preempted to minimize the time another channel is blocked from execution.

When another channel is activated, the contents of its transfer control descriptor is read from
the local memory and loaded into the registers of the other address path channel{x,y}. After
the inner minor loop completes execution, the address path hardware writes the new values for
the TCDn.{SADDR, DADDR, CITER} back into the local memory. If the major iteration
count is exhausted, additional processing is performed, including the final address pointer
updates, reloading the TCDn.CITER field, and a possible fetch of the next TCDn from memory
as part of a scatter-gather operation.

— Data path: This module implements the actual bus master read/write datapath. It includes 32
bytes of register storage (matching the maximum transfer size) and the necessary mux logic to
support any required data alignment. The system read data bus is the primary input, and the
system write data bus is the primary output.

The address and data path modules directly support the two-stage pipelined system bus. The
address path module represents the 1st stage of the bus pipeline (the address phase), while the
data path module implements the second stage of the pipeline (the data phase).

— Program model/channel arbitration: This module implements the first section of eDMA’s
programming model and also the channel arbitration logic. The programming model registers
are connected to the slave bus (not shown). The eDMA peripheral request inputs and eDMA
interrupt request outputs are also connected to this module (via the control logic).

— Control: This module provides all the control functions for the DMA engine. For data transfers
where the source and destination sizes are equal, the DMA engine performs a series of source
read, destination write operations until the number of bytes specified in the inner minor loop
byte count has been moved.

A minor loop interaction is defined as the number of bytes to transfer (nbytes) divided by the
transfer size. Transfer size is defined as:

if (SSIZE < DSIZE)

transfer size = destination transfer size (# of bytes)

else

transfer size = source transfer size (# of bytes)

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

12-26 Freescale Semiconductor
 Preliminary

Minor loop TCD variables are SOFF, SMOD, DOFF, DMOD, NBYTES, SADDR, DADDR,
BWC, ACTIVE, AND START. Major loop TCD variables are DLAST, SLAST, CITER,
BITER, DONE, D_REQ, INT_MAJ, MAJOR_LNKCH, and INT_HALF.

For descriptors where the sizes are not equal, multiple access of the smaller size data are
required for each reference of the larger size. For example, if the source size references 16-bit
data and the destination is 32-bit data, two reads are performed, then one 32-bit write.

• TCD local memory

— Memory controller: This logic implements the required dual-ported controller, handling
accesses from both the DMA engine as well as references from the slave bus. As noted earlier,
in the event of simultaneous accesses, the DMA engine is given priority and the slave
transaction is stalled. The hooks to a BIST controller for the local TCD memory are included
in this module.

— Memory array: The TCD is implemented using a single-ported, synchronous compiled RAM
memory array.

12.4.1 eDMA Basic Data Flow

The eDMA transfers data based on a two-deep, nested flow. The basic flow of a data transfer can be
partitioned into three segments. As shown in Figure 12-18, the first segment involves the channel service
request. In the diagram, this example uses the assertion of the eDMA peripheral request signal to request
service for channel n. Channel service request via software and the TCDn.START bit follows the same
basic flow as an eDMA peripheral request. The eDMA peripheral request input signal is registered
internally and then routed to through the DMA engine, first through the control module, then into the
program model/channel arbitration module. In the next cycle, the channel arbitration is performed using
the fixed-priority or round-robin algorithm. After the arbitration is complete, the activated channel number
is sent through the address path and converted into the required address to access the TCD local memory.
Next, the TCD memory is accessed and the required descriptor read from the local memory and loaded
into the DMA engine address path channel{x,y} registers. The TCD memory is organized 64-bits in width
to minimize the time needed to fetch the activated channel’s descriptor and load it into the eDMA engine
address path channel{x,y} registers.

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 12-27
 Preliminary

Figure 12-18. eDMA Operation, Part 1

In the second part of the basic data flow as shown in Figure 12-19, the modules associated with the data
transfer (address path, data path, and control) sequence through the required source reads and destination
writes to perform the actual data movement. The source reads are initiated and the fetched data is
temporarily stored in the data path module until it is gated onto the system bus during the destination write.
This source read/destination write processing continues until the inner minor byte count has been
transferred. The eDMA done handshake signal is asserted at the end of the minor byte count transfer.

S
la

ve
 in

te
rf

ac
e

eDMA

eDMA peripheral request

S
ys

te
m

 b
us

Data path Control
Address

Program model/

Slave write data

Slave write address

Bus write data

Slave read data

Bus address

eDMA engine

TCD0

TCDn-1*

eDMA interrupt request

Bus read data

channel arbitration

eDMA done handshake

path

SRAM
Transfer control descriptor

(TCD)

SRAM

*n = 16 channels

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

12-28 Freescale Semiconductor
 Preliminary

Figure 12-19. eDMA Operation, Part 2

After the inner minor byte count has been moved, the final phase of the basic data flow is performed. In
this segment, the address path logic performs the required updates to certain fields in the channel’s TCD;
for example, SADDR, DADDR, CITER. If the outer major iteration count is exhausted, then there are
additional operations performed. These include the final address adjustments and reloading of the BITER
field into the CITER. Additionally, assertion of an optional interrupt request occurs at this time, as does a
possible fetch of a new TCD from memory using the scatter-gather address pointer included in the
descriptor. The updates to the TCD memory and the assertion of an interrupt request are shown in
Figure 12-20.

S
la

ve
 in

te
rf

ac
e

eDMA

eDMA interrupt request

S
ys

te
m

 b
us

Program model/

Slave write data

Slave write address

Bus write data

Slave read data

Bus address

eDMA engine

TCD0

TCDn-1*

eDMA peripheral

Bus read data

channel arbitration

request

SRAM
Transfer control descriptor

(TCD)

SRAM

Data path Control
Address

path

eDMA done handshake

*n = 16 channels

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 12-29
 Preliminary

Figure 12-20. eDMA Operation, Part 3

12.5 Initialization / Application Information

12.5.1 eDMA Initialization

A typical initialization of the eDMA has the following sequence:

1. Write the EDMA_CR if a configuration other than the default is desired.

2. Write the channel priority levels into the EDMA_CPRn registers if a configuration other than the
default is desired.

3. Enable error interrupts in the EDMA_EEIRL and/or EDMA_EEIRH registers if desired.

4. Write the 32-byte TCD for each channel that may request service.

5. Enable any hardware service requests via the EDMA_ERQRH and/or EDMA_ERQRL registers.

6. Request channel service by software (setting the TCD.START bit) or by hardware (slave device
asserting its DMA peripheral request signal).

After any channel requests service, a channel is selected for execution based on the arbitration and priority
levels written into the programmer's model. The DMA engine will read the entire TCD, including the

S
la

ve
 in

te
rf

ac
e

eDMA

eDMA done

S
ys

te
m

 b
us

Slave write data

Slave write address

Bus write data

Slave read data

Bus address

eDMA engine

TCD0

TCDn-1*

eDMA peripheral

Bus read data

request

SRAM
Transfer control descriptor

(TCD)

SRAM

Data path Address
path

Control

Program model/
channel arbitration

*n = 16 channels

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

12-30 Freescale Semiconductor
 Preliminary

primary transfer control parameter shown in Table 12-20, for the selected channel into its internal address
path module. As the TCD is being read, the first transfer is initiated on the system bus unless a
configuration error is detected. Transfers from the source (as defined by the source address, TCD.SADDR)
to the destination (as defined by the destination address, TCD.DADDR) continue until the specified
number of bytes (TCD.NBYTES) have been transferred. When the transfer is complete, the DMA engine's
local TCD.SADDR, TCD.DADDR, and TCD.CITER are written back to the main TCD memory and any
minor loop channel linking is performed, if enabled. If the major loop is exhausted, further post processing
is executed; for example, interrupts, major loop channel linking, and scatter-gather operations, if enabled.

Figure 12-21 shows how each DMA request initiates one minor loop transfer (iteration) without CPU
intervention. DMA arbitration can occur after each minor loop, and one level of minor loop DMA
preemption is allowed. The number of minor loops in a major loop is specified by the beginning iteration
count (biter).

Table 12-20. TCD Primary Control and Status Fields

TCD Field
Name

Description

START Control bit to start channel when using a software initiated DMA
service (Automatically cleared by hardware)

ACTIVE Status bit indicating the channel is currently in execution

DONE Status bit indicating major loop completion (cleared by software
when using a software initiated DMA service)

D_REQ Control bit to disable DMA request at end of major loop
completion when using a hardware-initiated DMA service

BWC Control bits for throttling bandwidth control of a channel

E_SG Control bit to enable scatter-gather feature

INT_HALF Control bit to enable interrupt when major loop is half complete

INT_MAJ Control bit to enable interrupt when major loop completes

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 12-31
 Preliminary

Figure 12-21. Example of Multiple Loop Iterations

Figure 12-22 lists the memory array terms and how the TCD settings interrelate.

Figure 12-22. Memory Array Terms

12.5.2 DMA Programming Errors

The DMA performs various tests on the transfer control descriptor to verify consistency in the descriptor
data. Most programming errors are reported on a per-channel basis with the exception of channel-priority
error, or EDMA_ESR[CPE].

For all error types other than channel-priority errors, the channel number causing the error is recorded in
the EDMA_ESR. If the error source is not removed before the next activation of the problem channel, the
error will be detected and recorded again.

DMA request

Minor loop 3

Current major loop
iteration count

(CITER)
Example memory array

•
•
•

DMA request

Minor loop 2•
•
•

DMA request

Minor loop 1•
•
•

Major loop

xADDR:
(Starting address)

xSIZE:
(Size of one data

Minor loop
(NBYTES in

minor loop, often
the same value

as xSIZE)

Offset (xOFF): Number of
bytes added to current

address after each transfer
(Often the same value

as xSIZE)

•
Minor loop

Each DMA source (S) and
destination (D) has its own:

• Address (xADDR)
• Size (xSIZE)
• Offset (xOFF)

xLAST: Number of bytes
added to current address

Peripheral queues typically
have size and offset
equal to NBYTES

•
•

after major loop
(typically used to

loop back)

transfer)

•
•
•

•
•
•

Last minor loop

• Modulo (xMOD)
• Last address adjustment
(xLAST) where x = S or D

•
•
•

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

12-32 Freescale Semiconductor
 Preliminary

If priority levels are not unique, the highest (channel) priority that has an active request is selected, but the
lowest numbered (channel) with that priority is selected by arbitration and executed by the DMA engine.
The hardware service request handshake signals, error interrupts, and error reporting are associated with
the selected channel.

12.5.3 DMA Request Assignments

The assignments between the DMA requests from the modules to the channels of the eDMA are shown in
Table 12-21. The source column is written in C language syntax. The syntax is
module_instance.register[bit].

12.5.4 DMA Arbitration Mode Considerations

12.5.4.1 Fixed-Channel Arbitration

In this mode, the channel service request from the highest priority channel is selected to execute.
Preemption is available in this scenario only.

12.5.4.2 Round-Robin Channel Arbitration

In this mode, channels are serviced starting with the highest channel number and rotating through to the
lowest channel number without regard to the assigned channel priority levels.

Table 12-21. DMA Request Summary for eDMA

DMA Request Channel Source Description

DMA_MUX_CHCONFIG0_SOURCE 0 DMA_MUX.CHCONFIG0[SOURCE] DMA MUX channel 0 source

DMA_MUX_CHCONFIG1_SOURCE 1 DMA_MUX.CHCONFIG1[SOURCE] DMA MUX channel 1 source

DMA_MUX_CHCONFIG2_SOURCE 2 DMA_MUX.CHCONFIG2[SOURCE] DMA MUX channel 2 source

DMA_MUX_CHCONFIG3_SOURCE 3 DMA_MUX.CHCONFIG3[SOURCE] DMA MUX channel 3 source

DMA_MUX_CHCONFIG4_SOURCE 4 DMA_MUX.CHCONFIG4[SOURCE] DMA MUX channel 4 source

DMA_MUX_CHCONFIG5_SOURCE 5 DMA_MUX.CHCONFIG5[SOURCE] DMA MUX channel 5 source

DMA_MUX_CHCONFIG6_SOURCE 6 DMA_MUX.CHCONFIG6[SOURCE] DMA MUX channel 6 source

DMA_MUX_CHCONFIG7_SOURCE 7 DMA_MUX.CHCONFIG7[SOURCE] DMA MUX channel 7 source

DMA_MUX_CHCONFIG8_SOURCE 8 DMA_MUX.CHCONFIG8[SOURCE] DMA MUX channel 8 source

DMA_MUX_CHCONFIG9_SOURCE 9 DMA_MUX.CHCONFIG9[SOURCE] DMA MUX channel 9 source

DMA_MUX_CHCONFIG10_SOURCE 10 DMA_MUX.CHCONFIG10[SOURCE] DMA MUX channel 10 source

DMA_MUX_CHCONFIG11_SOURCE 11 DMA_MUX.CHCONFIG11[SOURCE] DMA MUX channel 11 source

DMA_MUX_CHCONFIG12_SOURCE 12 DMA_MUX.CHCONFIG12[SOURCE] DMA MUX channel 12 source

DMA_MUX_CHCONFIG13_SOURCE 13 DMA_MUX.CHCONFIG13[SOURCE] DMA MUX channel 13 source

DMA_MUX_CHCONFIG14_SOURCE 14 DMA_MUX.CHCONFIG14[SOURCE] DMA MUX channel 14 source

DMA_MUX_CHCONFIG15_SOURCE 15 DMA_MUX.CHCONFIG15[SOURCE] DMA MUX channel 15 source

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 12-33
 Preliminary

12.5.5 DMA Transfer

12.5.5.1 Single Request

To perform a simple transfer of n bytes of data with one activation, set the major loop to 1
(TCD.CITER = TCD.BITER = 1). The data transfer will begin after the channel service request is
acknowledged and the channel is selected to execute. After the transfer is complete, the TCD.DONE bit
will be set and an interrupt will be generated if properly enabled.

For example, the following TCD entry is configured to transfer 16 bytes of data. The eDMA is
programmed for one iteration of the major loop transferring 16 bytes per iteration. The source memory has
a byte wide memory port located at 0x1000. The destination memory has a word wide port located at
0x2000. The address offsets are programmed in increments to match the size of the transfer; one byte for
the source and four bytes for the destination. The final source and destination addresses are adjusted to
return to their beginning values.

TCD.CITER = TCD.BITER = 1

TCD.NBYTES = 16

TCD.SADDR = 0x1000

TCD.SOFF = 1

TCD.SSIZE = 0

TCD.SLAST = –16

TCD.DADDR = 0x2000

TCD.DOFF = 4

TCD.DSIZE = 2

TCD.DLAST_SGA= -16

TCD.INT_MAJ = 1

TCD.START = 1 (Must be written last after all other fields have been initialized)

All other TCD fields = 0

This would generate the following sequence of events:

1. Slave write to the TCD.START bit requests channel service.

2. The channel is selected by arbitration for servicing.

3. eDMA engine writes: TCD.DONE = 0, TCD.START = 0, TCD.ACTIVE = 1.

4. eDMA engine reads: channel TCD data from local memory to internal register file.

5. The source to destination transfers are executed as follows:

a) read_byte(0x1000), read_byte(0x1001), read_byte(0x1002), read_byte(0x1003)

b) write_word(0x2000) → first iteration of the minor loop

c) read_byte(0x1004), read_byte(0x1005), read_byte(0x1006), read_byte(0x1007)

d) write_word(0x2004) → second iteration of the minor loop

e) read_byte(0x1008), read_byte(0x1009), read_byte(0x100a), read_byte(0x100b)

f) write_word(0x2008) → third iteration of the minor loop

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

12-34 Freescale Semiconductor
 Preliminary

g) read_byte(0x100c), read_byte(0x100d), read_byte(0x100e), read_byte(0x100f)

h) write_word(0x200c) → last iteration of the minor loop → major loop complete

6. eDMA engine writes: TCD.SADDR = 0x1000, TCD.DADDR = 0x2000, TCD.CITER = 1
(TCD.BITER).

7. eDMA engine writes: TCD.ACTIVE = 0, TCD.DONE = 1, EDMA_IRQRn = 1.

8. The channel retires.

The eDMA goes idle or services the next channel.

12.5.5.2 Multiple Requests

The next example is the same as previous, excepting transferring 32 bytes via two hardware requests. The
only fields that change are the major loop iteration count and the final address offsets. The eDMA is
programmed for two iterations of the major loop transferring 16 bytes per iteration. After the channel’s
hardware requests are enabled in the EDMA_ERQR, channel service requests are initiated by the slave
device (ERQR should be set after TCD). Note that TCD.START = 0.

TCD.CITER = TCD.BITER = 2

TCD.NBYTES = 16

TCD.SADDR = 0x1000

TCD.SOFF = 1

TCD.SSIZE = 0

TCD.SLAST = –32

TCD.DADDR = 0x2000

TCD.DOFF = 4

TCD.DSIZE = 2

TCD.DLAST_SGA= –32

TCD.INT_MAJ = 1

TCD.START = 0 (Must be written last after all other fields have been initialized)

All other TCD fields = 0

This generates the following sequence of events:

1. First hardware (eDMA peripheral request) request for channel service.

2. The channel is selected by arbitration for servicing.

3. eDMA engine writes: TCD.DONE = 0, TCD.START = 0, TCD.ACTIVE = 1.

4. eDMA engine reads: channel TCD data from local memory to internal register file.

5. The source to destination transfers are executed as follows:

a) read_byte(0x1000), read_byte(0x1001), read_byte(0x1002), read_byte(0x1003)

b) write_word(0x2000) → first iteration of the minor loop

c) read_byte(0x1004), read_byte(0x1005), read_byte(0x1006), read_byte(0x1007)

d) write_word(0x2004) → second iteration of the minor loop

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 12-35
 Preliminary

e) read_byte(0x1008), read_byte(0x1009), read_byte(0x100a), read_byte(0x100b)

f) write_word(0x2008) → third iteration of the minor loop

g) read_byte(0x100c), read_byte(0x100d), read_byte(0x100e), read_byte(0x100f)

h) write_word(0x200c) → last iteration of the minor loop

6. eDMA engine writes: TCD.SADDR = 0x1010, TCD.DADDR = 0x2010, TCD.CITER = 1.

7. eDMA engine writes: TCD.ACTIVE = 0.

8. The channel retires → one iteration of the major loop.

The eDMA goes idle or services the next channel.

9. Second hardware (eDMA peripheral request) requests channel service.

10. The channel is selected by arbitration for servicing.

11. eDMA engine writes: TCD.DONE = 0, TCD.START = 0, TCD.ACTIVE = 1.

12. eDMA engine reads: channel TCD data from local memory to internal register file.

13. The source to destination transfers are executed as follows:

a) read_byte(0x1010), read_byte(0x1011), read_byte(0x1012), read_byte(0x1013)

b) write_word(0x2010) → first iteration of the minor loop

c) read_byte(0x1014), read_byte(0x1015), read_byte(0x1016), read_byte(0x1017)

d) write_word(0x2014) → second iteration of the minor loop

e) read_byte(0x1018), read_byte(0x1019), read_byte(0x101a), read_byte(0x101b)

f) write_word(0x2018) → third iteration of the minor loop

g) read_byte(0x101c), read_byte(0x101d), read_byte(0x101e), read_byte(0x101f)

h) write_word(0x201c) → last iteration of the minor loop → major loop complete

14. eDMA engine writes: TCD.SADDR = 0x1000, TCD.DADDR = 0x2000, TCD.CITER = 2
(TCD.BITER).

15. eDMA engine writes: TCD.ACTIVE = 0, TCD.DONE = 1, EDMA_IRQRn = 1.

16. The channel retires → major loop complete.

The eDMA goes idle or services the next channel.

12.5.5.3 Modulo Feature

The modulo feature of the eDMA provides the ability to implement a circular data queue in which the size
of the queue is a power of two. MOD is a 5-bit bitfield for both the source and destination in the TCD and
specifies which lower address bits are allowed to increment from their original value after the
address + offset calculation. All upper address bits remain the same as in the original value. A setting of 0
for this field disables the modulo feature.

Table 12-22 shows how the transfer addresses are specified based on the setting of the MOD field. Here a
circular buffer is created where the address wraps to the original value while the 28 upper address bits
(0x1234567x) retain their original value. In this example the source address is set to 0x12345670, the
offset is set to 4 bytes and the mod field is set to 4, allowing for a 24 byte (16-byte) size queue.

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

12-36 Freescale Semiconductor
 Preliminary

12.5.6 TCD Status

12.5.6.1 Minor Loop Complete

There are two methods to test for minor loop completion when using software initiated service requests.
The first method is to read the TCD.CITER field and test for a change. Another method may be extracted
from the sequence below. The second method is to test the TCD.START bit AND the TCD.ACTIVE bit.
The minor loop complete condition is indicated by both bits reading zero after the TCD.START was
written to a 1. Polling the TCD.ACTIVE bit may be inconclusive because the active status may be missed
if the channel execution is short in duration.

The TCD status bits execute the following sequence for a software activated channel:

1. TCD.START = 1, TCD.ACTIVE = 0, TCD.DONE = 0 (channel service request via software).

2. TCD.START = 0, TCD.ACTIVE = 1, TCD.DONE = 0 (channel is executing).

3. TCD.START = 0, TCD.ACTIVE = 0, TCD.DONE = 0 (channel has completed the minor loop and
is idle), or

4. TCD.START = 0, TCD.ACTIVE = 0, TCD.DONE = 1 (channel has completed the major loop and
is idle).

The best method to test for minor loop completion when using hardware initiated service requests is to
read the TCD.CITER field and test for a change. The hardware request and acknowledge handshakes
signals are not visible in the programmer’s model.

The TCD status bits execute the following sequence for a hardware activated channel:

1. eDMA peripheral request asserts (channel service request via hardware).

2. TCD.START = 0, TCD.ACTIVE = 1, TCD.DONE = 0 (channel is executing).

3. TCD.START = 0, TCD.ACTIVE = 0, TCD.DONE = 0 (channel has completed the minor loop and
is idle), or

4. TCD.START = 0, TCD.ACTIVE = 0, TCD.DONE = 1 (channel has completed the major loop and
is idle).

For both activation types, the major loop complete status is explicitly indicated via the TCD.DONE bit.

Table 12-22. Modulo Feature Example

Transfer
Number

Address

1 0x12345670

2 0x12345674

3 0x12345678

4 0x1234567C

5 0x12345670

6 0x12345674

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 12-37
 Preliminary

The TCD.START bit is cleared automatically when the channel begins execution, regardless of how the
channel was activated.

12.5.6.2 Active Channel TCD Reads

The eDMA will read back the true TCD.SADDR, TCD.DADDR, and TCD.NBYTES values if read while
a channel is executing. The true values of the SADDR, DADDR, and NBYTES are the values the eDMA
engine is currently using in its internal register file and not the values in the TCD local memory for that
channel. The addresses (SADDR and DADDR) and NBYTES (decrements to zero as the transfer
progresses) can give an indication of the progress of the transfer. All other values are read back from the
TCD local memory.

12.5.6.3 Preemption Status

Preemption is available only when fixed arbitration is selected for channel-arbitration mode. A
preempt-able situation is one in which a preempt-enabled channel is running and a higher priority request
becomes active. When the eDMA engine is not operating in fixed-channel arbitration mode, the
determination of the relative priority of the actively running and the outstanding requests become
undefined. Channel priorities are treated as equal (or more exactly, constantly rotating) when round-robin
arbitration mode is selected.

The TCD.ACTIVE bit for the preempted channel remains asserted throughout the preemption. The
preempted channel is temporarily suspended while the preempting channel executes one iteration of the
major loop. Two TCD.ACTIVE bits set at the same time in the overall TCD map indicates a higher priority
channel is actively preempting a lower priority channel.

12.5.7 Channel Linking

Channel linking (or chaining) is a mechanism in which one channel sets the TCD.START bit of another
channel (or itself), thus initiating a service request for that channel. This operation is automatically
performed by the eDMA engine at the conclusion of the major or minor loop when properly enabled.

The minor loop channel linking occurs at the completion of the minor loop (or one iteration of the major
loop). The TCD.CITER.E_LINK field are used to determine whether a minor loop link is requested. When
enabled, the channel link is made after each iteration of the minor loop except for the last. When the major
loop is exhausted, only the major loop channel link fields are used to determine if a channel link should be
made. For example, with the initial fields of:

TCD.CITER.E_LINK = 1

TCD.CITER.LINKCH = 0xC

TCD.CITER value = 0x4

TCD.MAJOR.E_LINK = 1

TCD.MAJOR.LINKCH = 0x7

will execute as:

1. Minor loop done → set channel 12 TCD.START bit

2. Minor loop done → set channel 12 TCD.START bit

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

12-38 Freescale Semiconductor
 Preliminary

3. Minor loop done → set channel 12 TCD.START bit

4. Minor loop done, major loop done → set channel 7 TCD.START bit

When minor loop linking is enabled (TCD.CITER.E_LINK = 1), the TCD.CITER field uses a nine bit
vector to form the current iteration count.

When minor loop linking is disabled (TCD.CITER.E_LINK = 0), the TCD.CITER field uses a 15-bit
vector to form the current iteration count. The bits associated with the TCD.CITER.LINKCH field are
concatenated onto the CITER value to increase the range of the CITER.

NOTE
After configuration, the TCD.CITER.E_LINK bit and the
TCD.BITER.E_LINK bit must be equal or a configuration error will be
reported. The CITER and BITER vector widths must be equal to calculate
the major loop, halfway done interrupt point.

Table 12-23 summarizes how a DMA channel can link to another DMA channel, i.e, use another channel’s
TCD, at the end of a loop.

12.5.8 Dynamic Programming

This section provides recommended methods to change the programming model during channel execution.

12.5.8.1 Dynamic Channel Linking and Dynamic Scatter-Gather Operation

Dynamic channel linking and dynamic scatter-gather operation is the process of changing the
TCD.MAJOR.E_LINK or TCD.E_SG bits during channel execution. These bits are read from the TCD
local memory at the end of channel execution thus allowing the user to enable either feature during channel
execution.

Because the user is allowed to change the configuration during execution, a coherency model is needed.
Consider a scenario where the user attempts to execute a dynamic channel link by enabling the
TCD.MAJOR.E_LINK bit at the same time the eDMA engine is retiring the channel. The
TCD.MAJOR.E_LINK would be set in the programmer’s model, but it would be unclear whether the
actual link was made before the channel retired.

Table 12-23. Channel Linking Parameters

Desired Link
Behavior

TCD Control Field Name Description

Link at end of
minor loop

citer.e_link Enable channel-to-channel linking on minor loop
completion (current iteration).

citer.linkch Link channel number when linking at end of minor
loop (current iteration).

Link at end of
major loop

major.e_link Enable channel-to-channel linking on major loop
completion.

major.linkch Link channel number when linking at end of major
loop.

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 12-39
 Preliminary

The following coherency model is recommended when executing a dynamic channel link or dynamic
scatter-gather request:

1. Set the TCD.MAJOR.E_LINK bit.

2. Read back the TCD.MAJOR.E_LINK bit

3. Test the TCD.MAJOR.E_LINK request status:

a) If the bit is set, the dynamic link attempt was successful.

b) If the bit is cleared, the attempted dynamic link did not succeed, the channel was already
retiring.

This same coherency model is true for dynamic scatter-gather operations. For both dynamic requests, the
TCD local memory controller forces the TCD.MAJOR.E_LINK and TCD.E_SG bits to zero on any writes
to a channel’s TCD after that channel’s TCD.DONE bit is set indicating the major loop is complete.

NOTE
The user must clear the TCD.DONE bit before writing the
TCD.MAJOR.E_LINK or TCD.E_SG bits. The TCD.DONE bit is cleared
automatically by the eDMA engine after a channel begins execution.

Enhanced Direct Memory Access (eDMA)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

12-40 Freescale Semiconductor
 Preliminary

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 13-1
 Preliminary

Chapter 13
DMA Channel Mux (DMA_MUX)

13.1 Introduction
The DMA_MUX allows for software selection of 16 out of 64 possible DMA sources. Up to fifty-five of
these DMA sources are requests from peripherals, but four of the peripheral sources are reserved and will
behave as always disabled sources. Eight sources are always enabled and will generate a DMA request as
soon as that source is selected. One source (the default for all channels) is always disabled.

13.1.1 Block Diagram

A simplified block diagram of the DMA_MUX is shown in Figure 13-1.

Figure 13-1. DMA_MUX Block Diagram

Peripheral Source #1

Peripheral Source #2

Peripheral Source #3

Peripheral Source #55

DMA Channel #1

DMA Channel #2

DMA Channel #3

DMA Channel #4

DMA Channel #5

DMA Channel #6

DMA Channel #7

DMA Channel #8

DMA Channel #9

DMA Channel #10

DMA Channel #11

DMA Channel #12

DMA Channel #13

DMA Channel #14

DMA Channel #15

DMA Channel #0

DMA Channel Mux (DMA_MUX)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

13-2 Freescale Semiconductor
 Preliminary

13.1.2 Features

The DMA_MUX has these major features:

• 16 independently selectable DMA channel routers

— Eight channels with normal or periodic triggering capability

— Eight channels with normal operation

— Each channel router can be assigned to 1 of 55 possible peripheral DMA sources, eight always
enabled sources, or one always disabled source.

13.1.3 Modes of Operation

DMA channels 0–7 may be used in the following modes, but channels 8–15 may only be configured to
disabled or normal mode.

• Disabled mode

In this mode, the DMA channel is disabled. Because disabling and enabling of DMA channels is
done primarily via the DMA registers, this mode is used mainly as the reset state for a DMA
channel in the DMA channel mux. It may also be used to temporarily suspend a DMA channel
while reconfiguration of the system takes place (changing the period of a DMA trigger, for
example).

• Normal mode

In this mode, a DMA source (such as SCI transmit or SCI receive for example) is routed directly
to the specified DMA channel. The operation of the DMA_MUX in this mode is completely
transparent to the system.

• Periodic trigger mode

In this mode, a DMA source may only request a DMA transfer (such as when a transmit buffer
becomes empty or a receive buffer becomes full) periodically. Configuration of the period is done
in the registers of the periodic interrupt timer.

13.2 External Signal Description
The DMA_MUX has no external signals.

13.3 Memory Map and Registers
This section provides a detailed description of all DMA_MUX registers.

13.3.1 Module Memory Map

The DMA_MUX memory map is shown in Table 13-1. The address of each register is given as an offset
to the DMA_MUX base address. Registers are listed in address order, identified by complete name and
mnemonic, and list the type of accesses allowed.

All registers are accessible via 8-bit, 16-bit, or 32-bit accesses. However, 16-bit accesses must be aligned
to 16-bit boundaries and 32-bit accesses must be aligned to 32-bit boundaries. As an example,

DMA Channel Mux (DMA_MUX)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 13-3
 Preliminary

CHCONFIG0 through CHCONFIG3 are accessible by a 32-bit READ/WRITE to address
DMA_MUX_BASE + 0x00, but performing a 32-bit access to address DMA_MUX_BASE + 0x01 is
illegal.

13.3.2 Register Descriptions

This section lists the DMA_MUX registers in address order and describes the registers and their bit fields.

13.3.2.1 Channel Configuration Registers (CHCONFIGn)

Each of the 16 DMA channels can be independently enabled/disabled and associated with one of the 64
DMA sources in the system.

Table 13-1. DMA_MUX Memory Map

Offset from
DMA_MUX_BASE
(0xFFFD_C000)

Register Access Reset Value Section/Page

0x0000 CHCONFIG0 — Channel #0 configuration R/W 0x00 13.3.2.1/13-3

0x0001 CHCONFIG1 — Channel #1 configuration R/W 0x00 13.3.2.1/13-3

0x0002 CHCONFIG2 — Channel #2 configuration R/W 0x00 13.3.2.1/13-3

0x0003 CHCONFIG3 — Channel #3 configuration R/W 0x00 13.3.2.1/13-3

0x0004 CHCONFIG4 — Channel #4 configuration R/W 0x00 13.3.2.1/13-3

0x0005 CHCONFIG5 — Channel #5 configuration R/W 0x00 13.3.2.1/13-3

0x0006 CHCONFIG6 — Channel #6 configuration R/W 0x00 13.3.2.1/13-3

0x0007 CHCONFIG7 — Channel #7 configuration R/W 0x00 13.3.2.1/13-3

0x0008 CHCONFIG8 — Channel #8 configuration R/W 0x00 13.3.2.1/13-3

0x0009 CHCONFIG9 — Channel #9 configuration R/W 0x00 13.3.2.1/13-3

0x000A CHCONFIG10 — Channel #10 configuration R/W 0x00 13.3.2.1/13-3

0x000B CHCONFIG11 — Channel #11 configuration R/W 0x00 13.3.2.1/13-3

0x000C CHCONFIG12 — Channel #12 configuration R/W 0x00 13.3.2.1/13-3

0x000D CHCONFIG13 — Channel #13 configuration R/W 0x00 13.3.2.1/13-3

0x000E CHCONFIG14 — Channel #14 configuration R/W 0x00 13.3.2.1/13-3

0x000F CHCONFIG15 — Channel #15 configuration R/W 0x00 13.3.2.1/13-3

Offset: DMA_MUX_BASE + n Access: User read/write

0 1 2 3 4 5 6 7

R
ENBL TRIG SOURCE

W

Reset 0 0 0 0 0 0 0 0

Figure 13-2. Channel Configuration Registers (CHCONFIGn)

DMA Channel Mux (DMA_MUX)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

13-4 Freescale Semiconductor
 Preliminary

NOTE
Setting multiple CHCONFIG registers with the same DMA source value
will result in unpredictable behavior.

Table 13-2. CHCONFIGn Field Descriptions

Field Description

ENBL DMA Channel Enable. ENBL enables the DMA channel.
0 DMA channel is disabled. This mode is primarily used during configuration of the DMA_MUX. The DMA has

separate channel enables/disables, which should be used to disable or re-configure a DMA channel.
1 DMA channel is enabled.

TRIG DMA Channel Trigger Enable (channels 0–7 only). TRIG enables the periodic trigger capability for the DMA channel
0 Triggering is disabled. If triggering is disabled, and the ENBL bit is set, the DMA channel will simply route the

specified source to the DMA channel.
1 Triggering is enabled.

SOURCE DMA Channel Source. SOURCE specifies which DMA source, if any, is routed to a particular DMA channel,
according to Table 13-4.

Table 13-3. Channel and Trigger Enabling

ENBL TRIG Function Mode

0 X DMA channel is disabled Disabled mode

1 0 DMA channel is enabled with no triggering (transparent) Normal mode

1 1 DMA channel is enabled with triggering Periodic trigger mode

Table 13-4. DMA Source Configuration

DMA Request
DMA_MUX

Source Input
Number

DMA Source Description

Channel disabled1 0x00 Channel disabled Channel disabled

SCI_A_COMBTX 0x01 SCI_A.SCISR1[TDRE] ||
SCI_A.SCISR1[TC] ||

SCI_A.LINSTAT1[TXRDY]

SCI_A combined DMA request of the transmit
data register empty, transmit complete, and LIN
transmit data ready DMA requests

SCI_A_COMBRX 0x02 SCI_A.SCISR1[RDRF] ||
SCI_A.LINSTAT1[RXRDY]

SCI_A combined DMA request of the receive
data register full and LIN receive data ready DMA
requests

SCI_B_COMBTX 0x03 SCI_B.SCISR1[TDRE] ||
SCI_B.SCISR1[TC] ||

SCI_B.LINSTAT1[TXRDY]

SCI_B combined DMA request of the transmit
data register empty, transmit complete, and LIN
transmit data ready DMA requests

SCI_B_COMBRX 0x04 SCI_B.SCISR1[RDRF] ||
SCI_B.LINSTAT1[RXRDY]

SCI_B combined DMA request of the receive
data register full and LIN receive data ready DMA
requests

SCI_C_COMBTX 0x05 SCI_C.SCISR1[TDRE] ||
SCI_C.SCISR1[TC] ||

SCI_C.LINSTAT1[TXRDY]

SCI_C combined DMA request of the transmit
data register empty, transmit complete, and LIN
transmit data ready DMA requests

DMA Channel Mux (DMA_MUX)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 13-5
 Preliminary

SCI_C_COMBRX 0x06 SCI_C.SCISR1[RDRF] ||
SCI_C.LINSTAT1[RXRDY]

SCI_C combined DMA request of the receive
data register full and LIN receive data ready DMA
requests

SCI_D_COMBTX 0x07 SCI_D.SCISR1[TDRE] ||
SCI_D.SCISR1[TC] ||

SCI_D.LINSTAT1[TXRDY]

SCI_D combined DMA request of the transmit
data register empty, transmit complete, and LIN
transmit data ready DMA requests

SCI_D_COMBRX 0x08 SCI_D.SCISR1[RDRF] ||
SCI_D.LINSTAT1[RXRDY]

SCI_D combined DMA request of the receive
data register full and LIN receive data ready DMA
requests

SCI_E_COMBTX 0x09 SCI_E.SCISR1[TDRE] ||
SCI_E.E.SCISR1[TC] ||

SCI_E.LINSTAT1[TXRDY]

SCI_E combined DMA request of the transmit
data register empty, transmit complete, and LIN
transmit data ready DMA requests

SCI_E_COMBRX 0x0A SCI_E.SCISR1[RDRF] ||
SCI_E.LINSTAT1[RXRDY]

SCI_E combined DMA request of the receive
data register full and LIN receive data ready DMA
requests

SCI_F_COMBTX 0x0B SCI_F.SCISR1[TDRE] ||
SCI_F.SCISR1[TC] ||

SCI_F.LINSTAT1[TXRDY]

SCI_F combined DMA request of the transmit
data register empty, transmit complete, and LIN
transmit data ready DMA requests

SCI_F_COMBRX 0x0C SCI_F.SCISR1[RDRF] ||
SCI_F.LINSTAT1[RXRDY]

SCI_F combined DMA request of the receive
data register full and LIN receive data ready DMA
requests

SCI_G_COMBTX 0x0D SCI_G.SCISR1[TDRE] ||
SCI_G.SCISR1[TC] ||

SCI_G.LINSTAT1[TXRDY]

SCI_G combined DMA request of the transmit
data register empty, transmit complete, and LIN
transmit data ready DMA requests

SCI_G_COMBRX 0x0E SCI_G.SCISR1[RDRF] ||
SCI_G.LINSTAT1[RXRDY]

SCI_G combined DMA request of the receive
data register full and LIN receive data ready DMA
requests

SCI_H_COMBTX 0x0F SCI_H.SCISR1[TDRE] ||
SCI_H.SCISR1[TC] ||

SCI_H.LINSTAT1[TXRDY]

SCI_H combined DMA request of the transmit
data register empty, transmit complete, and LIN
transmit data ready DMA requests

SCI_H_COMBRX 0x10 SCI_H.SCISR1[RDRF] ||
SCI_H.LINSTAT1[RXRDY]

SCI_H combined DMA request of the receive
data register full and LIN receive data ready DMA
requests

DSPI_A_SR_TFFF 0x11 DSPI_A.DSPI_SR[TFFF] DSPI_A transmit FIFO fill flag

DSPI_A_SR_RFDF 0x12 DSPI_A.DSPI_SR[RFDF] DSPI_A receive FIFO drain flag

DSPI_B_SR_TFFF 0x13 DSPI_B.DSPI_SR[TFFF] DSPI_B transmit FIFO fill flag

DSPI_B_SR_RFDF 0x14 DSPI_B.DSPI_SR[RFDF] DSPI_B receive FIFO drain flag

DSPI_C_SR_TFFF 0x15 DSPI_C.DSPI_SR[TFFF] DSPI_C transmit FIFO fill flag

DSPI_C_SR_RFDF 0x16 DSPI_C.DSPI_SR[RFDF] DSPI_C receive FIFO drain flag

DSPI_D_SR_TFFF 0x17 DSPI_D.DSPI_SR[TFFF] DSPI_D transmit FIFO fill flag

Table 13-4. DMA Source Configuration (continued)

DMA Request
DMA_MUX

Source Input
Number

DMA Source Description

DMA Channel Mux (DMA_MUX)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

13-6 Freescale Semiconductor
 Preliminary

DSPI_D_SR_RFDF 0x18 DSPI_D.DSPI_SR[RFDF] DSPI_D receive FIFO drain flag

eMIOS200_FLAG_F0 0x19 eMIOS200.eMIOS200FLAG[F0] eMIOS200 channel 0 flag

eMIOS200_FLAG_F1 0x1A eMIOS200.eMIOS200FLAG[F1] eMIOS200 channel 1 flag

eMIOS200_FLAG_F2 0x1B eMIOS200.eMIOS200FLAG[F2] eMIOS200 channel 2 fag

eMIOS200_FLAG_F3 0x1C eMIOS200.eMIOS200FLAG[F3] eMIOS200 channel 3 flag

eMIOS200_FLAG_F4 0x1D eMIOS200.eMIOS200FLAG[F4] eMIOS200 channel 4 flag

eMIOS200_FLAG_F5 0x1E eMIOS200.eMIOS200FLAG[F5] eMIOS200 channel 5 flag

eMIOS200_FLAG_F6 0x1F eMIOS200.eMIOS200FLAG[F6] eMIOS200 channel 6 flag

eMIOS200_FLAG_F7 0x20 eMIOS200.eMIOS200FLAG[F7] eMIOS200 channel 7 flag

eMIOS200_FLAG_F8 0x21 eMIOS200.eMIOS200FLAG[F8] eMIOS200 channel 8 flag

eMIOS200_FLAG_F9 0x22 eMIOS200.eMIOS200FLAG[F9] eMIOS200 channel 9 flag

eMIOS200_FLAG_F10 0x23 eMIOS200.eMIOS200FLAG[F10] eMIOS200 channel 10 flag

eMIOS200_FLAG_F11 0x24 eMIOS200.eMIOS200FLAG[F11] eMIOS200 channel 11 flag

eMIOS200_FLAG_F12 0x25 eMIOS200.eMIOS200FLAG[F12] eMIOS200 channel 12 flag

eMIOS200_FLAG_F13 0x26 eMIOS200.eMIOS200FLAG[F13] eMIOS200 channel 13 flag

eMIOS200_FLAG_F14 0x27 eMIOS200.eMIOS200FLAG[F14] eMIOS200 channel 14 flag

eMIOS200_FLAG_F15 0x28 eMIOS200.eMIOS200FLAG[F15] eMIOS200 channel 15 flag

I2C_A_TX 0x29 I2C_A.TX_REQ I2C_A transmit

I2C_A_RX 0x2A I2C_A.RX_REQ I2C_A receive

Reserved 0x2B Reserved Reserved

Reserved 0x2C Reserved Reserved

SIU_EISR_EIF1 0x2D SIU.SIU_EISR[EIF1] SIU external interrupt flag 1

SIU_EISR_EIF2 0x2E SIU.SIU_EISR[EIF1] SIU external interrupt flag 2

SIU_EISR_EIF3 0x2F SIU.SIU_EISR[EIF3] SIU external interrupt flag 3

SIU_EISR_EIF4 0x30 SIU.SIU_EISR[EIF4] SIU external interrupt flag 4

eQADC_FISR0_RFDF0 0x31 eQADC.eQADC_FISR0[RFDF0] eQADC receive FIFO 0 drain flag

eQADC_FISR0_CFFF0 0x32 eQADC.eQADC_FISR0[CFFF0] eQADC command FIFO 0 fill flag

eQADC_FISR1_RFDF1 0x33 eQADC.eQADC_FISR1[RFDF1] eQADC receive FIFO 1 drain flag

eQADC_FISR1_CFFF1 0x34 eQADC.eQADC_FISR1[CFFF1] eQADC command FIFO 1 fill flag

MLB_DMA_REQ 0x35 MLB.MSR[MDATRQS] MLB Data Request

Reserved 0x36 Reserved Reserved

Table 13-4. DMA Source Configuration (continued)

DMA Request
DMA_MUX

Source Input
Number

DMA Source Description

DMA Channel Mux (DMA_MUX)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 13-7
 Preliminary

13.4 Functional Description
The primary purpose of the DMA_MUX is to provide flexibility in the system’s use of the available DMA
channels. As such, configuration of the DMA_MUX is intended to be a static procedure done during
execution of the system boot code. However, if the procedure outlined in Section 13.5.2, “Enabling and
Configuring Sources,” is followed, the configuration of the DMA_MUX may be changed during the
normal operation of the system.

Functionally, the DMA_MUX channels may be divided into two classes: channels 0–7, which implement
the normal routing functionality and periodic triggering capability, and channels 8–15, which implement
only the normal routing functionality.

13.4.1 DMA Channels 0–7

In addition to the normal routing functionality, channels 0–7 of the DMA_MUX provide a special periodic
triggering capability that can be used to provide an automatic mechanism to transmit bytes, frames, or
packets at fixed intervals without the need for processor intervention. The trigger is generated by the
periodic interrupt timer (PIT); as such, the configuration of the periodic triggering interval is done via
configuration registers in the PIT. Please refer to the periodic interrupt timer block guide for more
information on this topic.

NOTE
Because of the dynamic nature of the system (i.e. DMA channel priorities,
bus arbitration, interrupt service routine lengths, etc.), the number of clock
cycles between a trigger and the actual DMA transfer cannot be guaranteed.

Reserved 0x37 Reserved Reserved

Always enabled 0x38 Always enabled Always enabled

Always enabled 0x39 Always enabled Always enabled

Always enabled 0x3A Always enabled Always enabled

Always enabled 0x3B Always enabled Always enabled

Always enabled 0x3C Always enabled Always enabled

Always enabled 0x3D Always enabled Always enabled

Always enabled 0x3E Always enabled Always enabled

Always enabled 0x3F Always enabled Always enabled

1 Configuring a DMA channel to select source 0 or any of the reserved sources will disable that DMA channel.

Table 13-4. DMA Source Configuration (continued)

DMA Request
DMA_MUX

Source Input
Number

DMA Source Description

DMA Channel Mux (DMA_MUX)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

13-8 Freescale Semiconductor
 Preliminary

Figure 13-3. DMA_MUX Channel 0–7 Block Diagram

The DMA channel triggering capability allows the system to schedule regular DMA transfers, usually on
the transmit side of certain peripherals, without the intervention of the processor. This trigger works by
gating the request from the peripheral to the DMA until a trigger event has been seen. This is illustrated in
Figure 13-4.

Figure 13-4. DMA_MUX Channel Triggering: Normal Operation

After the DMA request has been serviced, the peripheral negates its request, effectively resetting the gating
mechanism until the peripheral re-asserts its request AND the next trigger event is seen. This means that

Peripheral Source #1

Peripheral Source #2

Peripheral Source #3

Peripheral Source #55

DMA Channel #n

Always Disabled

Always Enabled

CHCONFIGn[SOURCE]

PIT Trigger #n+1

1

0

CHCONFIGn[TRIG]

Source #56

Always Enabled
Source #63

n = 0 to 7

Source #0

Peripheral Request

Trigger

DMA Request

DMA Channel Mux (DMA_MUX)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 13-9
 Preliminary

if a trigger is seen, but the peripheral is not requesting a transfer, that triggered will be ignored. This
situation is illustrated in Figure 13-5.

Figure 13-5. DMA_MUX Channel Triggering: Ignored Trigger

This triggering capability may be used with any peripheral that supports DMA transfers and is most useful
for two types of situations:

• Periodically polling external devices on a particular bus. As an example, the transmit side of an SPI
is assigned to a DMA channel with a trigger, as described above. After setup, the SPI requests
DMA transfers (presumably from memory) as long as its transmit buffer is empty. By using a
trigger on this channel, the SPI transfers can be automatically performed every 5 μs (as an
example). On the receive side of the SPI, the SPI and DMA can be configured to transfer receive
data into memory, effectively implementing a method to periodically read data from external
devices and transfer the results into memory without processor intervention.

• Using the GPIO ports to drive or sample waveforms. By configuring the DMA to transfer data to
one or more GPIO ports, it is possible to create complex waveforms using tabular data stored in
on-chip memory. Conversely, using the DMA to periodically transfer data from one or more GPIO
ports, it is possible to sample complex waveforms and store the results in tabular form in on-chip
memory.

A more detailed description of the capability of each trigger (i.e. resolution, range of values, etc.) may be
found in Chapter 28, “Periodic Interrupt Timer and Real Time Interrupt (PIT_RTI).”

13.4.2 DMA Channels 8–15

Channels 8–15 of the DMA_MUX provide the normal routing functionality as described in Section 13.1.3,
“Modes of Operation.”

Periph Request

Trigger

DMA Request

DMA Channel Mux (DMA_MUX)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

13-10 Freescale Semiconductor
 Preliminary

Figure 13-6. DMA_MUX Channel 8–15 Block Diagram

13.4.3 Always Enabled DMA Sources

In addition to the 55 peripherals that can be used as DMA sources, there are eight additional DMA sources
that are always enabled. Unlike the peripheral DMA sources, where the peripheral controls the flow of data
during DMA transfers, the always enabled sources provide no such throttling of the data transfers. These
sources are most useful in the following cases:

• Doing DMA transfers to/from GPIO — Moving data from/to one or more GPIO pins, either
un-throttled (i.e. as fast as possible), or periodically (using the DMA triggering capability).

• Doing DMA transfers from memory to memory — Moving data from memory to memory,
typically as fast as possible, sometimes with software activation.

• Doing DMA transfers from memory to the external bus (or vice-versa) — Similar to memory to
memory transfers, this is typically done as quickly as possible.

• Any DMA transfer that requires software activation — Any DMA transfer that should be explicitly
started by software.

In cases where software should initiate the start of a DMA transfer, an always enabled DMA source can
be used to provide maximum flexibility. When activating a DMA channel via software, subsequent

Peripheral Source #1

Peripheral Source #2

Peripheral Source #3

Peripheral Source #55

DMA Channel #n

Always Disabled

Always Enabled

CHCONFIGn[SOURCE]

Source #56

Always Enabled
Source #63

n = 8 to 15

Source #0

DMA Channel Mux (DMA_MUX)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 13-11
 Preliminary

executions of the minor loop require a new start event be sent. This can either be a new software activation
or a transfer request from the DMA channel mux. The options for doing this are:

• Transfer all data in a single minor loop. By configuring the DMA to transfer all of the data in a
single minor loop (i.e. major loop counter = 1), no re-activation of the channel is necessary. The
disadvantage to this option is the reduced granularity in determining the load that the DMA transfer
will incur on the system. For this option, the DMA channel should be disabled in the DMA channel
mux.

• Use explicit software re-activation. In this option, the DMA is configured to transfer the data using
both minor and major loops, but the processor is required to re-activate the channel (by writing to
the DMA registers) after every minor loop. For this option, the DMA channel should be disabled
in the DMA channel mux.

• Use an always enabled DMA source. In this option, the DMA is configured to transfer the data
using both minor and major loops, and the DMA channel mux does the channel re-activation. For
this option, the DMA channel should be enabled and pointing to an always enabled source. Note
that the re-activation of the channel can be continuous (DMA triggering is disabled) or can use the
DMA triggering capability. In this manner, it is possible to execute periodic transfers of packets of
data from one source to another without processor intervention.

13.5 Initialization/Application Information

13.5.1 Reset

The reset state of each individual bit is shown within the register description section (Section 13.3.2,
“Register Descriptions”). After reset, all channels are disabled and must be explicitly enabled before use.

13.5.2 Enabling and Configuring Sources

13.5.2.1 Enabling a Source with Periodic Triggering

1. Determine with which DMA channel the source will be associated. Only DMA channels 0–7 have
periodic triggering capability.

2. Clear the ENBL and TRIG bits of the DMA channel.

3. Ensure that the DMA channel is properly configured in the DMA. The DMA channel may be
enabled at this point.

4. In the PIT, configure the corresponding timer.

5. Select the source to be routed to the DMA channel. Write to the corresponding CHCONFIG
register, ensuring that the ENBL and TRIG bits are set.

Example 13-1. Configure DSPI_B Transmit for use with DMA Channel 2, with periodic triggering capability

1. Write 0x00 to CHCONFIG2 (base address + 0x02).

2. Configure channel 2 in the DMA, including enabling the channel.

3. Configure timer 3 in the periodic interrupt timer (PIT) for the desired trigger interval.

4. Write 0xC5 to CHCONFIG2 (base address + 0x02).

DMA Channel Mux (DMA_MUX)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

13-12 Freescale Semiconductor
 Preliminary

The following code example illustrates steps #1 and #4 above:
In File registers.h:
#define DMAMUX_BASE_ADDR 0xFC084000/* Example only ! */
/* Following example assumes char is 8-bits */
volatile unsigned char *CHCONFIG0 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0000);
volatile unsigned char *CHCONFIG1 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0001);
volatile unsigned char *CHCONFIG2 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0002);
volatile unsigned char *CHCONFIG3 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0003);
volatile unsigned char *CHCONFIG4 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0004);
volatile unsigned char *CHCONFIG5 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0005);
volatile unsigned char *CHCONFIG6 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0006);
volatile unsigned char *CHCONFIG7 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0007);
volatile unsigned char *CHCONFIG8 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0008);
volatile unsigned char *CHCONFIG9 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0009);
volatile unsigned char *CHCONFIG10= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000A);
volatile unsigned char *CHCONFIG11= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000B);
volatile unsigned char *CHCONFIG12= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000C);
volatile unsigned char *CHCONFIG13= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000D);
volatile unsigned char *CHCONFIG14= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000E);
volatile unsigned char *CHCONFIG15= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000F);

In File main.c:
#include “registers.h”

:
:

*CHCONFIG2 = 0x00;
*CHCONFIG2 = 0xC5;

13.5.2.2 Enabling a Source Without Periodic Triggering

1. Determine with which DMA channel the source will be associated. Only DMA channels 0–7 have
periodic triggering capability.

2. Clear the ENBL and TRIG bits of the DMA channel.

3. Ensure that the DMA channel is properly configured in the DMA. The DMA channel may be
enabled at this point.

4. Select the source to be routed to the DMA channel. Write to the corresponding CHCONFIG
register, ensuring that the ENBL is set and the TRIG bit is cleared.

Example 13-2. Configure DSPI_B Transmit for use with DMA Channel 2, with no periodic triggering
capability.

1. Write 0x00 to CHCONFIG2 (base address + 0x02).

2. Configure channel 2 in the DMA, including enabling the channel.

3. Write 0x85 to CHCONFIG2 (base address + 0x02).

The following code example illustrates steps #1 and #3 above:
In File registers.h:
#define DMAMUX_BASE_ADDR 0xFC084000/* Example only ! */
/* Following example assumes char is 8-bits */
volatile unsigned char *CHCONFIG0 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0000);
volatile unsigned char *CHCONFIG1 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0001);

DMA Channel Mux (DMA_MUX)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 13-13
 Preliminary

volatile unsigned char *CHCONFIG2 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0002);
volatile unsigned char *CHCONFIG3 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0003);
volatile unsigned char *CHCONFIG4 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0004);
volatile unsigned char *CHCONFIG5 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0005);
volatile unsigned char *CHCONFIG6 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0006);
volatile unsigned char *CHCONFIG7 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0007);
volatile unsigned char *CHCONFIG8 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0008);
volatile unsigned char *CHCONFIG9 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0009);
volatile unsigned char *CHCONFIG10= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000A);
volatile unsigned char *CHCONFIG11= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000B);
volatile unsigned char *CHCONFIG12= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000C);
volatile unsigned char *CHCONFIG13= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000D);
volatile unsigned char *CHCONFIG14= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000E);
volatile unsigned char *CHCONFIG15= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000F);

In File main.c:
#include “registers.h”

:
:

*CHCONFIG2 = 0x00;
*CHCONFIG2 = 0x85;

13.5.2.3 Disabling a Source

A particular DMA source may be disabled by not writing the corresponding source value into any of the
CHCONFIG registers. Some module specific configuration may also be necessary. Refer to the
appropriate section for more details.

13.5.2.4 Switching the Source of a DMA Channel

1. Disable the DMA channel in the DMA and re-configure the channel for the new source.

2. Clear the ENBL and TRIG bits of the DMA channel.

3. Select the source to be routed to the DMA channel. Write to the corresponding CHCONFIG
register, ensuring that the ENBL and TRIG bits are set.

Example 13-3. Switch DMA Channel 8 from DSPI_A transmit to ESCI_A transmit

1. In the DMA configuration registers, disable DMA channel 8 and re-configure it to handle the
DSPI_A transmits.

2. Write 0x00 to CHCONFIG8 (base address + 0x08).

3. Write 0x87 to CHCONFIG8 (base address + 0x08). In this case, setting the TRIG bit has no effect
because channels 8–15 do not support the periodic triggering functionality.

The following code example illustrates steps #2 and #4 above:
In File registers.h:
#define DMAMUX_BASE_ADDR 0xFC084000/* Example only ! */
/* Following example assumes char is 8-bits */
volatile unsigned char *CHCONFIG0 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0000);
volatile unsigned char *CHCONFIG1 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0001);
volatile unsigned char *CHCONFIG2 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0002);
volatile unsigned char *CHCONFIG3 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0003);

DMA Channel Mux (DMA_MUX)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

13-14 Freescale Semiconductor
 Preliminary

volatile unsigned char *CHCONFIG4 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0004);
volatile unsigned char *CHCONFIG5 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0005);
volatile unsigned char *CHCONFIG6 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0006);
volatile unsigned char *CHCONFIG7 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0007);
volatile unsigned char *CHCONFIG8 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0008);
volatile unsigned char *CHCONFIG9 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0009);
volatile unsigned char *CHCONFIG10= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000A);
volatile unsigned char *CHCONFIG11= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000B);
volatile unsigned char *CHCONFIG12= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000C);
volatile unsigned char *CHCONFIG13= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000D);
volatile unsigned char *CHCONFIG14= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000E);
volatile unsigned char *CHCONFIG15= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000F);

In File main.c:
#include “registers.h”

:
:

*CHCONFIG8 = 0x00;
*CHCONFIG8 = 0x87;

13.6 Interrupts
The DMA channel mux does not generate interrupts.

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 14-1
 Preliminary

Chapter 14
Peripheral Bridge (AIPS-lite)

14.1 Introduction
The AIPS-lite acts as an interface between the system bus and lower bandwidth peripherals.

14.1.1 Terminology

14.1.2 Block Diagram

A simplified block diagram of the AIPS-lite illustrates the functionality and interdependence of major
blocks (see Figure 14-1).

Table 14-1. Terms and Acronyms

Terms Description

AHB 2.v6 AMBA AHB-lite version 2.0 with v6 extensions

AMBA AHB-Lite
Interface

A standard AHB-lite bus interface

AIPS AHB 2.v6 to IPS interface unit

IPS IP slave interface—A Freescale Intellectual Property Interface standard used for interfacing
to peripheral devices and control registers (slaves).

Pipeline Act of initiating a bus cycle while another bus cycle is in progress. Thus, the bus can have
multiple bus cycles pending at one time.

Slave A bus slave is a device that responds to a bus transaction, but never initiates a cycle on the
bus.

Transaction A bus transaction consists of an address transfer (address phase) and one or more data
transfer(s) (data phase).

Peripheral Bridge (AIPS-lite)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

14-2 Freescale Semiconductor
 Preliminary

Figure 14-1. AIPS-lite Block Diagram

14.1.3 Features

The AIPS-lite has these major features:

• AIPS-lite supports the IPS slave interface signals. This interface is meant for slave peripherals
only.

• AIPS-lite supports 32-bit IPS peripherals. (Byte, halfword, and word reads and write are supported
to each.)

• Read and write accesses of 32 bits or less require two clocks, provided they do not cross a 32-bit
boundary.

— Read and write accesses that cross a 32-bit boundary are not supported.

• The peripherals connected to the AIPS-lite may be configured in groups to run at less than the
system clock frequency. See Section 3.4.5, “Peripheral Clock Dividers,” in Chapter 3, “System
Clock Description,” for a description of these groups.

14.1.4 Modes of Operation

The AIPS-lite has only one operating mode.

14.2 External Signal Description
The AIPS-lite has no external signals.

14.3 Memory Map and Registers
The AIPS-lite does not contain any user-programmable registers.

14.4 Functional Description

The AIPS-lite serves as an interface between an AHB 2.v6 system bus and the peripheral interface bus. It
functions as a protocol translator.

On-Chip Peripherals

32

AMBA AHB

AMBA AHB

AMBA AHB

MUX Logic

AXBS

32

32

32
Peripheral

Bridge
(AIPS-lite)

Peripheral Bridge (AIPS-lite)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 14-3
 Preliminary

Accesses that fall within the address space of the AIPS-lite are decoded to provide individual module
selects for peripheral devices on the peripheral bus interface.

See the peripherals section of Table 1-7 for a description of which peripherals are allocated to which
16 KB memory space in the AIPS-lite address map.

14.4.1 Read Cycles

Two-clock read accesses are possible with the AIPS-Lite when the reference size is 32 bits or smaller. This
module does not support any type of misaligned read access crossing a 32-bit boundary.

14.4.2 Write Cycles

Two-clock write accesses are possible with the AIPS-Lite when the reference size is 32 bits or smaller.
This module does not support any type of misaligned write access crossing a 32-bit boundary.

Peripheral Bridge (AIPS-lite)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

14-4 Freescale Semiconductor
 Preliminary

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 15-1
 Preliminary

Chapter 15
Crossbar Switch (XBAR)

15.1 Introduction
The multi-port crossbar switch (XBAR) implements a hardware interconnection matrix supporting two
simultaneous connections between six master ports and two slave ports. One slave port is used to access
the system RAM. The other slave port is shared by the secondary flash port (port 1), the EBI, and the AIPS.

The XBAR supports a 32-bit address bus width and a 32-bit data bus width at all master and slave ports.

The XBAR allows for concurrent transactions to occur from any master port to any slave port. It is possible
for both slave ports to be in use at the same time as a result of independent master requests. If a slave port
is simultaneously requested by more than one master port, arbitration logic will select the appropriate
master and grant it ownership of the slave port. By default, requesting masters will be treated with
round-robin priority and will be granted access to a slave port if it is the current higher priority master or
when the current higher priority master has completed its operation. If operating with fixed-priority
arbitration, all other masters requesting that slave port will be stalled until the current higher priority
master completes its transactions. The XBAR can be configured to use fixed priority arbitration by
clearing the MCM_MUDCR[PRI] bit.

Table 15-1 lists the master IDs for each of the possible bus masters on MPC5510.

15.1.1 Block Diagram

A simplified block diagram of the XBAR illustrates the functionality and interdependence of major blocks
(see Figure 15-1).

Table 15-1. Master IDs

Master Master ID XBAR port

e200z1 data
0

m4

e200z1 instr m0

e200z0 1 m5

eDMA 2 m1

FlexRay 3 m2

EBI 4 m3

Nexus 2+ (e200z1) 8 —

Nexus 2+ (e200z0) 9 —

Crossbar Switch (XBAR)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

15-2 Freescale Semiconductor
 Preliminary

Figure 15-1. XBAR Block Diagram

15.1.2 Features

The XBAR has these major features:

• Masters (listed in order of highest to lowest priority when the XBAR is configured for fixed
priority arbitration, the logical master number and physical port connection are provided)

— eDMA (master ID = 2, XBAR m1)

— FlexRay (master ID = 3, XBAR m2)

— EBI master (master ID = 4, XBAR m3)

– The EBI is a master for test purposes only

— Z0 core (master ID = 1, XBAR m5)

— Z1 core—Data (master ID = 0, XBAR m4)

— Z1 core—Instruction (master ID = 0, XBAR m0)

— Nexus 2+ pretending to be Z0 core (master ID = 9)

— Nexus 2+ pretending to be Z1 core (master ID = 8)

• Slaves

— SRAM (XBAR s3)

AXBS-lite

1 to 3

SRAM

EBI

AIPS

Flash Port 1
Z1 Inst 2

FlexRay

Z0

DMA

Z1 Data

EBI 1

Flash Port 0

splitter

MPU

Master ID 0

Master ID 2

Master ID 3

Master ID 4

Master ID 0

Master ID 1

m0

m2

m5

m1

m4

m3

mpu0 mpu1 mpu2

1 to 2
splitter

s3

s0

1 For factory test only.
2 For Z1, all instruction accesses to flash go through port P0. The path from the Z1 Instruction bus through

the 1 to 2 splitter and AXBS port m0 is only used for non-Flash (i.e. RAM and BAM) instruction fetches.

Crossbar Switch (XBAR)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 15-3
 Preliminary

— Shared between flash port 1 / EBI slave / AIPS peripheral bridge (XBAR s0)

• 32-bit address, 32-bit data paths

• Two concurrent transfers between independent master and slave ports

— Only one device on the shared slave port can be accessed at a time. If the shared slave port is
occupied by a master, then another master’s access to a device on the shared slave port will be
blocked, even if the second master is requesting access to one of the other devices on the shared
slave port, until the first master’s access has completed. For example, if the Z0 is accessing the
AIPS, then the Z1 data bus will not be able to access flash port 1 until the Z0 access has
completed.

15.1.3 Modes of Operation

The XBAR has two arbitration modes. See Section 15.4.3.2, “Round-Robin Priority Operation,” and
Section 15.4.3.3, “Fixed Priority Operation.”

15.2 Signal Description
The XBAR has no external signals.

15.3 Memory Map and Registers
The XBAR has no memory mapped registers.

15.4 Functional Description
The main goal of the XBAR is to increase overall system performance by allowing up to two simultaneous
transfers between master ports and slave ports.

When a master makes an access to the XBAR from an idle master state, the access will be immediately
taken by the XBAR. If the targeted slave port of the access is available (i.e. the requesting master is
currently granted ownership of the slave port), the access will be immediately presented on the slave port.
If the targeted slave port of the access is busy or parked on a different master port, the requesting master
will see wait states inserted until the targeted slave port can service the master’s request. The latency in
servicing the request will depend on each master’s priority level and the responding slave’s access time.

A master will be given control of the targeted slave port only after a previous access to a different slave
port has completed, regardless of its priority on the newly targeted slave port. This prevents deadlock from
occurring when a master has an outstanding request to one slave port that has a long response time, has a
pending access to a different slave port, and a lower priority master is also making a request to the same
slave port as the pending access of the higher priority master.

After the master has control of the slave port it is targeting, the master will remain in control of that slave
port until it gives up the slave port by running an IDLE cycle or by leaving that slave port for its next
access. The master can also lose ownership of the slave port when a transfer boundary is reached if the
arbitration logic has selected another master. In this context, the transfer boundary is defined as the
completion of any “single” transfer, the completion of each transfer within an undefined-length burst, the

Crossbar Switch (XBAR)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

15-4 Freescale Semiconductor
 Preliminary

completion of all the transfers of a fixed-length burst or the negation of lock after a series of indivisible
transfers.

When a slave bus is being idled by the XBAR, it is parked on a specific master port. On the MPC5510, the
shared flash/AIPS/EBI slave port is parked on the e200z0, and the SRAM slave port is parked on the last
master to access it.

15.4.1 Master Ports

A master access will be taken if the slave port to which the access decodes is either currently servicing the
master or is parked on the master. In this case the XBAR will be completely transparent and the master’s
access will be immediately seen on the slave bus and no arbitration delays will be incurred. A master
access will be stalled if the access decodes to a slave port that is busy serving another master or parked on
another master.

If the slave port is currently parked on another master and no other master is requesting access to the slave
port, then only one clock of arbitration will be incurred. If the slave port is currently serving another master
and the arbitration logic selects a new master, then the new master gains controls over the slave port as
soon as the data phase of the current access is completed. When operating with fixed-priority arbitration,
if the slave port is currently servicing another master of a higher priority, then the lower-priority master
gains control of the slave port once the other master releases control of the slave port as long as no other
higher priority master is also waiting for the slave port.

A master access is terminated with an error if the access decodes to a location not occupied by a slave port.
This is the only time the XBAR will directly respond with an error response. All other error responses
received by the master are the result of error responses on the slave ports being passed through the XBAR.

15.4.2 Slave Ports

The goal of the XBAR with respect to the slave ports is to keep them 100% saturated when masters are
actively making requests. In order to do this the XBAR must not insert any pipeline stall cycles onto the
slave bus unless absolutely necessary.

There is only one instance when the XBAR will force a stall onto the slave bus when a master is actively
making a request. This occurs when a handoff of bus ownership occurs and there are no wait states from
the slave port. A requesting master which does not own the slave port will be granted access after a one
clock delay.

The only other time the XBAR will have control of the slave port is when no masters are making access
requests to the slave port and the XBAR is forced to park the slave port on a specific master. In this case,
the XBAR will force IDLE for the transfer type.

15.4.3 Arbitration

The XBAR supports two arbitration schemes: a fixed-priority algorithm, and a round-robin fairness
algorithm. The selected arbitration scheme is applied to all slave ports. On MPC5510, the XBAR defaults
to round robin priority arbitration. The priority arbitration scheme is selectable via the MCM

Crossbar Switch (XBAR)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 15-5
 Preliminary

miscellaneous user defined control register as described in Section 16.2.2.4, “Miscellaneous User-Defined
Control Register (MUDCR).”

15.4.3.1 Arbitration During Undefined Length Bursts

The XBAR is explicitly configured to arbitrate after each transfer in an underfined-length burst.

15.4.3.2 Round-Robin Priority Operation

When operating in round-robin mode, each master is assigned a relative priority based on the master
number. This relative priority is compared to the ID of the last master to perform a transfer on the slave
bus. The highest priority requesting master will become owner of the slave bus at the next transfer
boundary (accounting for locked and burst transfers). Priority is based on how far ahead the ID of the
requesting master is to the ID of the last master (ID is defined by master port number).

Once granted access to a slave port, a master may perform as many transfers as desired to that port until
another master makes a request to the same slave port. The next master in line will be granted access to
the slave port at the termination of the current bus access, or on the next clock cycle if the current master
has no pending access request.

As an example of arbitration in round-robin mode, assume the XBAR is implemented with master ports 0,
1, 4, and 5. If the last master of the slave port was master 1, and masters 0, 4, and 5 make simultaneous
requests, they will be serviced in the order 4, 5, and then 0.

Parking may still be used in a round-robin mode, but will not affect the round-robin pointer unless the
parked master performs a transfer. Handoff will occur to the next master in line after one cycle of
arbitration.

Each master port has a high priority request input signal. If a master port's high priority request input is
enabled for a slave port programmed for round-robin mode, that master can force the slave port into fixed
priority mode by asserting its high priority request input while making a request to that particular slave
port. While that (or any enabled) master’s high priority request input is asserted while making an access
attempt to that particular slave port, the slave port will remain in fixed priority mode. After that (or any
enabled) master’s high priority request input is negated, or the master no longer attempts to make accesses
to that particular slave port, the slave port will revert back to round-robin priority mode and the pointer
will be set on the last master to access the slave port.

NOTE
When either the e200z1 or e200z0 request an external or critical interrupt,
or for certain configurations of an active eDMA transfer control descriptor,
a high priority access will be requested that puts the requesting master at the
front of the queue. The ability to enable the high-priority request from the
processors is programmable. This feature is enabled via the assertion of the
appropriate HID1 control bits in the e200 core.

Crossbar Switch (XBAR)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

15-6 Freescale Semiconductor
 Preliminary

15.4.3.3 Fixed Priority Operation

When operating in fixed-priority mode, each master is assigned a unique priority level, as described in
Section 15.1.2, “Features.” If two masters both request access to a slave port, the master with the highest
priority in the selected priority parameter will gain control over the slave port.

Any time a master makes a request to a slave port, the slave port checks to see if the new requesting
master’s priority level is higher than that of the master that currently has control over the slave port (unless
the slave port is in a parked state). The slave port does an arbitration check at every clock cycle to ensure
that the proper master (if any) has control of the slave port.

If the new requesting master’s priority level is higher than that of the master that currently has control of
the slave port the new requesting master will be granted control over the slave port at the next clock cycle.
The exception to this rule is if the master that currently has control over the slave port is running a burst
transfer or a locked transfer. In this case the new requesting master will have to wait until the end of the
burst transfer or locked transfer before it will be granted control of the slave port.

If the new requesting master’s priority level is lower than that of the master that currently has control of
the slave port, the new requesting master will be forced to wait until the master that currently has control
of the slave port either runs an IDLE cycle or runs a non IDLE cycle to a location other than the current
slave port.

15.4.4 Slave Port State Machine

15.4.4.1 Slave Port State Machine Arbitration

The real work in the state machine is determining which master port will be in control of the slave port in
the next clock cycle, the arbitration. Each master is programmed with a fixed 3 bit priority level equivalent
to the master number. A fourth priority bit is derived from the master port’s high priority request inputs on
the master ports, effectively making each master’s priority level a 4 bit field with master port’s high
priority request being the MSB. The XBAR uses these bits in determining priority levels when
programmed for fixed priority mode of operation or when one of the enabled master port’s high priority
request inputs is asserted.

Arbitration always occurs on a clock cycle, but only occurs on edges when a change in mastership will not
violate AHB-lite protocols. Valid arbitration points include any clock cycle in which current bus access is
asserted (provide the master is not performing a burst or locked cycle) and any wait state in which the
master owning the bus indicates a transfer type of IDLE (provided the master is not performing a locked
cycle).

Since arbitration can occur on every clock cycle the slave port masks off all master requests if the current
master is performing a locked transfer or a protected burst transfer, guaranteeing that no matter how low
its priority level it will be allowed to finish its locked or protected portion of a burst sequence.

15.4.4.2 Slave Port State Machine Parking

If no master is currently making a request to the slave port then the slave port is parked on a given master
port. When a slave port is parked on a master and that master accesses the slave port, the master does not

Crossbar Switch (XBAR)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 15-7
 Preliminary

incur an arbitration penalty or delay. However, if any other master wishes to access the slave port, a one
clock arbitration penalty is imposed.

Two types of parking are supported, park on a fixed master and park on the last master. When a slave port
is configured for parking on a fixed master, the ownership returns to the fixed master whenever the slave
port becomes idle. Figure 15-2 illustrates parking on a fixed master. When a slave port is configured for
parking on the last master, ownership remains with the last master to access the slave port until another
master requests an access. Figure 15-3 illustrates parking on the last master.

On MPC5510, the s0 port is “parked on the e200z0” and the s3 port is “parked on last”. This configuration
is hardwired and cannot be changed by software.

Figure 15-2. Parking on a Specific Master1

1. Hardwired and not user changeable configuration for slave port s0.

1 2 3 4 5 6 7 8 9

Master 2

Master 0 None Master 2 None Master 4 None Master 2 None

Arbitration Master 0 Master 2 Idle Arbitration Master 4 Master 2 Idle

IDLE NSEQ NSEQ IDLE IDLE NSEQ NSEQ IDLE

hclk

m0 request

m2 request

m4 request

Park

Highest

AHB Address

htrans

hready

Priority
Requester

phase owner

Crossbar Switch (XBAR)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

15-8 Freescale Semiconductor
 Preliminary

Figure 15-3. Parking on Last Master1

15.5 DMA Requests
There are no DMA requests associated with the XBAR.

15.6 Interrupt Requests
There are no interrupt requests associated with the XBAR.

1. Hardwired and not user changeable configuration for slave port s3.

1 2 3 4 5 6 7 8 9

Master 0 None Master 2 None Master 4 None None

Arbitration Master 0 Arbitration Master 2 Arbitration

IDLE NSEQ IDLE NSEQ IDLE

hclk

m0 request

m2 request

m4 request

Park

Highest

AHB Address

htrans

hready

Priority
Requester

phase owner

Any Except Master 0 Master 0 Master 2 Master 4

NSEQ IDLE

Idle

x y

Master 4
request x Request y

Master 4
request x

Master 4
Request y

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 16-1
 Preliminary

Chapter 16
Miscellaneous Control Module (MCM)

16.1 Introduction
The miscellaneous control module (MCM) provides control functions regarding a software watchdog
timer (SWT) and information on memory errors reported by error-correcting codes (ECC).

The MCM provides a set of registers that configure and report ECC errors for the device including accesses
to RAM and flash memory. The application may configure the device for the types of memory errors to be
reported, and then query a set of read-only status and information registers to identify any errors that have
been signaled.

There are two types of ECC errors: correctable and non-correctable. A correctable ECC error is generated
when only one bit is wrong in a 64-bit doubleword. In this case, it is corrected automatically by hardware
and no flags or other indication is set that the error occurred. A non-correctable ECC error is generated
when two or more bits in a 64-bit doubleword are incorrect. Non-correctable ECC errors cause an
interrupt, and if enabled, additional error details are available in the MCM.

Error correction is implemented on 64 bits of data at a time, using eight bits for ECC for every 64-bit
doubleword. ECC is checked on reads and calculated on writes per the following:

1. 64 bits containing the desired byte / halfword / word or doubleword in memory is read and ECC
checked.

2. If the access is a write, then

— The new byte / halfword / word / doubleword is merged into the 64 bits.

— New ECC bits are calculated.

— The 64 bits and the new ECC bits are written back.

NOTE
Before using the SRAM, it must be initialized, even if the application does
not use ECC reporting, see Chapter 21, “Internal Static RAM (SRAM)” for
more information.

16.1.1 Features

The MCM has these major features:

• Software watchdog timer (SWT) with programmable interrupt response

— The default state after reset of the SWT is enabled

— The SWT count can be optionally held when system debug is enabled

Miscellaneous Control Module (MCM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

16-2 Freescale Semiconductor
 Preliminary

— After reset, the SWT will be clocked by the 16 MHz IRC, with a default timeout of 217 clocks.
The clock source can be changed by the end user to the bus clock (see Chapter 6, “System
Integration Unit (SIU)”). Note: the BAM will write to the SWT timeout, before going into
serial boot mode, and change the timeout for the SWT to 227 clocks.

• Registers for capturing information on memory errors if error-correcting codes (ECC) are
implemented.

16.2 Memory Map and Registers
This section provides a detailed description of all MCM registers.

16.2.1 Module Memory Map

The MCM memory map is shown in Table 16-1 (a graphical layout of the registers is shown in Table 16-2
to better see Reserved areas in the memory map). The address of each register is given as an offset to the
MCM base address. Registers are listed in address order, identified by complete name and mnemonic, and
lists the type of accesses allowed.

Table 16-1. MCM Memory Map

Offset from
MCM_BASE_ADDR

(0xFFF4_0000)
Register Access Reset Value1 Section/Page

0x0000–0x0015 Reserved

0x0016 SWTCR—Software Watchdog Timer (SWT) Control 0x00D1 16.2.2.1/16-4

0x001B SWTSR—SWT Service U 16.2.2.2/16-6

0x001F SWTIR—SWT Interrupt 0x00 16.2.2.3/16-7

0x0024 MUDCR—Miscellaneous User Defined Control
Register

0x8000_0000 16.2.2.4/16-7

0x0043 ECR—ECC Configuration 0x00 16.2.2.5.1/16-8

0x0047 ESR—ECC Status 0x00 16.2.2.5.2/16-9

0x004A EEGR—ECC Error Generation 0x0000 16.2.2.5.3/16-10

0x0050 FEAR—Flash ECC Address U 16.2.2.5.4/16-12

0x0056 FEMR—Flash ECC Master 0x0U 16.2.2.5.5/16-12

0x0057 FEAT—Flash ECC Attributes U 16.2.2.5.6/16-13

0x0058 Reserved

0x005C FEDR—Flash ECC Data U 16.2.2.5.7/16-14

0x0060 REAR—RAM ECC Address U 16.2.2.5.8/16-14

0x0066 REMR—RAM ECC Master 0x0U 16.2.2.5.9/16-15

0x0067 REAT—RAM ECC Attributes U 16.2.2.5.10/16-15

Miscellaneous Control Module (MCM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 16-3
 Preliminary

0x0068 Reserved

0x006C REDR—RAM ECC Data U 16.2.2.5.11/16-16

1 Please refer to the register definition. U=undefined at reset.

Table 16-2. MCM Graphical Memory Map

MCM Offset Register

0x0000–0x00013 Reserved

0x0014 Reserved Software Watchdog Timer Control (SWTCR)

0x0018 Reserved
SWT

 Service (SWTSR)

0x001C Reserved
SWT Interrupt

(SWTIR)

0x0020–0x0023 Reserved

0x0024 Miscellaneous User Defined Control Register (MUDCR)

0x0028–0x003C Reserved

0x0040 Reserved
ECC Configuration

 (ECR)

0x0044 Reserved
ECC Status

(ESR)

0x000048 Reserved ECC Error Generation (EEGR)

0x0050 Flash ECC Address (FEAR)

0x0054 Reserved
Flash ECC Master

(FEMR)
Flash ECC Attributes

(FEAT)

0x0058 Flash ECC Data High (FEDRH)

0x005C Flash ECC Data Low (FEDRL)

0x0060 RAM ECC Address (REAR)

0x0064 Reserved
RAM ECC Master

(REMR)
RAM ECC Attributes

(REAT)

0x0068 Reserved

0x006C RAM ECC Data (REDR)

Table 16-1. MCM Memory Map (continued)

Offset from
MCM_BASE_ADDR

(0xFFF4_0000)
Register Access Reset Value1 Section/Page

Miscellaneous Control Module (MCM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

16-4 Freescale Semiconductor
 Preliminary

16.2.2 Register Descriptions

This section lists the MCM registers in address order and describes the registers and their bit fields.
Attempted accesses to reserved addresses result in an error termination; however, attempted writes to
read-only registers are ignored and do not terminate with an error.

NOTE
Unless noted otherwise, writes to the programming model must match the
size of the register, e.g., an n-bit register only supports n-bit writes, etc.
Attempted writes of a different size than the register width produce an error
termination of the bus cycle and no change to the targeted register.

16.2.2.1 Software Watchdog Timer Control Register (SWTCR)

The software watchdog timer (SWT) prevents system lockup if the software becomes trapped in a loop
with no controlled exit or if a bus transaction becomes hung. The software watchdog timer can be enabled
or disabled through the SWTCR[SWE]. The SWT operates in a separate, asynchronous clock domain and
contains clock domain synchronizers as the communication mechanism between the system clock domain
and the software watchdog timer domain. If enabled, the watchdog timer requires the periodic execution
of a software watchdog servicing sequence. If this periodic servicing action does not occur, the timer
expires, resulting in a watchdog timer interrupt or a hardware reset, as programmed in the
SWTCR[SWRI].

There are three user-defined responses to a time-out:

• The SWTCR[SWRI] can specify the assertion of a watchdog timer interrupt.

• The SWTCR[SWRI] can specify the immediate assertion of a system reset.

• The SWTCR[SWRI] can specify a sequence of responses. Upon the first time-out, the watchdog
timer interrupt is asserted. If the watchdog timer interrupt flag is not cleared before a second
time-out occurs, the watchdog timer asserts the system reset signal in response to the second
time-out. This configuration supports a more graceful response to watchdog time-outs: first
attempting an interrupt to notify the system, if that fails, generating a system reset.

In addition to these three modes of operation, the watchdog timer also supports a windowed mode of
operation. In this mode, the time-out period is divided into four equal segments and the servicing of the
watchdog timer must occur during the last segment, i.e., during the last 25% of the time-out period. If the
watchdog timer is serviced anytime in the first 75% of the time-out period, an immediate system reset
occurs.

Throughout this section, there are many references to the generation of a system reset. The MCM’s
behavior during this process is detailed below. When the watchdog timer expires and SWTCR[SWRI] is
programmed for a reset (either as the initial or secondary response), the MCM generates a watchdog timer
reset output signal, which is driven to the SIU and will cause a system reset.

The watchdog timer logic also sends an interrupt request to the device’s interrupt controller.

Miscellaneous Control Module (MCM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 16-5
 Preliminary

To prevent the watchdog timer from interrupting or resetting, the SWTSR must be serviced by performing
the following sequence:

1. Write 0x55 to the SWTSR.

2. Write 0xAA to the SWTSR.

Both writes must occur in this order before the time-out, but any number of instructions can be executed
between the two writes. This definition allows interrupts and exceptions to occur, if necessary, between
the two writes. The timer value is constantly compared with the time-out period specified by
SWTCR[SWT].

NOTE
Any write to the SWTCR resets the watchdog timer.

There is also a read-only control flag included in the SWTCR to prevent accidental updates to this control
register from changing the desired system configuration.

If the second write occurs at the exact same cycle as the time-out condition is reached, the clear takes
precedence and the time-out response suppressed.

The SWTCR controls the software watchdog timer, time-out periods, and time-out response. The register
can be read or written at any time. At system reset, the software watchdog timer is enabled. See
Figure 16-1 and Table 16-3 for the software watchdog timer control register definition.

Offset: MCM_BASE_ADDR + 0x0016 Access: User read/write

0 1 2 3 4 5 6
1

1 Bit 6 is reserved and must never be set.

7 8 9 10 11 12 13 14 15

R
RO

0 0 0 0 0 0 SW
RWH

SWE SWRI SWT
W

Reset2

2 The SWTCR default reset values may be modified during BAM execution. Please reference the BAM section for more details.

0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1

Figure 16-1. Software Watchdog Timer Control (SWTCR) Register

Table 16-3. SWTCR Field Descriptions

Field Description

RO Read-Only.
0 SWTCR can be read or written.
1 SWTCR can be read only. A system reset is required before this register can again be written. The setting of

this bit is intended to prevent accidental writes of the SWTCR from changing the defined system watchdog
configuration.

bits 1–6 Reserved.

Note: Reserved bit 6 must never be set.

SWRWH Software Watchdog Run While Halted.
0 SWT stops counting if the processor core is halted.
1 SWT continues to count even while the processor core is halted.

Miscellaneous Control Module (MCM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

16-6 Freescale Semiconductor
 Preliminary

16.2.2.2 Software Watchdog Timer Service Register (SWTSR)

• The SWTCR[SWRI] can specify a sequence of responses. Upon the first time-out, the watchdog
timer interrupt is asserted. If the watchdog timer interrupt flag is not cleared before a second
time-out occurs, the watchdog timer asserts the system reset signal in response to the second
time-out. This configuration supports a more graceful response to watchdog time-outs: first
attempting an interrupt to notify the system, if that fails, generating a system reset.

The software service sequence must be performed using the SWTSR as a data register to prevent a SWT
time-out. The service sequence requires two writes to this data register: first a write of 0x55 followed by
a write of 0xAA. Both writes must be performed in this order prior to the SWT time-out, but any number
of instructions or accesses to the SWSR may occur between the two writes. If the SWT has already timed
out, writing to this register has no effect in negating the SWT interrupt or reset. Figure 16-2 illustrates the
SWTSR.

SWE Software Watchdog Enable.
0 SWT is disabled.
1 SWT is enabled.

SWRI Software Watchdog Reset/Interrupt.
00 If a time-out occurs, the SWTIC interrupt flag is set and the SWT generates an interrupt request to the system.

The programming of the interrupt level for the SWT is system-specific. Typically, the highest priority interrupt
level is used to signal the SWT.

01 The first time-out sets the SWTIC watchdog interrupt flag and the SWT generates an interrupt request to the
system. If the SWTIC watchdog timer interrupt flag is not cleared before a second time-out occurs, the
watchdog timer asserts the system reset signal in response to the second time-out.

10 If a time-out occurs, the SWT generates a system reset.
11 The SWT functions in a window mode of operation. For this mode, the servicing of the MSWSR must occur

during the last 25% of the time-out period. Any writes to the MSWSR during the first 75% of the time-out
period generate an immediate system reset. Likewise, if the MSWSR is not serviced during the last 25% of
the time-out period, then a system reset is generated.

SWT Software Watchdog Time-Out Period. Selects the time-out period for the SWT. At reset, this field is 0b10001 (217
clocks).

In general, the value in this field defines the bit position within the 32-bit counter that specifies the time-out period.
Thus, if SWT = n, then the time-out period is 2n system clock cycles. Since it is not practical to operate the
software watchdog timer with very short time-out periods, data values of [0–7] are forced to a value of 8, defining
a minimum time-out period of 256 system clock cycles. The logic which forces the minimum value to 8 does not
affect the contents of this field in the register.

For SWT = n, then time-out period = 2n system clock cycles, n = 8 9,..., 31.

Offset: MCM_BASE_ADDR + 0x001B Access: User read/write

0 1 2 3 4 5 6 7

R
SWSR

W

Reset – – – – – – – –

Figure 16-2. Software Watchdog Timer Service Register (SWTSR)

Table 16-3. SWTCR Field Descriptions (continued)

Field Description

Miscellaneous Control Module (MCM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 16-7
 Preliminary

If the software watchdog timer is enabled (SWTCR[SWE] = 1), then any write of a data value other than
0x55 or 0xAA generates an immediate system reset, regardless of the value in the SWTCR[SWRI] field.

16.2.2.3 SWT Interrupt (SWTIR)

All interrupt requests associated with MCM are collected in the SWTIR register. This includes the
software watchdog timer interrupt.

During the appropriate interrupt service routine handling these requests, the interrupt source contained in
the SWTIR must be explicitly cleared (see Figure 16-3 and Table 16-4).

For certain values of the SWTCR[SWRI] field, the software watchdog timer generates an interrupt
response to a time-out. For these configurations, the SWTIR provides the program-visible interrupt request
from the software watchdog timer.

16.2.2.4 Miscellaneous User-Defined Control Register (MUDCR)

The MUDCR provides a program-visible register. On MPC5510, one bit is implemented. The PRI bit
determines whether the AXBS-lite uses a fixed or round robin priority arbitration scheme for masters
requesting access to AXBS-lite slave ports. See Figure 16-4 and Table 16-5 for the miscellaneous
user-defined control register definition.

Offset: MCM_BASE_ADDR + 0x001F Access: User read/write

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 SWTIC

W w1c

Reset 0 0 0 0 0 0 0 0

Figure 16-3. SWT Interrupt (SWTIR)

Table 16-4. SWTIR Field Descriptions

Field Description

bits 0–6 Reserved.

SWTIC Software Watchdog Interrupt Flag.
0 A SWT interrupt has not occurred.
1 A SWT interrupt has occurred. The interrupt request is negated by writing a 1 to this bit. Writing a 0 has no

effect.

Miscellaneous Control Module (MCM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

16-8 Freescale Semiconductor
 Preliminary

16.2.2.5 ECC Registers

There are a number of registers for the sole purpose of reporting and logging of memory failures. This
section describes those registers.

16.2.2.5.1 ECC Configuration Register (ECR)

The ECC configuration register is an 8-bit control register for specifying which types of memory errors
are reported. In all systems with ECC, the occurrence of a non-correctable error causes the current access
to be terminated with an error condition. In many cases, this error termination is reported directly by the
initiating bus master. However, there are certain situations where the occurrence of this type of
non-correctable error is not reported by the master. Examples include speculative instruction fetches that
are discarded due to a change-of-flow operation and buffered operand writes. The ECC reporting logic in
the MCM provides an optional error interrupt mechanism to signal all non-correctable memory errors. In
addition to the interrupt generation, the MCM captures specific information (memory address, attributes
and data, bus master number, etc.) that may be useful for subsequent failure analysis.

See Figure 16-5 and Table 16-6 for the ECC configuration register definition.

Offset: MCM_BASE_ADDR + 0x0024 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PRI

W

Reset 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 16-4. Miscellaneous User-Defined Control Register (MUDCR)

Table 16-5. MUDCR Field Descriptions

Field Description

PRI AXBS-lite arbitration priority scheme.
0 Fixed priority arbitration.
1 Round Robin priority arbitration.

bits 1–31 Reserved.
Note: These bits can be read and written; however, writing has no effect other than to set or clear the bits.

Reading returns the values written to the bits.

Miscellaneous Control Module (MCM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 16-9
 Preliminary

16.2.2.5.2 ECC Status Register (ESR)

The ECC status register is an 8-bit control register for signaling which types of properly-enabled ECC
events have been detected. The ESR signals the last properly-enabled memory event to be detected. An
ECC interrupt request is asserted if any flag bit is asserted and its corresponding enable bit is asserted.

The MCM allows a maximum of one bit of the ESR to be asserted at any given time. This preserves the
association between the ESR and the corresponding address and attribute registers, which are loaded on
each occurrence of an properly-enabled ECC event. If there is a pending ECC interrupt and another
properly-enabled ECC event occurs, the MCM hardware automatically handles the ESR reporting,
clearing the previous data and loading the new state and thus guaranteeing that only a single flag is
asserted.

To maintain the coherent software view of the reported event, the following sequence in the MCM error
interrupt service routine is suggested:

1. Read the ESR and save it.

2. Read and save all the address and attribute reporting registers.

3. Re-read the ESR and verify the current contents matches the original contents. If the two values
are different, repeat from step one.

4. When the values are identical, write a 1 to the asserted ESR flag to negate the interrupt request.

See Figure 16-6 and Table 16-7 for the ECC status register definition.

Offset: MCM_BASE_ADDR + 0x0043 Access: User read/write

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0
ERNCR EFNCR

W

Reset 0 0 0 0 0 0 0 0

Figure 16-5. ECC Configuration (ECR) Register

Table 16-6. ECR Field Descriptions

Field Description

bits 0–5 Reserved.

ERNCR Enable RAM Non-Correctable Reporting. The occurrence of a non-correctable multi-bit RAM error generates a
MCM ECC interrupt request as signaled by the assertion of ESR[RNCE]. The faulting address, attributes, and
data are also captured in the REAR, RESR, REMR, REAT, and REDR registers.
0 Reporting of non-correctable RAM errors is disabled.
1 Reporting of non-correctable RAM errors is enabled.

EFNCR Enable Flash Non-Correctable Reporting. The occurrence of a non-correctable multi-bit flash error generates a
MCM ECC interrupt request as signaled by the assertion of ESR[FNCE]. The faulting address, attributes, and
data are also captured in the FEAR, FEMR, FEAT, and FEDR registers.
0 Reporting of non-correctable flash errors is disabled.
1 Reporting of non-correctable flash errors is enabled.

Miscellaneous Control Module (MCM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

16-10 Freescale Semiconductor
 Preliminary

If both a flash and RAM non-correctable error occur at the same time, the MCM records the event with
the highest priority, RNCE, and finally FNCE.

16.2.2.5.3 ECC Error Generation Register (EEGR)

The ECC error generation register is a 16-bit control register used to force the generation of single- and
double-bit data inversions in the memories with ECC, most notably the RAM. This capability is provided
for two purposes:

• It provides a software-controlled mechanism for injecting errors into the memories during data
writes to verify the integrity of the ECC logic.

• It provides a mechanism to allow testing of the software service routines associated with memory
error logging.

The intent is to generate errors during data write cycles, such that subsequent reads of the corrupted
address locations generate ECC events, either single-bit corrections or double-bit noncorrectable errors
that are terminated with an error response.

See Figure 16-7 and Table 16-8 for the ECC error generation register definition.

Offset: MCM_BASE_ADDR + 0x0047 Access: User read/write

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 RNCE FNCE

W w1c w1c

Reset 0 0 0 0 0 0 0 0

Figure 16-6. ECC Status (ESR) Register

Table 16-7. ESR Field Descriptions

Field Description

bits 0–5 Reserved.

RNCE RAM Non-Correctable Error. The occurrence of a properly-enabled non-correctable RAM error generates a MCM
ECC interrupt request. The faulting address, attributes, and data are also captured in the REAR, RESR, REMR,
REAT, and REDR registers. To clear this interrupt flag, write a 1 to this bit. Writing a 0 has no effect.
0 No reportable non-correctable RAM error has been detected.
1 A reportable non-correctable RAM error has been detected.

FNCE Flash Non-Correctable Error. The occurrence of a properly-enabled non-correctable flash error generates a MCM
ECC interrupt request. The faulting address, attributes and data are also captured in the FEAR, FEMR, FEAT,
and FEDR registers. To clear this interrupt flag, write a 1 to this bit. Writing a 0 has no effect.
0 No reportable non-correctable flash error has been detected.
1 A reportable non-correctable flash error has been detected.

Offset: MCM_BASE_ADDR + 0x004A Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
FRCNCI FR1NCI

0
ERRBIT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 16-7. ECC Error Generation (EEGR) Register

Miscellaneous Control Module (MCM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 16-11
 Preliminary

NOTE
If an attempt to force a non-correctable inversion (by asserting
EEGR[FRCNCI] or EEGR[FRC1NCI]) and EEGR[ERRBIT] equals 64,
then no data inversion will be generated.

The only allowable values for the 2 control bit enables {FRCNCI, FR1NCI}
are {0,0}, {1,0} and {0,1}. All other values result in undefined behavior.

Table 16-8. EEGR Field Descriptions

Field Description

bits 0–5 Reserved.

FRCNCI Force RAM Continuous Noncorrectable Data Inversions. The assertion of this bit forces the RAM controller to
create 2-bit data inversions, as defined by the bit position specified in ERRBIT and the overall odd parity bit,
continuously on every write operation.
After this bit has been enabled to generate another continuous noncorrectable data inversion, it must be cleared
before being set again to properly re-enable the error generation logic.
The normal ECC generation takes place in the RAM controller, but then the polarity of the bit position defined by
ERRBIT and the overall odd parity bit are inverted to introduce a 2-bit ECC error in the RAM.
0 No RAM continuous 2-bit data inversions are generated.
1 2-bit data inversions in the RAM are continuously generated.

FR1NC Force RAM One Noncorrectable Data Inversions. The assertion of this bit forces the RAM controller to create one
2-bit data inversion, as defined by the bit position specified in ERRBIT and the overall odd parity bit, on the first
write operation after this bit is set.

The normal ECC generation takes place in the RAM controller, but then the polarity of the bit position defined by
ERRBIT and the overall odd parity bit are inverted to introduce a 2-bit ECC error in the RAM.

After this bit has been enabled to generate a single 2-bit error, it must be cleared before being set again to
properly re-enable the error generation logic.
0 No RAM single 2-bit data inversions are generated.
1 One 2-bit data inversion in the RAM is generated.

bit 8 Reserved.

ERRBIT Error Bit Position. The vector defines the bit position, which is complemented to create the data inversion on the
write operation. For the creation of 2-bit data inversions, the bit specified by this field plus the odd parity bit of the
ECC code are inverted.

The RAM controller follows a vector bit ordering scheme where LSB=0. Errors in the ECC syndrome bits can be
generated by setting this field to a value greater than the RAM width. For example, consider a 32-bit RAM
implementation.
The 32-bit ECC approach requires seven code bits for a 32-bit word. For RAM data width of 32 bits, the actual
SRAM (32b data + 7b for ECC= 39 bits. The following association between the ERRBIT field and the corrupted
memory bit is defined:

if ERRBIT = 0, then RAM[0] is inverted
if ERRBIT = 1, then RAM[1] is inverted
...
if ERRBIT = 31, then RAM[31] is inverted
if ERRBIT = 64,then ECC Parity[0] is inverted
if ERRBIT = 65,then ECC Parity[1] is inverted
...
if ERRBIT = 70,then ECC Parity[6] is inverted

Note: For ERRBIT values of 32 to 63 and greater than 70, no bit position is inverted.

Miscellaneous Control Module (MCM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

16-12 Freescale Semiconductor
 Preliminary

16.2.2.5.4 Flash ECC Address Register (FEAR)

The FEAR is a 32-bit register for capturing the address of the last, properly-enabled ECC event in the flash
memory. Depending on the state of the ECC configuration register, an ECC event in the flash causes the
address, attributes and data associated with the access to be loaded into the FEAR, FEMR, FEAT, and
FEDR registers and also the appropriate flag (F1BC or FNCE) in the ECC status register to be asserted.

This register is read-only; any attempted write is ignored. See Figure 16-8 and Table 16-9 for the flash
ECC address register definition.

16.2.2.5.5 Flash ECC Master Number Register (FEMR)

The FEMR is a 4-bit register for capturing the AXBS bus master number of the last, properly-enabled ECC
event in the flash memory. Depending on the state of the ECC Configuration Register, an ECC event in
the flash causes the address, attributes and data associated with the access to be loaded into the FEAR,
FEMR, FEAT, and FEDR registers and also the appropriate flag (FNCE) in the ECC status register to be
asserted.

This register is read-only; any attempted write is ignored. See Figure 16-9 and Table 16-10 for the flash
ECC master number register definition.

Offset: MCM_BASE_ADDR + 0x0050 Access: User read only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FEAR

W

Reset – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R FEAR

W

Reset – – – – – – – – – – – – – – – –

Figure 16-8. Flash ECC Address (FEAR) Register

Table 16-9. FEAR Field Descriptions

Field Description

FEAR Flash ECC Address Register. Contains the faulting access address of the last, properly-enabled flash ECC event.

Offset: MCM_BASE_ADDR + 0x0056 Access: User read only

0 1 2 3 4 5 6 7

R 0 0 0 0 FEMR

W

Reset 0 0 0 0 – – – –

Figure 16-9. Flash ECC Master Number (FEMR) Register

Miscellaneous Control Module (MCM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 16-13
 Preliminary

16.2.2.5.6 Flash ECC Attributes Register (FEAT)

The FEAT is an 8-bit register for capturing the AXBS bus master attributes of the last, properly-enabled
ECC event in the flash memory. Depending on the state of the ECC Configuration Register, an ECC event
in the flash causes the address, attributes and data associated with the access to be loaded into the FEAR,
FEMR, FEAT, and FEDR registers and also the appropriate flag (FNCE) in the ECC status register to be
asserted.

This register is read-only; any attempted write is ignored. See Figure 16-10 and Table 16-11 for the flash
ECC attributes register definition.

Table 16-10. FEMR Field Descriptions

Field Description

bits 0–3 Reserved.

FEMR Flash CC Master Number Register. Contains the AXBS bus master number of the faulting access of the last,
properly-enabled flash ECC event.

Offset: MCM_BASE_ADDR + 0x0057 Access: User read only

0 1 2 3 4 5 6 7

R Write Size Protection

W

Reset – – – – – – – –

Figure 16-10. Flash ECC Attributes (FEAT) Register

Table 16-11. FEAT Field Descriptions

Field Description

Write 0 Read access
1 Write access

Size 000 8-bit access
001 16-bit access
010 32-bit access
011 64-bit access
1xx Reserved

Protection Cache:
0xxx Non-cacheable
1xxx Cacheable
Buffer:
x0xx Non-bufferable
x1xx Bufferable
Mode:
xx0x User mode
xx1x Supervisor mode
Type:
xxx0 I-Fetch
xxx1 Data

Miscellaneous Control Module (MCM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

16-14 Freescale Semiconductor
 Preliminary

16.2.2.5.7 Flash ECC Data Register (FEDR)

The FEDR is a 32-bit register for capturing the data associated with the last, properly-enabled ECC event
in the flash memory. Depending on the state of the ECC configuration register, an ECC event in the flash
causes the address, attributes and data associated with the access to be loaded into the FEAR, FEMR,
FEAT, and FEDR registers and also the appropriate flag (FNCE) in the ECC status register to be asserted.

The data captured on a multi-bit non-correctable ECC error is undefined.

Since the Flash performs ECC checking on a 64-bit double word, the 32-bit word captured in the FEDR
register may not be the word that contained the error.

This register is read-only; any attempted write is ignored. See Figure 16-11 and Table 16-12 for the flash
ECC data register definition.

16.2.2.5.8 RAM ECC Address Register (REAR)

The REAR is a 32-bit register for capturing the address of the last, properly-enabled ECC event in the
RAM memory. Depending on the state of the ECC configuration register, an ECC event in the RAM causes
the address, attributes and data associated with the access to be loaded into the REAR, RESR, REMR,
REAT, and REDR registers and also the appropriate flag (RNCE) in the ECC status register to be asserted.

This register is read-only; any attempted write is ignored. See Figure 16-12 and Table 16-13 for the RAM
ECC address register definition.

Offset: MCM_BASE_ADDR + 0x005C Access: User read only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FEDR

W

Reset – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R FEDR

W

Reset – – – – – – – – – – – – – – – –

Figure 16-11. Flash ECC Data (FEDR) Register

Table 16-12. FEDR Field Descriptions

Field Description

FEDR Flash ECC Data Register. Contains the data associated with the faulting access of the last, properly-enabled
flash ECC event. The register contains the data value taken directly from the data bus.

Miscellaneous Control Module (MCM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 16-15
 Preliminary

16.2.2.5.9 RAM ECC Master Number Register (REMR)

The REMR is a 4-bit register for capturing the AXBS bus master number of the last, properly-enabled ECC
event in the RAM memory. Depending on the state of the ECC configuration register, an ECC event in the
RAM causes the address, attributes, and data associated with the access to be loaded into the REAR,
RESR, REMR, REAT, and REDR registers and also the appropriate flag (RNCE) in the ECC status register
to be asserted.

This register is read-only; any attempted write is ignored. See Figure 16-13 and Table 16-14 for the RAM
ECC master number register definition.

16.2.2.5.10 RAM ECC Attributes Register (REAT)

The REAT is an 8-bit register for capturing the AXBS bus master attributes of the last, properly-enabled
ECC event in the RAM memory. Depending on the state of the ECC configuration register, an ECC event

Offset: MCM_BASE_ADDR + 0x0060 Access: User read only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R REAR

W

Reset – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R REAR

W

Reset – – – – – – – – – – – – – – – –

Figure 16-12. RAM ECC Address (REAR) Register

Table 16-13. REAR Field Descriptions

Field Description

REAR RAM ECC Address Register. Contains the faulting access address of the last, properly-enabled RAM ECC event.

Offset: MCM_BASE_ADDR + 0x0066 Access: User read only

0 1 2 3 4 5 6 7

R 0 0 0 0 REMR

W

Reset 0 0 0 0 – – – –

Figure 16-13. RAM ECC Master Number (REMR) Register

Table 16-14. REMR Field Descriptions

Field Description

bits 0–3 Reserved

REMR RAM ECC Master Number Register. Contains the AXBS bus master number of the faulting access of the last,
properly-enabled RAM ECC event.

Miscellaneous Control Module (MCM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

16-16 Freescale Semiconductor
 Preliminary

in the RAM causes the address, attributes, and data associated with the access to be loaded into the REAR,
RESR, REMR, REAT, and REDR registers and also the appropriate flag (RNCE) in the ECC status register
to be asserted.

This register is read-only; any attempted write is ignored. See Figure 16-14 and Table 16-15 for the RAM
ECC attributes register definition.

16.2.2.5.11 RAM ECC Data Register (REDR)

The REDR is a 32-bit register for capturing the data associated with the last, properly-enabled ECC event
in the RAM memory. Depending on the state of the ECC configuration register, an ECC event in the RAM
causes the address, attributes, and data associated with the access to be loaded into the REAR, RESR,
REMR, REAT, and REDR registers and also the appropriate flag (RNCE) in the ECC status register to be
asserted.

The data captured on a multi-bit non-correctable ECC error is undefined.

This register is read-only; any attempted write is ignored. See Figure 16-15 and Table 16-16 for the RAM
ECC data register definition.

Offset: MCM_BASE_ADDR + 0x0067 Access: User read only

0 1 2 3 4 5 6 7

R Write Size Protection

W

Reset – – – – – – – –

Figure 16-14. RAM ECC Attributes (REAT) Register

Table 16-15. REAT Field Descriptions

Field Description

Write 0 Read access
1 Write access

Size 000 8-bit access
001 16-bit access
010 32-bit access
011 64-bit access
1xx Reserved

Protection Cache:
0xxx Non-cacheable
1xxx Cacheable
Buffer:
x0xx Non-bufferable
x1xx Bufferable
Mode:
xx0x User mode
xx1x Supervisor mode
Type:
xxx0 I-Fetch
xxx1 Data

Miscellaneous Control Module (MCM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 16-17
 Preliminary

16.3 Functional Description

16.3.1 High-Priority Enables

The MCM contains an output to each core which are used with the AXBS-lite to elevate the priority of
interrupt service routine accesses in the system bus controllers’ arbitration schemes.

The core processors are configured to support critical and/or external interrupts. Furthermore, each
processor can be configured to employ priority elevation on critical and/or external interrupt events.
Critical interrupts come from outside the device and are routed directly to the processor’s critical interrupt
input. External interrupts are routed through the interrupt controller. In addition to the interrupt notification
signals, various processor-specific configuration flags from the processor’s machine check register
(MCR[ee,ce]) and the hardware implementation register (HID1) are sent to the MCM to determine when
interrupt servicing is enabled and when high-priority elevation should be enabled. If the corresponding
processor is configured to allow high-priority elevation on critical interrupt events, the MCM generates
the high-priority signal upon critical interrupt detection and holds it active throughout the duration of
interrupt servicing. If the corresponding processor is configured to allow high-priority elevation on
external interrupt events, the MCM generates the high-priority signal upon external interrupt detection and
holds it active throughout the duration of interrupt servicing.

Be careful when using the priority elevation as it can enable a master to starve the rest of the masters in
the system. Reference Chapter 15, “Crossbar Switch (XBAR),” for information on priority elevation and
the Z1 and Z0 Core Reference Manual for information on the use of the interrupts.

Offset: MCM_BASE_ADDR + 0x006C Access: User read only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R REDR

W

Reset – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R REDR

W

Reset – – – – – – – – – – – – – – – –

Figure 16-15. RAM ECC Data (REDR) Register

Table 16-16. REDR Field Descriptions

Field Description

REDR RAM ECC Data Register. Contains the data associated with the faulting access of the last, properly-enabled RAM
ECC event. The register contains the data value taken directly from the data bus.

Miscellaneous Control Module (MCM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

16-18 Freescale Semiconductor
 Preliminary

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 17-1
 Preliminary

Chapter 17
Memory Protection Unit (MPU)

17.1 Introduction
The memory protection unit (MPU) provides hardware access control for all memory references generated
in a device. Using pre-programmed region descriptors that define memory spaces and their associated
access rights, the MPU concurrently monitors all system bus transactions and evaluates the
appropriateness of each transfer. Memory references with sufficient access control rights are allowed to
complete, but references that are not mapped to any region descriptor or have insufficient rights are
terminated with a protection error response.

The MPU implements a set of program-visible region descriptors that monitor all system bus addresses.
The result is a hardware structure with a two-dimensional connection matrix, where the region descriptors
represent one dimension and the individual system bus addresses and attributes are the second dimension.

17.1.1 Block Diagram

A simplified block diagram illustrates how the MPU block is connected to the three AXBS-lite slave ports,
one of them being the shared slave port splitter (see Figure 17-1).

Memory Protection Unit (MPU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

17-2 Freescale Semiconductor
 Preliminary

Figure 17-1. MPU Connections to AXBS-lite

17.1.2 Features

The MPU has these major features:

• Support for 16 memory region descriptors, each 128 bits in size

— Specification of start and end addresses provide granularity for region sizes from 32 bytes to
4 GB

— MPU is invalid at reset, thus no access restrictions are enforced

— Two types of access control definitions: two processor core bus masters (e200z1 and e200z0)
support the traditional {read, write, execute} permissions with independent definitions for
supervisor and user mode accesses; the remaining three non-core bus masters (DMA, FlexRay,
and EBI) support {read, write} attributes

— Automatic hardware maintenance of the region descriptor valid bit removes issues associated
with maintaining a coherent image of the descriptor

— Alternate memory view of the access control word for each descriptor provides an efficient
mechanism to dynamically alter the access rights of a descriptor only

AXBS-lite

1 to 3

SRAM

EBI

AIPS

Flash Port 1
Z1 Inst 2

FlexRay

Z0

DMA

Z1 Data

EBI 1

Flash Port 0

splitter

MPU

Master ID 0

Master ID 2

Master ID 3

Master ID 4

Master ID 0

Master ID 1

m0

m2

m5

m1

m4

m3

mpu0 mpu1 mpu2

1 to 2
splitter

s3

s0

1 For factory test only.
2 For Z1, all instruction accesses to flash go through port P0. The path from the Z1 Instruction bus through

the 1 to 2 splitter and AXBS port m0 is only used for non-Flash (i.e. RAM and BAM) instruction fetches.

Memory Protection Unit (MPU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 17-3
 Preliminary

— For overlapping region descriptors, priority is given to permission granting over access
denying as this approach provides more flexibility to system software

• Support for three AHB slave port connections

— Flash port 0, shared flash port1/EBI/AIPS, and system RAM.

— MPU hardware monitors every AHB slave port access using the pre-programmed memory
region descriptors

— An access protection error is detected if a memory reference does not hit in any memory region
or the reference is flagged as illegal in all memory regions where it does hit; in the event of an
access error, the AHB reference is terminated with an error response and the MPU inhibits the
bus cycle being sent to the targeted slave device

— 64-bit error registers, one for each AHB slave port, capture the last faulting address, attributes,
and detail information

17.1.3 Modes of Operation

The MPU does not support any special modes of operation.

17.2 Signal Description
The MPU does not include any external signals.

17.3 Memory Map and Registers
This section provides a detailed description of all MPU registers.

17.3.1 Module Memory Map

The MPU memory map is shown in Table 17-1. The address of each register is given as an offset to the
MPU base address. Registers are listed in address order, identified by complete name and mnemonic, and
list the type of accesses allowed.

The MPU registers can be referenced using 32-bit (word) accesses only. Attempted references using
different access sizes, to undefined (reserved) addresses, or with a non-supported access type (for example,
a write to a read-only register or a read of a write-only register) generate an error termination.

Table 17-1. MPU Memory Map

Offset from
MPU_BASE

(0xFFF1_4000)
Register Access Reset Value Section/Page

0x0000 MPU_CESR — MPU control/error status register R/W 0x0080_3200 17.3.2.1/17-5

0x0004–0x000F Reserved

0x0010 MPU_EAR0 — MPU error address register, slave port 0 R —1 17.3.2.2/17-6

0x0014 MPU_EDR0 — MPU error detail register, slave port 0 R —1 17.3.2.3/17-7

0x0018 MPU_EAR1 — MPU error address register, slave port 1 R —1 17.3.2.2/17-6

Memory Protection Unit (MPU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

17-4 Freescale Semiconductor
 Preliminary

0x001C MPU_EDR1 — MPU error detail register, slave port 1 R —1 17.3.2.3/17-7

0x0020 MPU_EAR2 — MPU error address register, slave port 2 R —1 17.3.2.2/17-6

0x0024 MPU_EDR2 — MPU error detail register, slave port 1 R —1 17.3.2.3/17-7

0x0028–0x03FF Reserved

0x0400 MPU_RGD0 — MPU region descriptor 0 R/W —1 17.3.2.4/17-7

0x0410 MPU_RGD1 — MPU region descriptor 1 R/W —1 17.3.2.4/17-7

0x0420 MPU_RGD2 — MPU region descriptor 2 R/W —1 17.3.2.4/17-7

0x0430 MPU_RGD3 — MPU region descriptor 3 R/W —1 17.3.2.4/17-7

0x0440 MPU_RGD4 — MPU region descriptor 4 R/W —1 17.3.2.4/17-7

0x0450 MPU_RGD5 — MPU region descriptor 5 R/W —1 17.3.2.4/17-7

0x0460 MPU_RGD6 — MPU region descriptor 6 R/W —1 17.3.2.4/17-7

0x0470 MPU_RGD7 — MPU region descriptor 7 R/W —1 17.3.2.4/17-7

0x0480 MPU_RGD8 — MPU region descriptor 8 R/W —1 17.3.2.4/17-7

0x0490 MPU_RGD9 — MPU region descriptor 9 R/W —1 17.3.2.4/17-7

0x04A0 MPU_RGD10 — MPU region descriptor 10 R/W —1 17.3.2.4/17-7

0x04B0 MPU_RGD11 — MPU region descriptor 11 R/W —1 17.3.2.4/17-7

0x04C0 MPU_RGD12 — MPU region descriptor 12 R/W —1 17.3.2.4/17-7

0x04D0 MPU_RGD13 — MPU region descriptor 13 R/W —1 17.3.2.4/17-7

0x04E0 MPU_RGD14 — MPU region descriptor 14 R/W —1 17.3.2.4/17-7

0x04F0 MPU_RGD15 — MPU region descriptor 15 R/W —1 17.3.2.4/17-7

0x00500–0x07FF Reserved

0x0800 MPU_RGDAAC0 — MPU RGD alternate access control 0 W —1 17.3.2.5/17-12

0x0804 MPU_RGDAAC1 — MPU RGD alternate access control 1 W —1 17.3.2.5/17-12

0x0808 MPU_RGDAAC2 — MPU RGD alternate access control 2 W —1 17.3.2.5/17-12

0x080C MPU_RGDAAC3 — MPU RGD alternate access control 3 W —1 17.3.2.5/17-12

0x0810 MPU_RGDAAC4 — MPU RGD alternate access control 4 W —1 17.3.2.5/17-12

0x0814 MPU_RGDAAC5 — MPU RGD alternate access control 5 W —1 17.3.2.5/17-12

0x0818 MPU_RGDAAC6 — MPU RGD alternate access control 6 W —1 17.3.2.5/17-12

0x081C MPU_RGDAAC7 — MPU RGD alternate access control 7 W —1 17.3.2.5/17-12

0x0820 MPU_RGDAAC8 — MPU RGD alternate access control 8 W —1 17.3.2.5/17-12

0x0824 MPU_RGDAAC9 — MPU RGD alternate access control 9 W —1 17.3.2.5/17-12

Table 17-1. MPU Memory Map (continued)

Offset from
MPU_BASE

(0xFFF1_4000)
Register Access Reset Value Section/Page

Memory Protection Unit (MPU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 17-5
 Preliminary

17.3.2 Register Descriptions

This section lists the MPU registers in address order and describes the registers and their bit fields.

17.3.2.1 MPU Control/Error Status Register (MPU_CESR)

The MPU_CESR provides one byte of error status and three bytes of configuration information. A global
MPU enable/disable bit is also included in this register.

0x0828 MPU_RGDAAC10 — MPU RGD alternate access control 10 W —1 17.3.2.5/17-12

0x082C MPU_RGDAAC11 — MPU RGD alternate access control 11 W —1 17.3.2.5/17-12

0x0830 MPU_RGDAAC12 — MPU RGD alternate access control 12 W —1 17.3.2.5/17-12

0x0834 MPU_RGDAAC13 — MPU RGD alternate access control 13 W —1 17.3.2.5/17-12

0x0838 MPU_RGDAAC14 — MPU RGD alternate access control 14 W —1 17.3.2.5/17-12

0x083C MPU_RGDAAC15 — MPU RGD alternate access control 15 W —1 17.3.2.5/17-12

0x0840–0x08FF Reserved

1 See register definition.

Offset: MPU_BASE+0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R MPERR1

1 Each MPERR bit can be cleared by writing a one to the bit location.

0 0 0 0 0 1 0 0 0 HRL NSP NRGD 0 0 0 0 0 0 0 V
L
D

W w1c

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0

Figure 17-2. MPU Control/Error Status Register (MPU_CESR)

Table 17-1. MPU Memory Map (continued)

Offset from
MPU_BASE

(0xFFF1_4000)
Register Access Reset Value Section/Page

Memory Protection Unit (MPU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

17-6 Freescale Semiconductor
 Preliminary

17.3.2.2 MPU Error Address Register, MPU Port 0 to 2 (MPU_EARn)

When the MPU detects an access error on MPU port n, the 32-bit reference address is captured in this
read-only register and the corresponding bit in the MPU_CESR[MPERR] field set. Additional information
about the faulting access is captured in the corresponding MPU_EDRn register at the same time.

Table 17-2. MPU_CESR Field Descriptions

Field Description

MPERR MPU Port n Error, where the MPU port number matches the bit number. Each bit in this read-only field represents a
flag maintained by the MPU for signaling the presence of a captured error contained in the MPU_EARn and
MPU_EDRn registers. The individual bit is set when the hardware detects an error and records the faulting address
and attributes. It is cleared when the corresponding bit is written to a logical one. If another error is captured at the
exact same cycle as a write of a logical one, this flag remains set. A find-first-one instruction (or equivalent) can be
used to detect the presence of a captured error.
0 The corresponding MPU_EARn/MPU_EDRn registers do not contain an unread captured error
1 The corresponding MPU_EARn/MPU_EDRn registers do contain an unread captured error

Note: Bit 0 indicates a flash port 0 access protection error, bit 1 a combined Flash Port 1/EBI/peripheral bridge
protection error, and bit 3 an SRAM protection error.

HRL Hardware Revision Level. This 4-bit read-only field specifies the MPU’s hardware and definition revision level. It can
be read by software to determine the functional definition of the module. This field reads as 0 on MPC5510.

NSP Number of MPU/Slave Ports. This 4-bit read-only field specifies the number of MPU/slave ports [1–8] connected to
the MPU.

This field reads as 0b0011 on MPC5510.

NRGD Number of Region Descriptors. This 4-bit read-only field specifies the number of region descriptors implemented in
the MPU. The defined encodings include:
0000 8 region descriptors
0010 16 region descriptors
This field reads as 0b0010 on MPC5510

VLD Valid. This bit provides a global enable/disable for the MPU.
0 The MPU is disabled
1 The MPU is enabled

While the MPU is disabled, all accesses from all bus masters are allowed.

Offset: MPU_BASE + 0x0010 (MPU_EAR0)

MPU_BASE + 0x0018 (MPU_EAR1)

MPU_BASE + 0x0020 (MPU_EAR2)

Access: User read only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EADDR

W

Reset –

Figure 17-3. MPU Error Address Register, Slave Port n (MPU_EARn)

Table 17-3. MPU_EARn Field Descriptions

Field Description

EADDR Error Address. This read-only field is the reference address from slave port n that generated the access error.

Memory Protection Unit (MPU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 17-7
 Preliminary

17.3.2.3 MPU Error Detail Register, MPU Port 0 to 2 (MPU_EDRn)

When the MPU detects an access error on MPU port n, 32 bits of error detail are captured in this read-only
register and the corresponding bit in the MPU_CESR[MPERR] field set. Information on the faulting
address is captured in the corresponding MPU_EARn register at the same time. A read of the MPU_EDRn
register clears the corresponding bit in the MPU_CESR[MPERR] field.

17.3.2.4 MPU Region Descriptor n (MPU_RGDn)

Each 128-bit (16 byte) region descriptor specifies a given memory space and the access attributes
associated with that space. The descriptor definition is fundamental to the operation of the MPU.

Offset: MPU_BASE + 0x00014 (MPU_EDR0)

MPU_BASE + 0x001C (MPU_EDR1)

MPU_BASE + 0x0024 (MPU_EDR2)

Access: User read only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
EACD EPID EMN EATTR

E
R
W

W

Reset –

Figure 17-4. MPU Error Detail Register, Slave Port n (MPU_EDRn)

Table 17-4. MPU_EDRn Field Descriptions

Field Description

EACD Error Access Control Detail. This 16-bit read-only field implements one bit per region descriptor and is an indication
of the region descriptor hit logically-ANDed with the access error indication. The MPU performs a
reference-by-reference evaluation to determine the presence/absence of an access error. When an error is detected,
the hit-qualified access control vector is captured in this field.

If the MPU_EDRn register contains a captured error and the EACD field is all zeroes, this signals an access that did
not hit in any region descriptor. All non-zero EACD values signal references that hit in a region descriptor(s), but failed
due to a protection error as defined by the specific set bits.

EPID Error Process Identification. This 8-bit read-only field records the process identifier of the faulting reference. The
process identifier is typically driven by processor cores only; for other bus masters, this field is cleared.

EMN Error Master Number. This 4-bit read-only field records the logical master number of the faulting reference. This field
is used to determine the bus master that generated the access error.

EATTR Error Attributes. This 3-bit read-only field records attribute information about the faulting reference. The supported
encodings are defined as:
000 User mode, instruction access
001 User mode, data access
010 Supervisor mode, instruction access
011 Supervisor mode, data access

All other encodings are reserved. For non-core bus masters, the access attribute information is typically wired to
supervisor, data (0b011).

ERW Error Read/Write. This 1-bit read-only field signals the access type (read, write) of the faulting reference.
0 Read
1 Write

Memory Protection Unit (MPU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

17-8 Freescale Semiconductor
 Preliminary

The region descriptors are organized sequentially in the MPU’s programming model and each of the four
32-bit words are detailed in the subsequent sections.

17.3.2.4.1 MPU Region Descriptor n, Word 0 (MPU_RGDn.Word0)

The first word of the MPU region descriptor defines the 0-modulo-32 byte start address of the memory
region. Writes to this word clear the region descriptor’s valid bit.

17.3.2.4.2 MPU Region Descriptor n, Word 1 (MPU_RGDn.Word1)

The second word of the MPU region descriptor defines the 31-modulo-32 byte end address of the memory
region. Writes to this word clear the region descriptor’s valid bit.

17.3.2.4.3 MPU Region Descriptor n, Word 2 (MPU_RGDn.Word2)

The third word of the MPU region descriptor defines the access control rights of the memory region. The
access control privileges are dependent on two broad classifications of bus masters. Bus masters 0–3 are
typically reserved for processor cores. The corresponding access control is a 6-bit field defining separate
privilege rights for user and supervisor mode accesses as well as the optional inclusion of a process
identification field within the definition. Bus masters 4–7 are typically reserved for data movement
engines and their capabilities are limited to separate read and write permissions. For these fields, the bus
master number refers to the logical master number defined as the AHB hmaster[3:0]signal.

Offset: MPU_BASE + 0x400 + (16*n) + 0x0 (MPU_RGDn.Word0) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SRTADDR 0 0 0 0 0

W

Reset – 0 0 0 0 0

Figure 17-5. MPU Region Descriptor, Word 0 Register (MPU_RGDn.Word0)

Table 17-5. MPU_RGDn.Word0 Field Descriptions

Field Description

SRTADDR Start Address. This field defines the most significant bits of the 0-modulo-32 byte start address of the memory region.

Offset: MPU_BASE + 0x400 + (16*n) + 0x4 (MPU_RGDn.Word1) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R ENDADDR 1 1 1 1 1

W

Reset – 1 1 1 1 1

Figure 17-6. MPU Region Descriptor, Word 1 Register (MPU_RGDn.Word1)

Table 17-6. MPU_RGDn.Word1 Field Descriptions

Field Description

ENDADDR End Address. This field defines the most significant bits of the 31-modulo-32 byte end address of the memory region.
There are no hardware checks to verify that ENDADDR > SRTADDR; the software must properly load these region
descriptor fields.

Memory Protection Unit (MPU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 17-9
 Preliminary

For the processor privilege rights, there are three flags associated with this function: {read, write, execute}.
In this context, these flags follow the traditional definition:

• Read (r) permission refers to the ability to access the referenced memory address using an operand
(data) fetch.

• Write (w) permission refers to the ability to update the referenced memory address using a store
(data) instruction.

• Execute (x) permission refers to the ability to read the referenced memory address using an
instruction fetch.

The evaluation logic defines the processor access type based on multiple AHB signals: read or write as
specified by the hwrite signal and the low-order two bits of hprot[1:0], which identify a data reference
versus an instruction fetch and the operating mode (supervisor, user) of the requesting processor.

For non-processor data movement engines (bus masters 4–7), the evaluation logic simply uses hwrite to
determine if the access is a read or write. The hprot[1:0] signal is ignored for these masters.

Writes to this word clear the region descriptor’s valid bit. Because it is also expected that system software
may adjust only the access controls within a region descriptor (MPU_RGDn.Word2) as different tasks
execute, an alternate programming view of this 32-bit entity is provided. If only the access controls are
being updated, this operation should be performed by writing to MPU_RGDAACn (alternate access
control n) as stores to these locations do not affect the descriptor’s valid bit.

Offset: MPU_BASE + 0x400 + (16*n) + 0x8 (MPU_RGDn.Word2) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
M4RE M4WE M3PE M3SM

M3UM
M2PE M2SM

W r w x

Reset – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
M2SM

M2UM
M1PE M1SM

M1UM
M0PE M0SM

M0UM

W r w x r w x r w x

Reset – – – – – – – – – – – – – – – –

Note: Refer to Figure 17-1 to see the Master ID assignments.

Figure 17-7. MPU Region Descriptor, Word 2 Register (MPU_RGDn.Word2)

Table 17-7. MPU_RGDn.Word2 Field Descriptions

Field Description

bits 0–5 Reserved.

Note: These bits must never be set.

M4RE Bus Master ID 4 Read Enable. If set, this flag allows bus master ID 4 to perform read operations. If cleared, any
attempted read by bus master ID 4 terminates with an access error and the read is not performed.

Note: Bus Master 4 (EBI) is available for Factory Test only.

Memory Protection Unit (MPU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

17-10 Freescale Semiconductor
 Preliminary

M4WE Bus Master ID 4 Write Enable. If set, this flag allows bus master ID 4 to perform write operations. If cleared, any
attempted write by bus master ID 4 terminates with an access error and the write is not performed.

Note: Bus Master 4 (EBI) is available for Factory Test only.

M3PE This be can be read and written to either a 0 or 1, but the MPU will behave as if this bit was permanently tied to 0,
so that the PID is not part of the region hit evaluation.

M3SM Bus Master ID 3 Supervisor Mode Access Control. This 2-bit field defines the access controls for bus master ID 3
when operating in supervisor mode. The M3SM field is defined as:
00 r, w, x = read, write and execute allowed
01 r, –, x = read and execute allowed, but no write
10 r, w, – = read and write allowed, but no execute
11 Same access controls as that defined by M3UM for user mode

M3UM Bus Master ID 3 User Mode Access Control. This 3-bit field defines the access controls for bus master ID 3 when
operating in user mode. The M3UM field consists of three independent bits, enabling read, write and execute
permissions: {r,w,x}. If set, the bit allows the given access type to occur; if cleared, an attempted access of that
mode may be terminated with an access error (if not allowed by any other descriptor) and the access not performed.

M2PE This bit can be read and written to either a 0 or 1, but the MPU will behave as if this bit was permanently tied to 0,
so that the PID is not part of the region hit evaluation.

M2SM Bus Master ID 2 Supervisor Mode Access Control. This 2-bit field defines the access controls for bus master ID 2
when operating in supervisor mode. The M2SM field is defined as:
00 r, w, x = read, write and execute allowed
01 r, –, x = read and execute allowed, but no write
10 r, w, – = read and write allowed, but no execute
11 Same access controls as that defined by M2UM for user mode

M2UM Bus Master ID 2 User Mode Access Control. This 3-bit field defines the access controls for bus master ID 2 when
operating in user mode. The M2UM field consists of three independent bits, enabling read, write, and execute
permissions: {r,w,x}. If set, the bit allows the given access type to occur; if cleared, an attempted access of that
mode may be terminated with an access error (if not allowed by any other descriptor) and the access not performed.

M1PE Bus Master ID 1 Process Identifier Enable. If set, this flag specifies that the process identifier and mask defined in
MPU_RGDn.Word3 are to be included in the region hit evaluation. If cleared, then the region hit evaluation does not
include the process identifier.

M1SM Bus Master ID 1 Supervisor Mode Access Control. This 2-bit field defines the access controls for bus master ID 1
when operating in supervisor mode. The M1SM field is defined as:
00 r, w, x = read, write and execute allowed
01 r, –, x = read and execute allowed, but no write
10 r, w, – = read and write allowed, but no execute
11 Same access controls as that defined by M1UM for user mode

M1UM Bus Master ID 1 User Mode Access Control. This 3-bit field defines the access controls for bus master ID 1 when
operating in user mode. The M1UM field consists of three independent bits, enabling read, write, and execute
permissions: {r,w,x}. If set, the bit allows the given access type to occur; if cleared, an attempted access of that
mode may be terminated with an access error (if not allowed by any other descriptor) and the access not performed.

M0PE Bus Master ID 0 Process Identifier Enable. If set, this flag specifies that the process identifier and mask defined in
MPU_RGDn.Word3 are to be included in the region hit evaluation. If cleared, the region hit evaluation does not
include the process identifier.

Table 17-7. MPU_RGDn.Word2 Field Descriptions (continued)

Field Description

Memory Protection Unit (MPU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 17-11
 Preliminary

17.3.2.4.4 MPU Region Descriptor n, Word 3 (MPU_RGDn.Word3)

The fourth word of the MPU region descriptor contains the optional process identifier and mask, plus the
region descriptor’s valid bit.

Because the region descriptor is a 128-bit entity, there are potential coherency issues as this structure is
being updated because multiple writes are required to update the entire descriptor. Accordingly, the MPU
hardware assists in the operation of the descriptor valid bit to prevent incoherent region descriptors from
generating spurious access errors. In particular, it is expected that a complete update of a region descriptor
is typically done with sequential writes to MPU_RGDn.Word0, then MPU_RGDn.Word1, ... and
MPU_RGDn.Word3. The MPU hardware automatically clears the valid bit on any writes to words {0,1,2}
of the descriptor. Writes to this word set/clear the valid bit in a normal manner.

Because it is also expected that system software may adjust the access controls within a region descriptor
(MPU_RGDn.Word2) only as different tasks execute, an alternate programming view of this 32-bit entity
is provided. If only the access controls are being updated, this operation must be performed by writing to
MPU_RGDAACn (alternate access control n) as stores to these locations do not affect the descriptor’s
valid bit.

M0SM Bus Master ID 0 Supervisor Mode Access Control. This 2-bit field defines the access controls for bus master ID 0
when operating in supervisor mode. The M0SM field is defined as:
00 r, w, x = read, write and execute allowed
01 r, –, x = read and execute allowed, but no write
10 r, w, – = read and write allowed, but no execute
11 Same access controls as that defined by M0UM for user mode

M0UM Bus Master ID 0 User Mode Access Control. This 3-bit field defines the access controls for bus master ID 0 when
operating in user mode. The M0UM field consists of three independent bits, enabling read, write, and execute
permissions: {r,w,x}. If set, the bit allows the given access type to occur; if cleared, an attempted access of that
mode may be terminated with an access error (if not allowed by any other descriptor) and the access not performed.

Offset: MPU_BASE + 0x400 + (16*n) + 0xc (MPU_RGDn.Word3) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PID PIDMASK

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 V
L
D

W

Reset – – – – – – – – – – – – – – – – 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-8. MPU Region Descriptor, Word 3 Register (MPU_RGDn.Word3)

Table 17-7. MPU_RGDn.Word2 Field Descriptions (continued)

Field Description

Memory Protection Unit (MPU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

17-12 Freescale Semiconductor
 Preliminary

17.3.2.5 MPU Region Descriptor Alternate Access Control n (MPU_RGDAACn)

As noted in Section 17.3.2.4.3, “MPU Region Descriptor n, Word 2 (MPU_RGDn.Word2),” it is expected
that because system software may adjust the access controls within a region descriptor
(MPU_RGDn.Word2) only as different tasks execute, an alternate programming view of this 32-bit entity
is desired. If only the access controls are being updated, this operation should be performed by writing to
MPU_RGDAACn (alternate access control n) as stores to these locations do not affect the descriptor’s
valid bit.

The memory address therefore provides an alternate location for updating MPU_RGDn.Word2.

Figure 17-9. MPU RGD Alternate Access Control n (MPU_RGDAACn)

Because the MPU_RGDAACn register is another memory mapping for MPU_RGDn.Word2, the field
definitions shown in Table 17-9 are identical to those presented in Table 17-7.

Table 17-8. MPU_RGDn.Word3 Field Descriptions

Field Description

PID Process Identifier. This 8-bit field specifies that the optional process identifier is to be included in the determination
of whether the current access hits in the region descriptor. This field is combined with the PIDMASK and included in
the region hit determination if MPU_RGDn.Word2[MxPE] is set.

PIDMASK Process Identifier Mask. This 8-bit field provides a masking capability so that multiple process identifiers can be
included as part of the region hit determination. If a bit in the PIDMASK is set, the corresponding bit of the PID is
ignored in the comparison. This field is combined with the PID and included in the region hit determination if
MPU_RGDn.Word2[MxPE] is set. For more information on the handling of the PID and PIDMASK, see
Section 17.4.1.1, “Access Evaluation—Hit Determination.”

VLD Valid. This bit signals the region descriptor is valid. Any write to MPU_RGDn.Word{0,1,2} clears this bit, but a write
to MPU_RGDn.Word3 sets or clears this bit depending on bit 31 of the write operand.
0 Region descriptor is invalid
1 Region descriptor is valid

Offset: MPU_BASE + 0x800 + (4*n) (MPU_RGDAACn) Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R M
4
R
E

M
4
W
E

M
3
P
E

M3SM
M3UM

r w x

M
2
P
E

M2SM
M2UM

r w x

M
1
P
E

M1SM
M1UM

r w x

M
0
P
E

M0SM
M0UM

r w xW

Reset –

Table 17-9. MPU_RGDAACn Field Descriptions

Field Description

bits 0–5 Reserved.

Note: These bits must never be set.

M4RE Bus Master ID 4 Read Enable. If set, this flag allows bus master ID 4 to perform read operations. If cleared, any
attempted read by bus master ID 4 terminates with an access error and the read is not performed.

Memory Protection Unit (MPU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 17-13
 Preliminary

M4WE Bus Master 4 Write Enable. If set, this flag allows bus master 4 to perform write operations. If cleared, any attempted
write by bus master 4 terminates with an access error and the write is not performed.

M3PE Bus Master 3 Process Identifier Enable. If set, this flag specifies that the process identifier and mask (defined in
MPU_RGDn.Word3) are to be included in the region hit evaluation. If cleared, the region hit evaluation does not
include the process identifier.

M3SM Bus Master 3 Supervisor Mode Access Control. This 2-bit field defines the access controls for bus master 3 when
operating in supervisor mode. The M3SM field is defined as:
00 r, w, x = read, write and execute allowed
01 r, –, x = read and execute allowed, but no write
10 r, w, – = read and write allowed, but no execute
11 Same access controls as that defined by M3UM for user mode

M3UM Bus Master 3 User Mode Access Control. This 3-bit field defines the access controls for bus master 3 when operating
in user mode. The M3UM field consists of three independent bits, enabling read, write, and execute permissions:
{r,w,x}. If set, the bit allows the given access type to occur; if cleared, an attempted access of that mode may be
terminated with an access error (if not allowed by any other descriptor) and the access not performed.

M2PE Bus Master 2 Process Identifier Enable. If set, this flag specifies that the process identifier and mask (defined in
MPU_RGDn.Word3) are to be included in the region hit evaluation. If cleared, the region hit evaluation does not
include the process identifier.

M2SM Bus Master 2 Supervisor Mode Access Control. This 2-bit field defines the access controls for bus master 2 when
operating in supervisor mode. The M2SM field is defined as:
00 r, w, x = read, write and execute allowed
01 r, –, x = read and execute allowed, but no write
10 r, w, – = read and write allowed, but no execute
11 Same access controls as that defined by M2UM for user mode

M2UM Bus Master 2 User Mode Access Control. This 3-bit field defines the access controls for bus master 2 when operating
in user mode. The M2UM field consists of three independent bits, enabling read, write, and execute permissions:
{r,w,x}. If set, the bit allows the given access type to occur; if cleared, an attempted access of that mode may be
terminated with an access error (if not allowed by any other descriptor) and the access not performed.

M1PE Bus Master 1 Process Identifier Enable. If set, this flag specifies that the process identifier and mask (defined in
MPU_RGDn.Word3) are to be included in the region hit evaluation. If cleared, the region hit evaluation does not
include the process identifier.

M1SM Bus Master 1 Supervisor Mode Access Control. This 2-bit field defines the access controls for bus master 1 when
operating in supervisor mode. The M1SM field is defined as:
00 r, w, x = read, write and execute allowed
01 r, –, x = read and execute allowed, but no write
10 r, w, – = read and write allowed, but no execute
11 Same access controls as that defined by M1UM for user mode

M1UM Bus Master 1 User Mode Access Control. This 3-bit field defines the access controls for bus master 1 when operating
in user mode. The M1UM field consists of three independent bits, enabling read, write, and execute permissions:
{r,w,x}. If set, the bit allows the given access type to occur; if cleared, an attempted access of that mode may be
terminated with an access error (if not allowed by any other descriptor) and the access not performed.

M0PE Bus Master 0 Process Identifier Enable. If set, this flag specifies that the process identifier and mask (defined in
MPU_RGDn.Word3) are to be included in the region hit evaluation. If cleared, then the region hit evaluation does not
include the process identifier.

Table 17-9. MPU_RGDAACn Field Descriptions (continued)

Field Description

Memory Protection Unit (MPU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

17-14 Freescale Semiconductor
 Preliminary

17.4 Functional Description
In this section, the functional operation of the MPU is detailed. In particular, subsequent sections discuss
the operation of the access evaluation macro as well as the handling of error-terminated AHB bus cycles.

17.4.1 Access Evaluation Macro

As discussed, the basic operation of the MPU is performed in the access evaluation macro, a hardware
structure replicated in the two-dimensional connection matrix. As shown in Figure 17-10, the access
evaluation macro inputs the AHB system bus address phase signals (AHB_ap) and the contents of a region
descriptor (RGDn) and performs two major functions: region hit determination (hit_b) and detection of
an access protection violation (error).

Figure 17-10. MPU Access Evaluation Macro

Figure 17-10 is not a schematic of the actual access evaluation macro, but a generalized block diagram
showing the major functions included in this logic block.

M0SM Bus Master 0 Supervisor Mode Access Control. This 2-bit field defines the access controls for bus master 0 when
operating in supervisor mode. The M0SM field is defined as:
00 r, w, x = read, write and execute allowed
01 r, –, x = read and execute allowed, but no write
10 r, w, – = read and write allowed, but no execute
11 Same access controls as that defined by M0UM for user mode

M0UM Bus Master 0 User Mode Access Control. This 3-bit field defines the access controls for bus master 0 when operating
in user mode. The M0UM field consists of three independent bits, enabling read, write, and execute permissions:
{r,w,x}. If set, the bit allows the given access type to occur; if cleared, an attempted access of that mode may be
terminated with an access error (if not allowed by any other descriptor) and the access not performed.

Table 17-9. MPU_RGDAACn Field Descriptions (continued)

Field Description

hit_b

start end

error

> >

RGDn
AHB_ap

hit & error hit_b | error

>= <=

r,w,x

Memory Protection Unit (MPU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 17-15
 Preliminary

17.4.1.1 Access Evaluation—Hit Determination

To determine if the current AHB reference hits in the given region, two magnitude comparators are used
with the region’s start and end addresses. The boolean equation for this portion of the hit determination is
defined as:
region_hit =

((haddr[0:26] >= rgdn.srtaddr[0:26]) & (haddr[0:26] <= rgdn.endaddr[0:26]))
& rgdn.vld

where haddr[*] is the current AHB reference address, rgdn.srtaddr[*] and rgdn.endaddr[*] are the start
and end addresses, and rgdn.vld is the valid bit, all from region descriptor n. There are no hardware checks
to verify that rgdn.endaddr ≥ rgdn.srtaddr, and the software must properly load appropriate values into
these fields of the region descriptor.

In addition to the algebraic comparison of the AHB reference address versus the region descriptor’s start
and end addresses, the optional process identifier is examined against the region descriptor’s PID and
PIDMASK fields. Using the hmaster[*] number to select the appropriate MxPE field from the region
descriptor, a process identifier hit term is formed as:
pid_hit = ~rgdn.mxpe

| ((current_pid[0:7] | rgdn.pidmask[0:7]) == (rgdn.pid[0:7] | rgdn.pidmask[0:7]))

where the current_pid[*] is the selected process identifier from the current bus master, and rgdn.pid[*]
and rgdn.pidmask[*] are the appropriate process identifier fields from the region descriptor n. For AHB
bus masters that do not output a process identifier, the MPU forces the pid_hit term to be asserted.

As shown in Figure 17-10, the access evaluation macro forms the logical complement (hit_b) of the
combined region_hit and pid_hit boolean equations.

17.4.1.2 Access Evaluation—Privilege Violation Determination

While the access evaluation macro is making the region hit determination, the logic is also evaluating if
the current access is allowed by the permissions defined in the region descriptor. Using the AHB
hmaster[*] and hprot[1] (supervisor/user mode) signals, a set of effective permissions (eff_rgd[r,w,x])
is generated from the appropriate fields in the region descriptor. The protection violation logic then
evaluates the access against the effective permissions using the specification shown in Table 17-10.

Table 17-10. Protection Violation Definition

Description

Inputs Output

hwrite hprot[0] eff_rgd[r] eff_rgd[w] eff_rgd[x]
Protection
Violation?

inst fetch read 0 0 — — 0 yes, no x permission

inst fetch read 0 0 — — 1 no, access is allowed

data read 0 1 0 — — yes, no r permission

data read 0 1 1 — — no, access is allowed

data write 1 — — 0 — yes, no w permission

data write 1 — — 1 — no, access is allowed

Memory Protection Unit (MPU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

17-16 Freescale Semiconductor
 Preliminary

The resulting boolean equation for the processor protection violations is:
cpu_protection_violation
 = ~hwrite & ~hprot[0] & ~eff_rgdn[x] // ifetch & no x
 | ~hwrite & hprot[0] & ~eff_rgdn[r] // data_read & no r
 | hwrite & ~eff_rgdn[w] // data_write & no w

The resulting boolean equation for the non-processor protection violations is:
protection_violation
 = ~hwrite & ~eff_rgdn[r] // data_read & no r
 | hwrite & ~eff_rgdn[w] // data_write & no w

As shown in Figure 17-10, the output of the protection violation logic is the error signal, that is,
error = protection_violation.

The access evaluation macro then uses the hit_b and error signals to form two outputs. The combined
(hit_b | error) signal is used to signal the current access is not allowed and (~hit_b & error) is used as
the input to MPU_EDRn (error detail register) in the event of an error.

17.4.2 Putting It All Together and AHB Error Terminations

For each AHB slave port being monitored, the MPU performs a reduction-AND of all the individual
(hit_b | error) terms from each access evaluation macro. This expression then terminates the bus cycle
with an error and reports a protection error for three conditions:

1. If the access does not hit in any region descriptor, a protection error is reported.

2. If the access hits in a single region descriptor and that region signals a protection violation, a
protection error is reported.

3. If the access hits in multiple (overlapping) regions and all regions signal protection violations, then
a protection error is reported.

The third condition reflects that priority is given to permission granting over access denying for
overlapping regions as this approach provides more flexibility to system software in region descriptor
assignments. For an example of the use of overlapping region descriptors, see Section 17.6, “Application
Information.”

When the MPU causes a termination error to occur, the effect on the system depends on the bus master
requesting the access. If the error was caused by a core access, a machine check is taken. If the error was
caused by an eDMA access, an eDMA source or destination error occurs in the eDMA controller, which
can be enabled to provide an interrupt request through the INTC. If the error was caused by a FlexRay
access, a controller host interface (CHI) illegal system memory access error occurs in the FlexRay
controller, which can be enabled to provide an interrupt request to the INTC.

17.5 Initialization Information
The reset state of MPU_CESR[VLD] disables the entire module. While the MPU is disabled, all accesses
from all bus masters are allowed. This state also minimizes the power dissipation of the MPU. The power
dissipation of each access evaluation macro is minimized when the associated region descriptor is marked
as invalid or when MPU_CESR[VLD] = 0.

Memory Protection Unit (MPU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 17-17
 Preliminary

Typically the appropriate number of region descriptors (MPU_RGDn) are loaded at system startup,
including the setting of the MPU_RGDn.Word3[VLD] bits, before MPU_CESR[VLD] is set, enabling the
module. This approach allows all the loaded region descriptors to be enabled simultaneously. If a memory
reference does not hit in any region descriptor, the attempted access is terminated with an error.

17.6 Application Information
In an application’s system, interfacing with the MPU can generally be classified into the following
activities:

1. Creation of a new memory region requires loading the appropriate region descriptor into an
available register location. When a new descriptor is loaded into a RGDn, it would typically be
performed using four 32-bit word writes. As discussed in Section 17.3.2.4.4, “MPU Region
Descriptor n, Word 3 (MPU_RGDn.Word3),” the hardware assists in the maintenance of the valid
bit, so if this approach is followed, there are no coherency issues associated with the multi-cycle
descriptor writes. Deletion/removal of an existing memory region is performed by clearing
MPU_RGDn.Word3[VLD].

2. If only the access rights for an existing region descriptor need to change, a 32-bit write to the
alternate version of the access control word (MPU_RGDAACn) would typically be performed.
Writes to the region descriptor using this alternate access control location do not affect the valid
bit, so there are, by definition, no coherency issues involved with the update. The access rights
associated with the memory region switch instantaneously to the new value as the IPS write
completes.

3. If the region’s start and end addresses are to be changed, this would typically be performed by
writing a minimum of three words of the region descriptor: MPU_RGDn.Word{0,1,3}, where the
writes to Word0 and Word1 redefine the start and end addresses respectively and the write to
Word3 re-enables the region descriptor valid bit. In many situations, all four words of the region
descriptor would be rewritten.

4. Typically, references to the MPU’s programming model would be restricted to supervisor mode
accesses from a specific processor(s), so a region descriptor would be specifically allocated for this
purpose with attempted accesses from other masters or while in user mode terminated with an error.

5. When the MPU detects an access error, the current AHB bus cycle is terminated with an error
response and information on the faulting reference captured in the MPU_EARn and MPU_EDRn
registers. The error-terminated AHB bus cycle typically initiates some type of error response in the
originating bus master. For example, a processor core may respond with a bus error exception,
while a data movement bus master may respond with an error interrupt. In any event, the processor
can retrieve the captured error address and detail information simply be reading the
MPU_E{A,D}Rn registers. Information on which error registers contain captured fault data is
signaled by MPU_CESR[MPERR].

6. Finally, consider the use of overlapping region descriptors. Application of overlapping regions can
reduce the number of descriptors required for a given set of access controls. In the overlapping
memory space, the protection rights of the corresponding region descriptors are logically summed
together (the boolean OR operator). In the following example of a dual-core system, there are four

Memory Protection Unit (MPU)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

17-18 Freescale Semiconductor
 Preliminary

bus masters: the two processors (CP0, CP1) and two DMA engines (eDMA, a traditional data
movement engine transferring data between RAM and peripherals, and FlexRAY, a second engine
transferring data to/from the RAM only). Consider the following region descriptor assignments:

In this example, there are eight descriptors used to span nine regions in the three main spaces of
the system memory map (flash, RAM, and IPS peripheral space). Each region indicates the specific
permissions for each of the four bus masters and this definition provides an appropriate set of
shared, private and executable memory spaces.

Of particular interest are the two overlapping spaces: region descriptors 2 and 3, and 3 and 4.

The space defined by RGD2 with no overlap is a private data and stack area that provides
read/write access to CP0 only. The overlapping space between RGD2 and RGD3 defines a shared
data space for passing data from CP0 to CP1 and the access controls are defined by the logical OR
of the two region descriptors. Thus, CP0 has (rw- | r--) = (rw-) permissions, while CP1 has
(--- | r--) = (r--) permission in this space. Both DMA engines are excluded from this shared
processor data region. The overlapping spaces between RGD3 and RGD4 defines another shared
data space, this one for passing data from CP1 to CP0. For this overlapping space, CP0 has (r--
| ---) = (r--) permission, while CP1 has (rw- | r--) = (rw-) permission. The
non-overlapped space of RGD4 defines a private data and stack area for CP1 only.

The space defined by RGD5 is a shared data region, accessible by all four bus masters. Finally, the
slave peripheral space mapped onto the peripheral bus is partitioned into two regions: one (RGD6)
containing the MPU’s programming model accessible only to the two processor cores, and the
remaining peripheral region (RGD7) accessible to both processors and the traditional eDMA
master.

This example is intended to show one possible application of the capabilities of the memory
protection unit in a typical system.

Region Description RGDn CP0 CP1 eDMA FlexRay

CP0 Code 0 rwx r-- -- --
Flash

CP1 Code 1 r-- rwx -- --

CP0 Data & Stack 2 rw- --- -- --

RAM

CP0 -> CP1 Shared Data
3 r-- r-- -- --

CP1 -> CP0 Shared Data

CP0 Data & Stack 4 --- rw- -- --

Shared DMA Data 5 rw- rw- rw rw

MPU 6 rw- rw- -- --
IPS

Peripherals 7 rw- rw- rw --

Figure 17-11. Overlapping Region Descriptor Example

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 18-1
 Preliminary

Chapter 18
Semaphores

18.1 Introduction
In a dual processor chip, semaphores are used to let each processor know who has control of common
memory. Before a core can update or read memory coherently, it has to check the semaphore to see if the
other core is not already updating the memory. If the semaphore is clear, it can write common memory, but
if it is set, it has to wait for the other core to finish and clear the semaphore.

The semaphores module provides the hardware support needed in multi-core systems for implementing
semaphores and provide a simple mechanism to achieve lock/unlock operations via a single write access.
This approach eliminates architecture-specific implementations like atomic (indivisible)
read-modify-write instructions or reservation mechanisms. The result is an architecture-neutral solution
that provides hardware-enforced gates as well as other useful system functions related to the gating
mechanisms.

18.1.1 Block Diagram

Figure 18-1 is a simplified block diagram of the semaphores that illustrates the functionality and
interdependence of major blocks. In the diagram, the register blocks named gate0, gate1, ..., gate 15
include the finite state machines implementing the semaphore gates plus the interrupt notification logic.

Semaphores

MPC5510 Microcontroller Family Reference Manual, Rev. 1

18-2 Freescale Semiconductor
 Preliminary

Figure 18-1. semaphores Block Diagram

18.1.2 Features

The semaphores module implements hardware-enforced semaphores as a peripheral device and has these
major features:

• Support for 16 hardware-enforced gates in a dual-processor configuration

— Each hardware gate appears as a three-state, 2-bit state machine, with all 16 gates mapped as
an array of bytes

– Three-state implementation

if gate = 0b00, then state = unlocked

ips_wdata

ips_addr
decode

mux

IPS Bus

31

0

control

ips_rdata

31

0

aips_master

2

0

= =
master_eq_cp{0,1}

gate0 gate1 gate2 gate3

gate12 gate13 gate14 gate15

= =
wdata_eq_{unlock, cp[0-1]_lock}

=

cp0_semaphore_int cp1_semaphore_int

Semaphores

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 18-3
 Preliminary

if gate = 0b01, then state = locked by e200z1 (master ID = 0)

if gate = 0b10, then state = locked by e200z0 (master ID = 1)

– Uses the bus master ID number as a reference attribute plus the specified data patterns to
validate all write operations

– After it is locked, the gate must be unlocked by a write of zeroes from the locking processor

— Optionally enabled interrupt notification after a failed lock write provides a mechanism to
indicate the gate is unlocked

— Secure reset mechanisms are supported to clear the contents of individual semaphore gates or
notification logic, and clear_all capability

NOTE
Semaphore gates that are locked upon entry into a low-power sleep mode
will be cleared by the internal reset generated upon exiting sleep mode.
Low-power stop modes have no effect on the state of the semaphore gate.

18.1.3 Modes of Operation

The semaphores module does not support any special modes of operation.

18.2 Signal Description
The semaphores module does not include any external signals.

18.3 Memory Map and Registers
This section provides a detailed description of all semaphores registers.

18.3.1 Module Memory Map

The semaphores programming model map is shown in Table 18-1. The address of each register is given as
an offset to the semaphore base address. Registers are listed in address order, identified by complete name
and mnemonic, and list the type of accesses allowed.

Table 18-1. Semaphores Memory Map

Offset from
SEMA4_BASE
(0xFFF1_0000)

Register Access
Reset
Value

Section/
Page

0x0000 SEMA4_Gate00 — Semaphores gate 0 R/W 0x00 18.3.2.1/18-4

0x0001 SEMA4_Gate01 — Semaphores gate 1 R/W 0x00 18.3.2.1/18-4

0x0002 SEMA4_Gate02 — Semaphores gate 2 R/W 0x00 18.3.2.1/18-4

0x0003 SEMA4_Gate03 — Semaphores gate 3 R/W 0x00 18.3.2.1/18-4

0x0004 SEMA4_Gate04 — Semaphores gate 4 R/W 0x00 18.3.2.1/18-4

0x0005 SEMA4_Gate05 — Semaphores gate 5 R/W 0x00 18.3.2.1/18-4

Semaphores

MPC5510 Microcontroller Family Reference Manual, Rev. 1

18-4 Freescale Semiconductor
 Preliminary

18.3.2 Register Descriptions

This section lists the semaphores registers in address order and describes the registers and their bit fields.

18.3.2.1 Semaphores Gate n Register (SEMA4_GATEn)

Each semaphore gate is implemented in a 2-bit finite state machine, right-justified in a byte data structure.
The hardware uses the bus master number in conjunction with the data patterns to validate all attempted
write operations. Only processor bus masters can modify the gate registers. After it is locked, a gate must
be opened (unlocked) by the locking processor core.

0x0006 SEMA4_Gate06 — Semaphores gate 6 R/W 0x00 18.3.2.1/18-4

0x0007 SEMA4_Gate07 — Semaphores gate 7 R/W 0x00 18.3.2.1/18-4

0x0008 SEMA4_Gate08 — Semaphores gate 8 R/W 0x00 18.3.2.1/18-4

0x0009 SEMA4_Gate09 — Semaphores gate 9 R/W 0x00 18.3.2.1/18-4

0x000A SEMA4_Gate10 — Semaphores gate 10 R/W 0x00 18.3.2.1/18-4

0x000B SEMA4_Gate11 — Semaphores gate 11 R/W 0x00 18.3.2.1/18-4

0x000C SEMA4_Gate12 — Semaphores gate 12 R/W 0x00 18.3.2.1/18-4

0x000D SEMA4_Gate13 — Semaphores gate 13 R/W 0x00 18.3.2.1/18-4

0x000E SEMA4_Gate14 — Semaphores gate 14 R/W 0x00 18.3.2.1/18-4

0x000F SEMA4_Gate15 — Semaphores gate 15 R/W 0x00 18.3.2.1/18-4

0x0010–0x003F Reserved

00x040 SEMA4_CP0INE — Semaphores CP0 IRQ notification enable R/W 0x0000 18.3.2.2/18-5

0x0042–0x0047 Reserved

0x0048 SEMA4_CP1INE — Semaphores CP1 IRQ notification enable R/W 0x0000 18.3.2.2/18-5

0x004A–0x07F Reserved

0x0080 SEMA4_CP0NTF — Semaphores CP0 IRQ notification R 0x0000 18.3.2.3/18-6

0x008 2–00x087 Reserved

0x0088 SEMA4_CP1NTF — Semaphores CP1 IRQ notification R 0x0000 18.3.2.2/18-5

0x008A–0x00FF Reserved

0x0100 SEMA4_RSTGT — Semaphores reset gate R/W 0x0000 18.3.2.4/18-6

0x0102 Reserved

0x0104 SEMA4_RSTNTF — Semaphores reset IRQ notification R/W 0x00000 18.3.2.5/18-8

0x0106–0x0FFF Reserved

Table 18-1. Semaphores Memory Map (continued)

Offset from
SEMA4_BASE
(0xFFF1_0000)

Register Access
Reset
Value

Section/
Page

Semaphores

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 18-5
 Preliminary

Multiple gate values can be read in a single access, but only a single gate at a time can be updated via a
write operation. 16- and 32-bit writes to multiple gates are allowed, but the write data operand must update
the state of a single gate only. A byte write data value of 0x03 is defined as no operation and does not affect
the state of the corresponding gate register. Attempts to write multiple gates in a single-aligned access with
a size larger than an 8-bit (byte) reference generate an error termination and do not allow any gate state
changes.

Figure 18-2. SEMA4 Gate n Register (SEMA4_GATEn)

18.3.2.2 Semaphores Processor n IRQ Notification Enable (SEMA4_CP{0,1}INE)

The application of a hardware semaphore module provides an opportunity for implementation of helpful
system-level features. An example is an optional mechanism to generate a processor interrupt after a failed
lock attempt. Traditional software gate functions execute a spin-wait loop in an effort to obtain and lock
the referenced gate. With this module, the processor that fails in the lock attempt could continue with other
tasks and allow a properly-enabled notification interrupt to return its execution to the original lock
function.

The optional notification interrupt function consists of two registers for each processor: an interrupt
notification enable register (SEMA4_CPnINE) and the interrupt request register (SEMA4_CPnNTF). To
support implementations with more than 16 gates, these registers can be referenced with aligned 16- or
32-bit accesses. For the SEMA4_CPnINE registers, unimplemented bits read as zeroes and writes are
ignored.

Figure 18-3. Semaphores Processor n IRQ Notification Enable (SEMA4_CP{0,1}INE)

Offset: SEMA4_BASE + n (n = 0, 1, 2,..., 15) Access: Read/write

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0
GTFSM

W

Reset 0 0 0 0 0 0 0 0

Table 18-2. SEMA4_GATEn Field Descriptions

Field Description

GTFSM Gate Finite State Machine. The hardware gate is maintained in a three-state implementation, defined as:
00 The gate is unlocked (free)
01 The gate has been locked by processor 0
10 The gate has been locked by processor 1
11 This state encoding is never used and therefore reserved. Attempted writes of 0x03 are treated as no operation

and do not affect the gate state machine
Note: The state of the gate reflects the last processor that locked it, which can be useful during system debug.

Offset: SEMA4_BASE + 0x0040 (SEMA4_CP0INE)
SEMA4_BASE + 0x0048 (SEMA4_CP1INE)

Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
INE0 INE1 INE2 INE3 INE4 INE5 INE6 INE7 INE8 INE9 INE10 INE11 INE12 INE13 INE14 INE15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Semaphores

MPC5510 Microcontroller Family Reference Manual, Rev. 1

18-6 Freescale Semiconductor
 Preliminary

18.3.2.3 Semaphores Processor n IRQ Notification (SEMA4_CP{0,1}NTF)

The notification interrupt is generated via a unique finite state machine, one per hardware gate. This
machine operates in the following manner:

• When an attempted lock fails, the FSM enters a first state where it waits until the gate is unlocked.

• After it is unlocked, the FSM enters a second state where it generates an interrupt request to the
failed lock processor.

• When the failed lock processor succeeds in locking the gate, the IRQ is automatically negated and
the FSM returns to the idle state. However, if the other processor locks the gate again, the FSM
returns to the first state, negates the interrupt request, and waits for the gate to be unlocked again.

The notification interrupt request is implemented in a 3-bit, five-state machine, where two specific states
are encoded and program-visible as SEMA4_CP0NTF[GNn] and SEMA4_CP1NTF[GNn].

Figure 18-4. Semaphores Processor n IRQ Notification (SEMA4_CP{0,1}NTF)

18.3.2.4 Semaphores (Secure) Reset Gate n (SEMA4_RSTGT)

Although the intent of the hardware gate implementation specifies a protocol where the locking processor
must unlock the gate, it is recognized that system operation may require a reset function to re-initialize the
state of any gate(s) without requiring a system-level reset.

To support this special gate reset requirement, the semaphores module implements a secure reset
mechanism which allows a hardware gate (or all the gates) to be initialized by following a specific
dual-write access pattern. Using a technique similar to that required for the servicing of a software

Table 18-3. SEMA4_CP{0,1}NTF Field Descriptions

Field Description

INEn Interrupt Request Notification Enable n. This field is a bitmap to enable the generation of an interrupt notification
from a failed attempt to lock gate n.
0 The generation of the notification interrupt is disabled.
1 The generation of the notification interrupt is enabled.

Offset: SEMA4_BASE + 0x0080 (SEMA4_CP0NTF)
SEMA4_BASE + 0x0088 (SEMA4_CP1NTF)

Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R GN0 GN1 GN2 GN3 GN4 GN5 GN6 GN7 GN8 GN9 GN10 GN11 GN12 GN13 GN14 GN15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 18-4. SEMA4_CP{0,1}NTF Field Descriptions

Field Description

GNn Gate n Notification. This read-only field is a bitmap of the interrupt request notification from a failed attempt to lock
gate n.
0 No notification interrupt generated.
1 Notification interrupt generated.

Semaphores

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 18-7
 Preliminary

watchdog timer, the secure gate reset requires two consecutive writes with predefined data patterns from
the same processor to force the clearing of the specified gate(s). The required access pattern is:

1. A processor performs a 16-bit write to the SEMA4_RSTGT memory location. The most significant
byte (SEMA4_RSTGT[RSTGDP]) must be 0xe2; the least significant byte is a don’t_care for this
reference.

2. The same processor then performs a second 16-bit write to the SEMA4_RSTGT location. For this
write, the upper byte (SEMA4_RSTGT[RSTGDP]) is the logical complement of the first data
pattern (0x1d) and the lower byte (SEMA4_RSTGT[RSTGTN]) specifies the gate(s) to be reset.
This gate field can specify a single gate be cleared or that all gates are cleared.

3. Reads of the SEMA4_RSTGT location return information on the 2-bit state machine
(SEMA4_RSTGT[RSTGSM]) which implements this function, the bus master performing the
reset (SEMA4_RSTGT[RSTGMS]) and the gate number(s) last cleared
(SEMA4_RSTGT[RSTGTN]). Reads of the SEMA4_RSTGT register do not affect the secure reset
finite state machine in any manner.

Figure 18-5. Semaphores (Secure) Reset Gate n (SEMA4_RSTGT)

Offset: SEMA4_BASE + 0x0100 (SEMA4_RSTGT) Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 RSTGSM 0 RSTGMS
RSTGTN

W RSTGDP

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Semaphores

MPC5510 Microcontroller Family Reference Manual, Rev. 1

18-8 Freescale Semiconductor
 Preliminary

18.3.2.5 Semaphores (Secure) Reset IRQ Notification (SEMA4_RSTNTF)

As with the case of the secure reset function and the hardware gates, it is recognized that system operation
may require a reset function to re-initialize the state of the IRQ notification logic without requiring a
system-level reset.

To support this special notification reset requirement, the semaphores module implements a secure reset
mechanism which allows an IRQ notification (or all the notifications) to be initialized by following a
specific dual-write access pattern. When successful, the specified IRQ notification state machine(s) are
reset. Using a technique similar to that required for the servicing of a software watchdog timer, the secure
reset mechanism requires two consecutive writes with predefined data patterns from the same processor
to force the clearing of the IRQ notification(s). The required access pattern is:

1. A processor performs a 16-bit write to the SEMA4_RSTNTF memory location. The most
significant byte (SEMA4_RSTNTF[RSTNDP]) must be 0x47; the least significant byte is a
don’t_care for this reference.

Table 18-5. SEMA4_RSTGT Field Descriptions

Field Description

RSTGSM Reset Gate Finite State Machine. The reset state machine is maintained in a 2-bit, three-state implementation,
defined as:
00 Idle, waiting for the first data pattern write.
01 Waiting for the second data pattern write.
10 The 2-write sequence has completed. Generate the specified gate reset(s). After the reset is performed, this

machine returns to the idle (waiting for first data pattern write) state.
11 This state encoding is never used and therefore reserved.
Reads of the SEMA4_RSTGT register return the encoded state machine value. Note the RSTGSM = 0b10 state
is valid for a single machine cycle only, so it is impossible for a read to return this value.

RSTGMS Reset Gate Bus Master. This 3-bit read-only field records the logical number of the bus master performing the
gate reset function. The reset function requires that the two consecutive writes to this register be initiated by the
same bus master to succeed. This field is updated each time a write to this register occurs.

RSTGTN Reset Gate Number. This 8-bit field specifies the specific hardware gate to be reset. This field is updated by the
second write.
If RSTGTN < 64, then reset the single gate defined by RSTGTN, else reset all the gates. The corresponding
secure IRQ notification state machine(s) are also reset.

RSTGDP Reset Gate Data Pattern. This write-only field is accessed with the specified data patterns on the two consecutive
writes to enable the gate reset mechanism. For the first write, RSTGDP = 0xe2 while the second write requires
RSTGDP = 0x1d.

Master Master ID

e200z1 0

e200z0 1

eDMA 2

FlexRay 3

EBI 4

Semaphores

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 18-9
 Preliminary

2. The same processor performs a second 16-bit write to the SEMA4_RSTNTF location. For this
write, the upper byte (SEMA4_RSTNTF[RSTNDP]) is the logical complement of the first data
pattern (0xb8) and the lower byte (SEMA4_RSTNTF[RSTNTN]) specifies the notification(s) to
be reset. This field can specify a single notification be cleared or that all notifications are cleared.

3. Reads of the SEMA4_RSTNTF location return information on the 2-bit state machine
(SEMA4_RSTNTF[RSTNSM]) that implements this function, the bus master performing the reset
(SEMA4_RSTNTF[RSTNMS]) and the notification number(s) last cleared
(SEMA4_RSTNTF[RSTNTN]). Reads of the SEMA4_RSTNTF register do not affect the secure
reset finite state machine in any manner.

Figure 18-6. Semaphores (Secure) Reset IRQ Notification (SEMA4_RSTNTF)

Offset: SEMA4_BASE + 0x0104 (SEMA4_RSTNTF) Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 RSTNSM 0 RSTNMS
RSTNTN

W RSTNDP

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 18-6. SEMA4_RSTGT Field Descriptions

Field Description

RSTNSM Reset Notification Finite State Machine. The reset state machine is maintained in a 2-bit, three-state
implementation, defined as:
00 Idle, waiting for the first data pattern write.
01 Waiting for the second data pattern write.
10 The two-write sequence has completed. Generate the specified notification reset(s). After the reset is

performed, this machine returns to the idle (waiting for first data pattern write) state.
11 This state encoding is never used and therefore reserved.
Reads of the SEMA4_RSTNTF register return the encoded state machine value. Note the RSTNSM = 0b10 state
is valid for a single machine cycle only, so it is impossible for a read to return this value.

RSTNMS Reset Notification Bus Master. This 3-bit read-only field records the logical number of the bus master performing
the notification reset function. The reset function requires that the two consecutive writes to this register be
initiated by the same bus master to succeed. This field is updated each time a write to this register occurs.

Master Master ID

e200z1 0

e200z0 1

eDMA 2

FlexRay 3

EBI 4

Semaphores

MPC5510 Microcontroller Family Reference Manual, Rev. 1

18-10 Freescale Semiconductor
 Preliminary

18.4 Functional Description
Multi-processor systems require a function that can be used to safely and easily provide a locking
mechanism that is then used by system software to control access to shared data structures, shared
hardware resources, and etc. These gating mechanisms are used by the software to serialize (and
synchronize) writes to shared data and/or resources to prevent race conditions and preserve memory
coherency between processes and processors.

For example, if processor X enters a section of code where shared data values are to be updated or read
coherently, it must first acquire a semaphore. This locks, or closes, a software gate. After the gate has been
locked, a properly-architected software system does not allow other processes (or processors) to execute
the same code segment or modify the shared data structure protected by the gate, that is, other
processes/processors are locked out. Many software implementations include a spin-wait loop within the
lock function until the locking of the gate is accomplished. After the lock has been obtained, processor X
continues execution and updates the data values protected by the particular lock. After the updates are
complete, processor X unlocks (or opens) the software gate, allowing other processes/processors access to
the updated data values.

There are three important rules that must be followed for a correctly-implemented system solution:

• All writes to shared data values or shared hardware resources must be protected by a gate variable.

• After a processor locks a gate, accesses to the shared data or resources by other
processes/processors must be blocked. This is enforced by software conventions.

• The processor that locks a particular gate is the only processor that can unlock, or open, that gate.

Information in the hardware gate identifying the locking processor can be useful for system-level
debugging.

The Hennessy/Patterson text on computer architecture offers this description of software gating:

“One of the major requirements of a shared-memory architecture multiprocessor is being able to
coordinate processes that are working on a common task. Typically, a programmer will use lock
variables to synchronize the processes.

The difficulty for the architect of a multiprocessor is to provide a mechanism to decide which
processor gets the lock and to provide the operation that locks a variable. Arbitration is easy for
shared-bus multiprocessors, since the bus is the only path to memory. The processor that gets the
bus locks out all the other processors from memory. If the CPU and bus provide an atomic swap
operation, programmers can create locks with the proper semantics. The adjective atomic is key,

RSTNTN Reset Notification Number. This 8-bit field specifies the specific IRQ notification state machine to be reset. This
field is updated by the second write.
If RSTNTN < 64, then reset the single IRQ notification machine defined by RSTNTN, else reset all the
notifications.

RSTNDP Reset Notification Data Pattern. This write-only field is accessed with the specified data patterns on the two
consecutive writes to enable the notification reset mechanism. For the first write, RSTNDP = 0x47 while the
second write requires RSTNDP = 0xb8.

Table 18-6. SEMA4_RSTGT Field Descriptions

Field Description

Semaphores

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 18-11
 Preliminary

for it means that a processor can both read a location and set it to the locked value in the same bus
operation, preventing any other processor from reading or writing memory.” [Hennessy/Patterson,
Computer Architecture: A Quantitative Approach, ppg. 471-472]

The classic text continues with a description of the steps required to lock/unlock a variable using an atomic
swap instruction.

“Assume that 0 means unlocked and 1 means locked. A processor first reads the lock variable to
test its state. A processor keeps reading and testing until the value indicates that the lock is
unlocked. The processor then races against all other processes that were similarly “spin waiting”
to see who can lock the variable first. All processes use a swap instruction that reads the old value
and stores a 1 into the lock variable. The single winner will see the 0, and the losers will see a 1
that was placed there by the winner. (The losers will continue to set the variable to the locked value,
but that doesn’t matter.) The winning processor executes the code after the lock and then stores a
0 into the lock when it exits, starting the race all over again. Testing the old value and then setting
to a new value is why the atomic swap instruction is called test and set in some instruction sets.”
[Hennessy/Patterson, Computer Architecture: A Quantitative Approach, ppg. 472-473]

The sole drawback to a hardware-based semaphore module is the limited number of semaphores versus
the infinite number that can be supported with PowerPC reservation instructions.

18.4.1 Semaphore Usage

Example 1: Inter-processor communication done with software interrupts and semaphores...

• The Z0 uses software interrupts to tell the Z1 that new data is available, or the Z1 does the same to
tell the Z0 that there is new data available for transmission.

• Because only eight software interrupts are available, the user may need RAM locations or
general-purpose registers in the SIU to refine the meaning of the software interrupt.

• Messages are passed between cores in a defined section of system RAM.

• Before a core updates a message, it must check the associated semaphore to see if the other core is
in the process of updating the same message. If the RAM not being updated, then the semaphore
must first be locked, then the message can be updated. A software interrupt can be sent to the other
core and the semaphore can be unlocked. If the RAM is being updated, the CPU must wait for the
other core to unlock the semaphore before proceeding with update.

• Using the same memory location for bidirectional communication might be difficult, so two
one-way message areas might work better.

— For example, if both cores want to update the same location, then the following sequence may
occur.

1. The Z0 locks the semaphore, updates the memory, unlocks the semaphore, and generates a
software interrupt to the Z1.

2. Before the Z1 takes the software interrupt request, it finds the semaphore to be unlocked, so
it writes new data to the memory.

3. The Z1 software interrupt ISR reads the data sent to the Z0, not the data sent from the Z0,
and performs an incorrect operation.

— Semaphores do not prevent this situation from occurring.

Semaphores

MPC5510 Microcontroller Family Reference Manual, Rev. 1

18-12 Freescale Semiconductor
 Preliminary

Example 2: Coherent read done with semaphores...

• The Z1 wants to coherently read a section of shared memory.

• The Z1 should check that the semaphore for the shared memory is not currently set.

• The Z1 should set the semaphore for the shared memory to prevent the Z0 from updating the shared
memory.

• The Z1 will read the required data, then unlock the semaphore.

18.5 Initialization Information
The reset state of the semaphores module allows it to begin operation without the need for any further
initialization. All the internal state machines are cleared by any reset event, allowing the module to
immediately begin operation.

18.6 Application Information
In an operational multi-core system, most interactions involving the semaphores module involves reads
and writes to the SEMA4_GATEn registers for implementation of the hardware-enforced software gate
functions. Typical code segments for gate functions perform the following operations:

• To lock (close) a gate

— The processor performs a byte write of logical_processor_number + 1 to gate[i]

— The processor reads back gate[i] and checks for a value of logical_processor_number + 1

If the compare indicates the expected value
then the gate is locked; proceed with the protected code segment

else
lock operation failed;
repeat process beginning with byte write to gate[i] in spin-wait loop, or
proceed with another execution path and wait for failed lock interrupt notification

A simple C-language example of a gatelck function is shown in Example 18-1. This function follows the
Hennessy/Patterson example.

Example 18-1. Sample Gatelock Function

#define UNLOCK 0
#define CP0_LOCK 1
#define CP2_LOCK 2

void gateLock (n)
int n; /* gate number to lock */
{
 int i;
 int current_value;
 int locked_value;

 i = processor_number(); /* obtain logical CPU number */

 if (i == 0)
 locked_value = CP0_LOCK;

Semaphores

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 18-13
 Preliminary

 else
 locked_value = CP1_LOCK;

 /* read the current value of the gate and wait until the state == UNLOCK */
 do {
 current_value = gate[n];
 } while (current_value != UNLOCK);

 /* the current value of the gate == UNLOCK. attempt to lock the gate for this
 processor. spin-wait in this loop until gate ownership is obtained */
 do {
 gate[n] = locked_value; /* write gate with processor_number + 1 */
 current_value = gate[n]; /* read gate to verify ownership was obtained */
 } while (current_value != locked_value);
}

• To unlock (open) a gate

— After completing the protected code segment, the locking processor performs a byte write of
zeroes to gate[i], unlocking (opening) the gate

In this example, a reference to processor_number() is used to retrieve this hardware configuration
value. Typically, the logical processor numbers are defined by a hardwired input vector to the individual
cores. The exact method for accessing the logical processor number varies by architecture. For PowerPC
cores, there is a processor ID register (PIR) which is SPR 286 and contains this value. A single instruction
can be used to move the contents of the PIR into a general-purpose register: mfspr rx,286 where rx is the
destination GPRn. Other architectures may support a specific instruction to move the contents of the
logical processor number into a general-purpose register, e.g., rdcpn rx for a read CPU number
instruction.

If the optional failed lock IRQ notification mechanisms are used, then accesses to the related registers
(SEMA4_CPnINE, SEMA4_ CPnNTF) are required. There is no required negation of the failed lock write
notification interrupt as the request is automatically negated by the semaphores module once the gate has
been successfully locked by the failing processor.

Finally, in the event a system state requires a software-controlled reset of a gate or IRQ notification
register(s), accesses to the secure reset control registers (SEMA4_RSTGT, SEMA4_RSTNTF) are
required. For these situations, it is recommended that the appropriate IRQ notification enable(s)
(SEMA4_CPnINE) bits be disabled before initiating the secure reset 2-write sequence to avoid any race
conditions involving spurious notification interrupt requests.

18.7 DMA Requests
There are no DMA requests associated with the IPS_Semaphore block.

18.8 Interrupt Requests
The semaphore interrupt requests are connected to the interrupt controller as described in Table 8-2.

Semaphores

MPC5510 Microcontroller Family Reference Manual, Rev. 1

18-14 Freescale Semiconductor
 Preliminary

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 19-1
 Preliminary

Chapter 19
IEEE 1149.1 Test Access Port Controller (JTAGC)

19.1 Introduction
The JTAGC provides the means to test chip functionality and connectivity and controls access to the debug
features of the device, while remaining transparent to system logic when the JTAGC is not in test mode.
Testing is performed via a boundary scan technique, as defined in the IEEE 1149.1-2001 standard.
Instructions can be executed that allow the test access port (TAP) to be shared with other modules on the
MCU. All data input to and output from the JTAGC is communicated in serial format.

19.1.1 Block Diagram

A simplified block diagram of the JTAGC illustrates the functionality and interdependence of major blocks
(see Figure 19-1). The JTAG port of the device consists of four inputs and one output. These pins include
JTAG compliance select (JCOMP), test data input (TDI), test data output (TDO), test mode select (TMS),
and test clock input (TCK). TDI, TDO, TMS, and TCK are compliant with the IEEE 1149.1-2001 standard
and are shared with the NDI through the test access port (TAP) interface.

Figure 19-1. JTAGC Block Diagram

TCK

TMS

TDI

Test access port (TAP)

TDO

32-bit device identification register

Boundary scan register

.

.

controller

1-bit bypass register.

5-bit TAP instruction decoder

5-bit TAP instruction register

.

.

.

JCOMP

Power-on
reset

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

19-2 Freescale Semiconductor
 Preliminary

Figure 19-2. JTAG/Nexus Daisy Chain of the MPC5510 e200z1 and e200z0 Cores

19.1.2 Features

The JTAGC is compliant with the IEEE 1149.1-2001 standard and has these major features:

• IEEE 1149.1-2001 test access port (TAP) interface.

• A JCOMP input that provides the ability to share the TAP.

• A 5-bit instruction register that supports several IEEE 1149.1-2001 defined instructions, as well as
several public and private MCU specific instructions.

• Three test data registers: a bypass register, a boundary scan register, and a device identification
register. The size of the boundary scan register is 276 bits.

• A TAP controller state machine that controls the operation of the data registers, instruction register,
and associated circuitry.

19.1.3 Modes of Operation

The JTAGC uses JCOMP and a power-on reset indication as its primary reset signals. Several IEEE
1149.1-2001 defined test modes are supported, as well as a bypass mode.

TDO

e200z1 OnCE TAP

TDI

TDI TDO

TDOTDI

e200z0 OnCE TAP

NPC/JTAGC

ACCESS_AUX_TAP_OnCE ACCESS_AUX_TAP_MULTI ACCESS_AUX_TAP_Z0

Multi-core access

Single-core access

TMS and JCOMP are not shown for clarity.
NPC TAP also not shown for clarity.

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 19-3
 Preliminary

19.1.3.1 Reset

The JTAGC is placed in reset when the TAP controller state machine is in the TEST-LOGIC-RESET state.
The TEST-LOGIC-RESET state is entered upon the assertion of the power-on reset signal, negation of
JCOMP, or through TAP controller state machine transitions controlled by TMS. Asserting power-on reset
or negating JCOMP results in asynchronous entry into the reset state. While in reset, the following actions
occur:

• The TAP controller is forced into the test-logic-reset state, thereby disabling the test logic and
allowing normal operation of the on-chip system logic to continue unhindered.

• The instruction register is loaded with the IDCODE instruction.

In addition, execution of certain instructions can result in assertion of the internal system reset. These
instructions include EXTEST, CLAMP, and HIGHZ.

19.1.3.2 IEEE 1149.1-2001 Defined Test Modes

The JTAGC supports several IEEE 1149.1-2001 defined test modes. The test mode is selected by loading
the appropriate instruction into the instruction register while the JTAGC is enabled. Supported test
instructions include EXTEST, HIGHZ, CLAMP, SAMPLE, and SAMPLE/PRELOAD. Each instruction
defines the set of data registers that may operate and interact with the on-chip system logic while the
instruction is current. Only one test data register path is enabled to shift data between TDI and TDO for
each instruction.

The boundary scan register is enabled for serial access between TDI and TDO when the EXTEST,
SAMPLE, or SAMPLE/PRELOAD instructions are active. The single-bit bypass register shift stage is
enabled for serial access between TDI and TDO when the HIGHZ, CLAMP, or reserved instructions are
active. The functionality of each test mode is explained in more detail in Section 19.4.4, “JTAGC
Instructions.”

19.1.3.3 Bypass Mode

When no test operation is required, the BYPASS instruction can be loaded to place the JTAGC into bypass
mode. While in bypass mode, the single-bit bypass shift register is used to provide a minimum-length
serial path to shift data between TDI and TDO.

19.1.3.4 TAP Sharing Mode

There are three selectable auxiliary TAP controllers that share the TAP with the JTAGC. Selectable TAP
controllers include the Nexus port controller (NPC), e200z1 OnCE, and e200z0. The instructions required
to grant ownership of the TAP to the auxiliary TAP controllers are ACCESS_AUX_TAP_NPC,
ACCESS_AUX_TAP_ONCE (for e200z1), and ACCESS_AUX_TAP_Z0. Additionally, the instruction
for daisy chaining the e200z1 and e200z0 is ACCESS_AUX_TAP_MULTI (allows instructions to be
clocked into both the e200z0 and e200z1 serially). Instruction opcodes for each instruction are shown in
Table 19-2.

When the access instruction for an auxiliary TAP is loaded, control of the JTAG pins is transferred to the
selected TAP controller. Any data input via TDI and TMS is passed to the selected TAP controller, and any

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

19-4 Freescale Semiconductor
 Preliminary

TDO output from the selected TAP controller is sent back to the JTAGC to be output on the pins. The
JTAGC regains control of the JTAG port during the UPDATE-DR state if the PAUSE-DR state was
entered. Auxiliary TAP controllers are held in RUN-TEST/IDLE while they are inactive.

For more information on the TAP controllers see Chapter 20, “Nexus Development Interface (NDI).”

19.2 External Signal Description
Refer to Table 2-1 and Section 2.7, “Detailed External Signal Descriptions,” for detailed signal
descriptions.

19.3 Memory Map and Registers
This section provides a detailed description of the JTAGC registers accessible through the TAP interface,
including data registers and the instruction register. Individual bit-level descriptions and reset states of
each register are included. These registers are not memory-mapped and can be accessed through the TAP
only.

19.3.1 Instruction Register

The JTAGC uses a 5-bit instruction register as shown in Figure 19-3. The instruction register allows
instructions to be loaded into the module to select the test to be performed or the test data register to be
accessed or both. Instructions are shifted in through TDI while the TAP controller is in the Shift-IR state,
and latched on the falling edge of TCK in the Update-IR state. The latched instruction value can be
changed in the Update-IR and Test-Logic-Reset TAP controller states only. Synchronous entry into the
test-logic-reset state results in the IDCODE instruction being loaded on the falling edge of TCK.
Asynchronous entry into the test-logic-reset state results in asynchronous loading of the IDCODE
instruction. During the capture-IR TAP controller state, the instruction shift register is loaded with the
value 0b10101, making this value the register’s read value when the TAP controller is sequenced into the
Shift-IR state.

19.3.2 Bypass Register

The bypass register is a single-bit shift register path selected for serial data transfer between TDI and TDO
when the BYPASS, CLAMP, HIGHZ, or reserve instructions are active. After entry into the capture-DR
state, the single-bit shift register is set to a logic 0. Therefore, the first bit shifted out after selecting the
bypass register is always a logic 0.

0 1 2 3 4

R 1 0 1 0 1

W Instruction Code

Reset 0 0 0 0 1

Figure 19-3. 5-Bit Instruction Register

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 19-5
 Preliminary

19.3.3 Device Identification Register

The device identification register, shown in Figure 19-4, allows the part revision number, design center,
part identification number, and manufacturer identity code to be determined through the TAP. The device
identification register is selected for serial data transfer between TDI and TDO when the IDCODE
instruction is active. Entry into the capture-DR state while the device identification register is selected
loads the IDCODE into the shift register to be shifted out on TDO in the Shift-DR state. No action occurs
in the update-DR state.

19.3.4 Boundary Scan Register

The boundary scan register is connected between TDI and TDO when the EXTEST, SAMPLE, or
SAMPLE/PRELOAD instructions are active. It is used to capture input pin data, force fixed values on
output pins, and select a logic value and direction for bidirectional pins. Each bit of the boundary scan
register represents a separate boundary scan register cell, as described in the IEEE 1149.1-2001 standard
and discussed in Section 19.4.5, “Boundary Scan.” The size of the boundary scan register is 276 bits.

19.4 Functional Description

19.4.1 JTAGC Reset Configuration

While in reset, the TAP controller is forced into the test-logic-reset state, thus disabling the test logic and
allowing normal operation of the on-chip system logic. The instruction register is also loaded with the
IDCODE instruction.

IR[4:0]: 0_0001 (IDCODE) Access: User read only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PRN DC PIN MIC ID

W

Reset1

1 PRN default value is 0x0 for the device’s initial mask set and changes for each mask set revision.

* * * * 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 1

Figure 19-4. Device Identification Register

Table 19-1. Device Identification Register Field Descriptions

Field Description

PRN Part Revision Number. Contains the revision number of the device. This field changes with each revision of the device
or module.

DC Design Center. Indicates the Freescale design center. For the MPC5510 family this value is 0x20.

PIN Part Identification Number. Contains the part number of the device. For the MPC5510 family, this value is 0x116.

MIC Manufacturer Identity Code. Contains the reduced Joint Electron Device Engineering Council (JEDEC) ID for
Freescale, 0xE.

ID IDCODE Register ID. Identifies this register as the device identification register and not the bypass register. Always
set to 1.

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

19-6 Freescale Semiconductor
 Preliminary

19.4.2 IEEE 1149.1-2001 (JTAG) Test Access Port

The JTAGC uses the IEEE 1149.1-2001 TAP for accessing registers. This port can be shared with other
TAP controllers on the MCU. Ownership of the port is determined by the value of the JCOMP signal and
the currently loaded instruction. For more detail on TAP sharing via JTAGC instructions refer to
Section 19.4.4.2, “ACCESS_AUX_TAP_x Instructions.”

Data is shifted between TDI and TDO though the selected register starting with the least significant bit, as
illustrated in Figure 19-5. This applies for the instruction register, test data registers, and the bypass
register.

Figure 19-5. Shifting Data Through a Register

19.4.3 TAP Controller State Machine

The TAP controller is a synchronous state machine that interprets the sequence of logical values on the
TMS pin. Figure 19-6 shows the machine’s states. The value shown next to each state is the value of the
TMS signal sampled on the rising edge of the TCK signal. As Figure 19-6 shows, holding TMS at logic 1
while clocking TCK through a sufficient number of rising edges also causes the state machine to enter the
test-logic-reset state.

Selected Register

msb lsb

TDI TDO

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 19-7
 Preliminary

Figure 19-6. IEEE 1149.1-2001 TAP Controller Finite State Machine

TEST LOGIC
RESET

RUN-TEST/IDLE SELECT-DR-SCAN SELECT-IR-SCAN

CAPTURE-DR CAPTURE-IR

SHIFT-DR SHIFT-IR

EXIT1-DR EXIT1-IR

PAUSE-DR PAUSE-IR

EXIT2-DR EXIT2-IR

UPDATE-DR UPDATE-IR

1

0

111

0 0

0 0

1 1

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

1 1
0 0

0

NOTE: The value shown adjacent to each state transition in this figure represents the value of TMS at the time
of a rising edge of TCK.

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

19-8 Freescale Semiconductor
 Preliminary

19.4.3.1 Enabling the TAP Controller

The JTAGC TAP controller is enabled by setting JCOMP to a logic 1 value.

19.4.3.2 Selecting an IEEE 1149.1-2001 Register

Access to the JTAGC data registers is achieved by loading the instruction register with any of the JTAGC
instructions while the JTAGC is enabled. Instructions are shifted in via the select-IR-scan path and loaded
in the update-IR state. At this point, all data register access is performed via the select-DR-scan path.

The select-DR-scan path is used to read or write the register data by shifting in the data (lsb first) during
the shift-DR state. When reading a register, the register value is loaded into the IEEE 1149.1-2001 shifter
during the capture-DR state. When writing a register, the value is loaded from the IEEE 1149.1-2001
shifter to the register during the update-DR state. When reading a register, there is no requirement to shift
out the entire register contents. Shifting may be terminated after the required number of bits have been
acquired.

19.4.4 JTAGC Instructions

The JTAGC implements the IEEE 1149.1-2001 defined instructions listed in Table 19-2. This section gives
an overview of each instruction, refer to the IEEE 1149.1-2001 standard for more details

Table 19-2. JTAG Instructions

Instruction Code[4:0] Instruction Summary

IDCODE 00001 Selects device identification register for shift

SAMPLE/PRELOAD 00010 Selects boundary scan register for shifting, sampling, and
preloading without disturbing functional operation

SAMPLE 00011 Selects boundary scan register for shifting and sampling
without disturbing functional operation

EXTEST 00100 Selects boundary scan register while applying preloaded
values to output pins and asserting functional reset

HIGHZ 01001 Selects bypass register while three-stating all output pins and
asserting functional reset

CLAMP 01100 Selects bypass register while applying preloaded values to
output pins and asserting functional reset

ACCESS_AUX_TAP_NPC 10000 Grants the Nexus port controller (NPC) ownership of the TAP

ACCESS_AUX_TAP_ONCE 10001 Grants the Nexus e200z1 core interface ownership of the TAP

ACCESS_AUX_TAP_Z0 11001 Grants the Nexus e200z0 core interface ownership of the TAP

ACCESS_AUX_TAP_MULTI 11100 Daisy chaining the e200z1 and e200z0 cores—allows
instructions to be clocked into both the e200z0 and e200z1
serially.

BYPASS 11111 Selects bypass register for data operations

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 19-9
 Preliminary

19.4.4.1 BYPASS Instruction

BYPASS selects the bypass register, creating a single-bit shift register path between TDI and TDO.
BYPASS enhances test efficiency by reducing the overall shift path when no test operation of the MCU is
required. This allows more rapid movement of test data to and from other components on a board that are
required to perform test functions. While the BYPASS instruction is active, the system logic operates
normally.

19.4.4.2 ACCESS_AUX_TAP_x Instructions

The ACCESS_AUX_TAP_x instructions allow the Nexus modules on the MCU to take control of the TAP.
When this instruction is loaded, control of the TAP pins is transferred to the selected auxiliary TAP
controller. Any data input via TDI and TMS is passed to the selected TAP controller, and any TDO output
from the selected TAP controller is sent back to the JTAGC to be output on the pins. The JTAGC regains
control of the JTAG port during the UPDATE-DR state if the PAUSE-DR state was entered. Auxiliary TAP
controllers are held in RUN-TEST/IDLE while they are inactive.

See Section 19.5, “e200z0 and e200z1 OnCE Controllers,” for a block diagram and e200z0 OnCE
controller register descriptions.

19.4.4.3 CLAMP Instruction

CLAMP allows the state of signals driven from MCU pins to be determined from the boundary scan
register while the bypass register is selected as the serial path between TDI and TDO. CLAMP enhances
test efficiency by reducing the overall shift path to a single bit (the bypass register) while conducting an
EXTEST type of instruction through the boundary scan register. CLAMP also asserts the internal system
reset for the MCU to force a predictable internal state.

19.4.4.4 EXTEST — External Test Instruction

EXTEST selects the boundary scan register as the shift path between TDI and TDO. It allows testing of
off-chip circuitry and board-level interconnections by driving preloaded data contained in the boundary
scan register onto the system output pins. Typically, the preloaded data is loaded into the boundary scan
register using the SAMPLE/PRELOAD instruction before the selection of EXTEST. EXTEST asserts the
internal system reset for the MCU to force a predictable internal state while performing external boundary
scan operations.

Factory Debug Reserved1 00101, 00110,
01010

Intended for factory debug only

Reserved2 All Other Codes Decoded to select bypass register

1 Intended for factory debug, and not customer use
2 Freescale reserves the right to change the decoding of reserved instruction codes in the future

Table 19-2. JTAG Instructions (continued)

Instruction Code[4:0] Instruction Summary

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

19-10 Freescale Semiconductor
 Preliminary

19.4.4.5 HIGHZ Instruction

HIGHZ selects the bypass register as the shift path between TDI and TDO. While HIGHZ is active, all
output drivers are placed in an inactive drive state (for example, high impedance). HIGHZ also asserts the
internal system reset for the MCU to force a predictable internal state.

19.4.4.6 IDCODE Instruction

IDCODE selects the 32-bit device identification register as the shift path between TDI and TDO. This
instruction allows interrogation of the MCU to determine its version number and other part identification
data. IDCODE is the instruction placed into the instruction register when the JTAGC is reset.

19.4.4.7 SAMPLE Instruction

The SAMPLE instruction obtains a sample of the system data and control signals present at the MCU input
pins and immediately before the boundary scan register cells at the output pins. This sampling occurs on
the rising edge of TCK in the capture-DR state when the SAMPLE instruction is active. The sampled data
is viewed by shifting it through the boundary scan register to the TDO output during the Shift-DR state.
There is no defined action in the update-DR state. Both the data capture and the shift operation are
transparent to system operation.

19.4.4.8 SAMPLE/PRELOAD Instruction

The SAMPLE/PRELOAD instruction has two functions:

• First, the SAMPLE portion of the instruction obtains a sample of the system data and control
signals present at the MCU input pins and immediately before the boundary scan register cells at
the output pins. This sampling occurs on the rising edge of TCK in the capture-DR state when the
SAMPLE/PRELOAD instruction is active. The sampled data is viewed by shifting it through the
boundary scan register to the TDO output during the shift-DR state. The data capture and the shift
operation are transparent to system operation.

• Secondly, the PRELOAD portion of the instruction initializes the boundary scan register cells
before selecting the EXTEST or CLAMP instructions to perform boundary scan tests. This is
achieved by shifting in initialization data to the boundary scan register during the shift-DR state.
The initialization data is transferred to the parallel outputs of the boundary scan register cells on
the falling edge of TCK in the update-DR state. The data is applied to the external output pins by
the EXTEST or CLAMP instruction. System operation is not affected.

19.4.5 Boundary Scan

The boundary scan technique allows signals at component boundaries to be controlled and observed
through the shift-register stage associated with each pad. Each stage is part of a larger boundary scan
register cell, and cells for each pad are interconnected serially to form a shift-register chain around the
border of the design. The boundary scan register consists of this shift-register chain, and is connected
between TDI and TDO when the EXTEST, SAMPLE, or SAMPLE/PRELOAD instructions are loaded.
The shift-register chain contains a serial input and serial output, as well as clock and control signals.

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 19-11
 Preliminary

19.5 e200z0 and e200z1 OnCE Controllers
The e200z0 core OnCE controller supports a complete set of Nexus 1 debug features, as well as providing
access to the Nexus2+ configuration registers. A complete discussion of the e200z0 OnCE debug features
is available in the e200z0 Reference Manual.

The following sections will describe functionality of the e200z0 OnCE controller; however, the e200z1
OnCE controller operates in the same manner as the e200z0 OnCE controller, and is fully documented in
the e200z1 Reference Manual.

NOTE
The register select field in the e200z1 OnCE command register
(OCMD[RS]) does not implement the shared nexus control register (SNC).

19.5.1 e200z0 OnCE Controller Block Diagram

Figure 19-7 is a block diagram of the e200z0 OnCE block.

Figure 19-7. e200z0 OnCE Block Diagram

19.5.2 e200z0 OnCE Controller Functional Description

The functional description for the e200z0 OnCE controller is the same as for the JTAGC, with the
differences described below.

TCK

e200z0_TMS

TDI

Test Access Port (TAP)

e200z0_TDO

Bypass Register

External Data Register

.

.

Controller

TAP Instruction Register
.

OnCE Mapped Debug Registers

Auxiliary Data Register

.

.

.

e200z0_TRST

(OnCE OCMD)

TDO Mux
Control

{From
JTAGC

(to JTAGC)

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

19-12 Freescale Semiconductor
 Preliminary

19.5.2.1 Enabling the TAP Controller

To access the e200z0 OnCE controller, the proper JTAGC instruction needs to be loaded in the JTAGC
instruction register, as discussed in Section 19.1.3.4, “TAP Sharing Mode”. The e200z0 OnCE TAP
controller may either be accessed independently or chained with the e200z1 OnCE TAP controller, such
that the TDO output of the e200z1 TAP controller is fed into the TDI input of the e200z0 TAP controller.
The chained configuration allows commands to be loaded into both core’s OnCE registers in one shift
operation, so that both cores can be sent a GO command at the same time for example.

19.5.3 e200z0 OnCE Controller Register Descriptions

Most e200z0 OnCE debug registers are fully documented in the e200z0 Reference Manual. The MPC5510
implements a new shared nexus control register (SNC) which is defined in Section 19.5.3.2, “OnCE
Shared Nexus Control Register (SNC).”

The SNC register is used to configure which core is being traced by the Nexus2+ block, and how the
outputs of the Nexus2+ block affect each core.

The SNC register requires a new encoding in the OnCE command register’s register select field
(OCMD[RS]), as defined in Section 19.5.3.1, “OnCE Command Register (OCMD).”

19.5.3.1 OnCE Command Register (OCMD)

The OnCE command register (OCMD) is a 10-bit shift register that receives its serial data from the TDI
pin and serves as the instruction register (IR). It holds the 10-bit commands to be used as input for the
e200z0 OnCE Decoder. The OCMD is shown in Figure 19-8. The OCMD is updated when the TAP
controller enters the update-IR state. It contains fields for controlling access to a resource, as well as
controlling single-step operation and exit from OnCE mode.

Although the OCMD is updated during the update-IR TAP controller state, the corresponding resource is
accessed in the DR scan sequence of the TAP controller, and as such, the update-DR state must be
transitioned through in order for an access to occur. In addition, the update-DR state must also be
transitioned through in order for the single-step and/or exit functionality to be performed, even though the
command appears to have no data resource requirement associated with it.

0 1 2 3 4 5 6 7 8 9

R
R/W GO EX RS

W

Reset: 0 0 0 0 0 1 1 0 1 1

Figure 19-8. OnCE Command Register (OCMD)

Table 19-3. e200z0 OnCE Register Addressing

RS Register Selected

000 0000 – 000 0001 Reserved

000 0010 JTAG ID (read-only)

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 19-13
 Preliminary

19.5.3.2 OnCE Shared Nexus Control Register (SNC)

This register determines which core has ownership of the Nexus2+ tracing functionality, which core’s
master ID is used during Nexus2+ DMA access, and if the Nexus EVTI debug request is used as a debug
request to either or both cores. This register is only available on the e200z0 core.

000 0011 – 000 1111 Reserved

001 0000 CPU Scan Register (CPUSCR)

001 0001 No Register Selected (Bypass)

001 0010 OnCE Control Register (OCR)

001 0011 – 001 1111 Reserved

010 0000 Instruction Address Compare 1 (IAC1)

010 0001 Instruction Address Compare 2 (IAC2)

010 0010 Instruction Address Compare 3 (IAC3)

010 0011 Instruction Address Compare 4 (IAC4)

010 0100 Data Address Compare 1 (DAC1)

010 0101 Data Address Compare 2 (DAC2)

010 0110 – 010 1111 Reserved

011 0000 Debug Status Register (DBSR)

011 0001 Debug Control Register 0 (DBCR0)

011 0010 Debug Control Register 1 (DBCR1)

011 0011 Debug Control Register 2 (DBCR2)

011 0100 – 101 1111 Reserved (do not access)

110 1111 Shared Nexus Control Register (SNC)
(only available on the e200z0 core)

111 0000 – 111 1001 General Purpose Register Selects [0:9]

111 1010 – 111 1011 Reserved

111 1100 Nexus2+ Access

111 1101 LSRL Select
(factory test use only)

111 1110 Enable_OnCE

111 1111 Bypass

Table 19-3. e200z0 OnCE Register Addressing (continued)

RS Register Selected

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

19-14 Freescale Semiconductor
 Preliminary

19.6 Initialization/Application Information
The test logic is a static logic design, and TCK can be stopped in either a high or low state without loss of
data. However, the system clock is not synchronized to TCK internally. Any mixed operation using both
the test logic and the system functional logic requires external synchronization.

To initialize the JTAGC module and enable access to registers, the following sequence is required:

1. Set the JCOMP signal to logic 1, thereby enabling the JTAGC TAP controller.

2. Load the appropriate instruction for the test or action to be performed.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 DBGRE 0 0 ND 0 0 NT

W

Reset 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Figure 19-9. OnCE Shared Nexus Control Register (SNC)

Table 19-4. SNC Bit Description

Field Description

bits 0–21 Reserved.

DBGRE EVTI Debug Request Enable.
00 Disabled
x1 EVTI is used for debug request for e200z0
1x EVTI is used for debug request for e200z1
Note: The user will still need to program the Nexus2+ DC1[4:3] register in each core to enable the debug request.

bits 24–25 Reserved.

ND Nexus2+ DMA Control. Determines which core’s master ID is used during Nexus2+ DMA access.
00 DMA read/writes appear to be generated by e200z0
01 DMA read/writes appear to be generated by e200z1
1x Reserved (default to e200z0)
Note: The selected master ID for Nexus2+ DMA access is set independently of which core is currently being

traced.
Note: ND does not control which core actually performs the Nexus read/write (DMA) access, it only controls the

master ID that the access uses for the transfer. All Nexus read/writes are performed by the e200z0 core.

bits 28–29 Reserved

NT Nexus2+ Trace Mode. Determines which core has ownership of the Nexus2+ Tracing functionality.
00 e200z0 has ownership of Nexus2+
01 e200z1 has ownership of Nexus2+
1x Reserved (Default to e200z0)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 20-1
 Preliminary

Chapter 20
Nexus Development Interface (NDI)

20.1 Introduction
NOTE

The Power PC standard is to number the register bits according to the
MSB=0 convention. However, the Nexus standard is to number the register
bits according to the LSB=0 convention.

Register bits in this chapter are numbered according to the Nexus standard
(LSB=0 convention).

The Nexus Development Interface (NDI) block provides real-time development support capabilities for
the MPC5510 MCU in compliance with the IEEE-ISTO 5001-2003 standard. This development support
is supplied for MCUs without requiring external address and data pins for internal visibility.

The NDI block is an integration of several individual Nexus blocks that are selected to provide the
development support interface for MPC5510.

The NDI block interfaces to the e200z1, e200z0, and internal buses to provide development support as per
the IEEE-ISTO 5001-2003 standard. The development support provided includes program trace,
watchpoint messaging, ownership trace, watchpoint triggering, processor overrun control, run-time access
to the MCU’s internal memory map, and access to the e200z1 and e200z0 internal registers during halt,
via the JTAG port.

NOTE
Because the Nexus pins are multiplexed with the EBI pins on MPC5510,
several constraints apply when using the NDI along with the EBI.

To use the NDI with the EBI...

1. Run the EBI in 16-bit data port mode with data multiplexed on the
LSB side.

2. Set EVT_EN low in the Nexus control register, to free up EVTI on
PF0 and EVTO on PF1.

3. Configure the EBI pins. (After clearing EVT_EN, you can reclaim
PF0/PF1).

4. Disconnect PF0 from the Nexus probe (probe drives EVTI high), and
ensure that PFO is connected to memory R/W.

Nexus Development Interface (NDI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

20-2 Freescale Semiconductor
 Preliminary

20.2 Block Diagram
Figure 20-1 shows a functional block diagram of the NDI.

A simplified block diagram of the NDI illustrates the functionality and interdependence of major blocks
(see Figure 20-2) and how the individual Nexus blocks are combined to form the NDI.

Figure 20-1. NDI Functional Block Diagram

Power-on

TCK

JCOMP

EVTO

MSEO

MDO

reset

Message
queue

Program trace

Ownership trace

Watchpoint trace

CPU
snoop

Message
formatter

Arbiter

Divided system
clock

e200z1
trace

information

e200z0
trace

information

MCKO

Input
TAP

controller

Control registers
to trace blocks

TDO

TDI

TMS

EVTI
Reset
control

Nexus Development Interface (NDI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 20-3
 Preliminary

Figure 20-2. NDI Implementation Block Diagram

20.2.1 Features

The NDI module of the MPC5510 is compliant with Class 2 of the IEEE-ISTO 5001-2003 standard, with
additional Class 3 and Class 4 features available. The following features are implemented:

• Program trace via branch trace messaging (BTM). Branch trace messaging displays program flow
discontinuities (direct and indirect branches, exceptions, etc.), allowing the development tool to
interpolate what transpires between the discontinuities. Thus static code may be traced.

TDO

Cross-bar

Power-on

JCOMP

MCKO

EVTO

MDO[7:0]

MSEO

PPC

reset

BP/WP
control

OnCE/
Nexus1

TAP

Core
select
MUX

Program/
ownership

Register
control

Read/write
access

Message
FIFO

Message
transmitter

Nexus2+
interface

Auxiliary
port

arbitration/
MUXing

BP/WP
control

OnCE/
Nexus1

TAP
PPC

e200z1

Reset
control

TAP
Register
control

Clock
control

e200z0

Nexus port
controller

TDO
MUXing

JTAG controller

TDI

EVTI

TMS

Nexus Development Interface

z0_tdo

z0_tms

z0_tdi

tclk

1
0

trace

z1_tdo
tdi

TAP

npc_tms

z0_tdo

z0_tms

z1_tms

z1_tdo
npc_tdo

Access
auxiliary

TAP

npc_tdo
npc_tms
tdi, tclk

TCK

tdi, tclk
z1_tms
z1_tdo

Nexus Development Interface (NDI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

20-4 Freescale Semiconductor
 Preliminary

• Ownership trace via ownership trace messaging (OTM). OTM facilitates ownership trace by
providing visibility of which process ID or operating system task is activated. An ownership trace
message is transmitted when a new process/task is activated, allowing the development tool to
trace ownership flow.

• Watchpoint messaging via the auxiliary pins.

• Watchpoint trigger enable of program trace messaging.

• Auxiliary interface for higher data input/output.

— Configurable (min./max) message data out pins (four MDO in reduced-port mode or eight
MDO in full-port mode.

— One message start/end out pins (MSEO).

— One watchpoint event pin (EVTO).

— One event-in pin (EVTI).

— One message clock out pin (MCKO).

— Five pin JTAG port (JCOMP, TDI, TDO, TMS, and TCK).

• Registers for program trace, ownership trace, and watchpoint trigger.

• All features controllable and configurable via the JTAG port.

• Run-time access to the on-chip memory map via the Nexus read/write access protocol. This allows
for enhanced download/upload capabilities.

• All features are independently configurable and controllable via the IEEE 1149.1 I/O port.

• The NDI block reset is controlled with JCOMP, power-on reset, and the TAP state machine. All
theses sources are independent of system reset.

• Power-on-reset status indication via MDO[0].

• Support for internal censorship mode to prevent external access to flash memory contents when
censorship is enabled.

NOTE
If the e200z1 and e200z0 cores have executed a wait instruction, then the
Nexus2+ controller clocks are gated off. While both cores are in this state,
it will not be possible to perform Nexus read/write operations.

20.2.2 Modes of Operation

The NDI block is in reset when the TAP controller state machine is in the TEST-LOGIC-RESET state. The
TEST-LOGIC-RESET state is entered on the assertion of the power-on reset signal, negation of JCOMP,
or through state machine transitions controlled by TMS. Assertion of JCOMP allows the NDI to move out
of the reset state, and is a prerequisite to grant Nexus clients control of the TAP. Ownership of the TAP is
achieved by loading the appropriate enable instruction for the desired Nexus client in the JTAGC controller
(JTAGC) block when JCOMP is asserted.

The NPC transitions out of the reset state immediately following negation of power-on reset.

Nexus Development Interface (NDI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 20-5
 Preliminary

20.2.2.1 Nexus Reset

In Nexus reset mode, the following actions occur:

• Register values default back to their reset values.

• The message queues are marked as empty.

• The auxiliary output port pins are negated if the NDI controls the pads.

• The TDO output buffer is disabled if the NDI has control of the TAP.

• The TDI, TMS, and TCK inputs are ignored.

• The NDI block indicates to the MCU that it is not using the auxiliary output port. This indication
can be used to three-state the output pins or use them for another function.

20.2.2.2 Full-Port Mode

In full-port mode, all available MDO pins are used to transmit messages. All trace features are enabled or
can be enabled by writing the configuration registers via the JTAG port. Eight MDO pins are available in
full-port mode.

20.2.2.3 Reduced-Port Mode

In reduced-port mode, a subset of the available MDO pins are used to transmit messages. All trace features
are enabled or can be enabled by writing the configuration registers via the JTAG port. Four MDO pins
are available. Unused MDO pins can be used as GPIO. Details on GPIO functionality configuration can
be found in Chapter 6, “System Integration Unit (SIU).” Four MDO pins are available in reduced-port
mode.

20.2.2.4 Disabled-Port Mode

In disabled-port mode, message transmission is disabled. Any debug feature that generates messages can
not be used. The primary features available are class 1 features and read/write access.

20.2.2.5 Censored Mode

The NDI supports internal flash censorship mode by preventing the transmission of trace messages and
Nexus access to memory-mapped resources when censorship is enabled.

20.2.2.6 Stop Mode

Stop mode logic is implemented in the Nexus port controller (NPC). When a request is made to enter stop
mode, the NDI block completes monitoring of any pending bus transaction, transmits all messages already
queued, and acknowledges the stop request. After the acknowledgment, the system clock input are shut off
by the clock driver on the device. While the clocks are shut off, the development tool cannot access NDI
registers via the JTAG port.

Nexus Development Interface (NDI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

20-6 Freescale Semiconductor
 Preliminary

20.3 External Signal Description
With the exception of the JCOMP signal, all signals are shared by all the individual blocks that make up
the NDI block. The Nexus port controller (NPC) block controls the signal sharing. The JCOMP signal is
input to the NPC block and used to generate the Nexus reset control signal.

Refer to Table 2-1 and Section 2.7, “Detailed External Signal Descriptions,” for detailed signal
descriptions.

20.3.1 Nexus Signal Reset States

20.4 Memory Map and Registers
The NDI block contains no memory-mapped registers. Nexus registers are accessed by a development tool
via the JTAG port using a client-select value and a register index. OnCE registers are accessed by loading
the appropriate value in the RS field of the OnCE command register (OCMD) via the JTAG port.

20.4.1 Nexus Debug Interface Registers

Table 20-2 shows the NDI registers by client select and index values. OnCE register addressing is
documented in Chapter 19, “IEEE 1149.1 Test Access Port Controller (JTAGC).”

Table 20-1. NDI Signal Reset State

Name Function
Nexus Reset

State
Pull

EVTI Event-in pin — Up

EVTO Event-out pin 0b1 —

MCKO Message clock out pin 0b0 —

MDO[3:0]
or

MDO[7:0]

Message data out pins 01

1 MDO[0] reflects the state of the internal power on reset signal until RESET is
negated.

—

MSEO Message start/end out pins 0b11 —

Table 20-2. Nexus Debug Interface Registers

Client Select Index Register

Client-Independent Registers

0bxxxx 0 Device ID (DID)1

0bxxxx 1 Client select control (CSC)1

0bxxxx 127 Port configuration register (PCR)1

e200z0 Control/Status Registers

0b0000 2 e200z0 development control1 (DC1)

Nexus Development Interface (NDI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 20-7
 Preliminary

20.4.2 Register Descriptions

This section lists the NDI registers and describes the registers and their bit fields.

20.4.2.1 Nexus Device ID Register (DID)

The NPC device identification register, shown in Figure 20-3, allows the part revision number, design
center, part identification number, and manufacturer identity code of the device to be determined through
the auxiliary output port, and serially through TDO. This register is read-only.

0b0000 3 e200z0 development control2 (DC2)

0b0000 4 e200z0 development status (DS)

0b0000 7 Read/write access control/status (RWCS)

0b0000 9 Read/write access address (RWA)

0b0000 10 Read/write access data (RWD)

0b0000 11 e200z0 watchpoint trigger (PPC_WT)

1 Implemented in NPC block. All other registers implemented in e200z0 Nexus2+ block. This register is not
used on the MPC5510.

Reg Index: 0 Access: User read only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PRN DC PIN

W

Reset 1

1 Part Revision Number default value is 0x0 for the device’s initial mask set and changes for each mask set revision.

* * * * 1 0 0 0 0 0 0 1 0 0 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PIN (continued) MIC 1

W

Reset 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 1

Figure 20-3. Nexus Device ID Register (DID)

Table 20-3. DID Field Descriptions

Field Description

PRN Part Revision Number. Contains the revision number of the part. This field changes with each revision of
the device or module.

DC Design Center. Indicates the Freescale design center. This value is 0x20.

Table 20-2. Nexus Debug Interface Registers (continued)

Client Select Index Register

Nexus Development Interface (NDI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

20-8 Freescale Semiconductor
 Preliminary

20.4.2.2 Port Configuration Register (PCR)

The PCR is used to select the NPC mode of operation, enable MCKO and select the MCKO frequency,
and enable or disable MCKO gating. This register should be configured as soon as the NDI is enabled.

The PCR register may be rewritten by the debug tool subsequent to the enabling of the NPC for low power
debug support. In this case, the debug tool may set and clear the LP_DBG_EN, SLEEP_SYNC, and
STOP_SYNC bits, but must preserve the original state of the remaining bits in the register.

NOTE
The mode or clock division must not be modified after MCKO has been
enabled. Changing the mode or clock division while MCKO is enabled can
produce unpredictable results.

PIN Part Identification Number. Contains the part number of the device. The PIN value for the MPC5510
family is 0x0116.

MIC Manufacturer Identity Code. Contains the reduced Joint Electron Device Engineering Council (JEDEC)
ID for Freescale, 0x00E.

bit 0 Fixed Per JTAG 1149.1. Always set to 1.

Reg Index: 127 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

FPM

M
C

K
O

_G
T

M
C

K
O

_E
N

MCKO_DIV

E
V

T
_E

N 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

LP
_D

B
G

_E
N 0 0 0 0 0

S
LE

E
P

_S
Y

N
C

S
T

O
P

_S
Y

N
C 0 0 0 0 0 0 0

P
S

T
A

T
_E

N

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 20-4. Port Configuration Register (PCR)

Table 20-3. DID Field Descriptions (continued)

Field Description

Nexus Development Interface (NDI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 20-9
 Preliminary

Table 20-4. PCR Field Descriptions

Field Description

FPM Full Port Mode.The value of the FPM bit determines if the auxiliary output port uses the full MDO port or
a reduced MDO port to transmit messages.
0 A subset of MDO pins are used to transmit messages.
1 All MDO pins are used to transmit messages.

MCKO_GT MCKO Clock Gating Control.This bit is used to enable or disable MCKO clock gating. If clock gating is
enabled, the MCKO clock is gated when the NPC is in enabled mode but not actively transmitting
messages on the auxiliary output port. When clock gating is disabled, MCKO is allowed to run even if no
auxiliary output port messages are being transmitted.
0 MCKO gating is disabled.
1 MCKO gating is enabled.

MCKO_EN MCKO Enable. This bit enables the MCKO clock to run. When enabled, the frequency of MCKO is
determined by the MCKO_DIV field.
0 MCKO clock is driven to zero.
1 MCKO clock is enabled.

MCKO_DIV MCKO Division Factor. The value of this signal determines the frequency of MCKO relative to the system
clock frequency when MCKO_EN is asserted. In this table, SYS_CLK represents the system clock
frequency.

EVT_EN EVTO/EVTI Enable. This bit enables the EVTO/EVTI port functions.
0 EVTO/EVTI port disabled.
1 EVTO/EVTI port enabled.

bits 24–16 Reserved.

LP_DBG_EN Low Power Debug Enable. The LP_DBG_EN bit enables debug functionality to support entry and exit
from low power sleep and stop modes.
0 Low power debug disabled.
1 Low power debug enabled.

bits 14–10 Reserved.

MCKO_DIV MCKO Frequency

0b000 SYSCLK÷1

0b001 SYSCLK÷2

0b010 Reserved

0b011 SYS_CLK÷4

0b100 Reserved

0b101 Reserved

0b110 Reserved

0b111 SYS_CLK÷8

Nexus Development Interface (NDI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

20-10 Freescale Semiconductor
 Preliminary

20.4.2.3 Development Control Register 1, 2 (DC1, DC2)

The development control registers are used to control the basic development features of the Nexus module.
Figure 20-5 shows development control register 1 and Table 20-5 describes the register’s fields.

SLEEP_SYNC Sleep Mode Synchronization. The SLEEP_SYNC bit is used to synchronize the entry into sleep mode
between the device and debug tool. The device sets this bit before a pending entry into sleep mode. After
reading SLEEP_SYNC as set, the debug tool then clears SLEEP_SYNC to acknowledge to the device
that it may enter into sleep mode.
0 Sleep mode entry acknowledge.
1 Sleep mode entry pending.

STOP_SYNC Stop Mode Synchronization. The STOP_SYNC bit is used to synchronize the entry into stop mode
between the device and debug tool. The device sets this bit before a pending entry into stop mode. After
reading STOP_SYNC as set, the debug tool then clears STOP_SYNC to acknowledge to the device that
it may enter into stop mode.
0 Stop mode entry acknowledge.
1 Stop mode entry pending

bits 7–1 Reserved.

PSTAT_EN Processor Status Mode Enable. MPC5510 does not support the PSTAT mode. Setting PSTAT_EN will
drive zeros to the MDO and MSEO pins.

Nexus Reg: 0x0002 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R OPC MCK_DIV
EOC

0
PTM WEN

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
OVC EIC TM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 20-5. Development Control Register 1 (DC1)

Table 20-5. DC1 Field Descriptions

Field Description

OPC1 Output Port Mode Control.
0 Reduced-port mode configuration (4 MDO pins).
1 Full-port mode configuration (8 MDO pins).

MCK_DIV1 MCKO Clock Divide Ratio (see note below).
00 MCKO is 1x processor clock frequency.
01 MCKO is 1/2x processor clock frequency.
10 MCKO is 1/4x processor clock frequency.
11 MCKO is 1/8x processor clock frequency.

Table 20-4. PCR Field Descriptions (continued)

Field Description

Nexus Development Interface (NDI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 20-11
 Preliminary

Development control register 2 is shown in Figure 20-6 and its fields are described in Table 20-6.

EOC EVTO Control.
00 EVTO upon occurrence of watchpoints (configured in DC2).
01 EVTO upon entry into debug mode.
10 EVTO upon timestamping event.
11 Reserved.

bit 26 Reserved.

PTM Program Trace Method.
0 Program trace uses traditional branch messages.
1 Program trace uses branch history messages.

WEN Watchpoint Trace Enable.
0 Watchpoint messaging disabled.
1 Watchpoint messaging enabled.

bits 23–8 Reserved.

OVC Overrun Control.
000 Generate overrun messages.
001–010 Reserved.
011 Delay processor for BTM / DTM / OTM overruns.
1XX Reserved.

EIC EVTI Control.
00 EVTI is used for synchronization (program trace/ data trace).
01 EVTI is used for debug request.
1X Reserved.

TM Trace Mode. Any or all of the TM bits may set, enabling one or more traces.
000 No trace.
1XX Program trace enabled.
X1X Data trace enabled.
XX1 Ownership trace enabled.

1 The output port mode control bit (OPC) and MCKO divide bits (MCK_DIV) are shown for clarity. These functions are
controlled globally by the NPC port control register (PCR). These bits are writable in the PCR but have no effect.

Nexus Reg: 0x0003 Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
EWC

0 0

W

Reset 0

Figure 20-6. Development Control Register 2 (DC2)

Table 20-5. DC1 Field Descriptions (continued)

Field Description

Nexus Development Interface (NDI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

20-12 Freescale Semiconductor
 Preliminary

NOTE
The EOC bits in DC1 must be programmed to trigger EVTO on watchpoint
occurrence for the EWC bits to have any effect.

20.4.2.4 Development Status Register (DS)

The development status register is used to report system debug status. When debug mode is entered or
exited, or a core-defined low-power mode is entered, a debug status message is transmitted with DS. The
external tool can read this register at any time.

Table 20-6. DC2 Field Descriptions

Field Description

EWC EVTO Watchpoint Configuration. Any or all of the bits in EWC may be set to configure the EVTO watchpoint.
00000000 No Watchpoints trigger EVTO
1XXXXXXX Watchpoint #0 (IAC1 from Nexus1) triggers EVTO.
X1XXXXXX Watchpoint #1 (IAC2 from Nexus1) triggers EVTO.
XX1XXXXX Watchpoint #2 (IAC3 from Nexus1) triggers EVTO.
XXX1XXXX Watchpoint #3 (IAC4 from Nexus1) triggers EVTO.
XXXX1XXX Watchpoint #4 (DAC1 from Nexus1) triggers EVTO.
XXXXX1XX Watchpoint #5 (DAC2 from Nexus1) triggers EVTO.
XXXXXX1X Watchpoint #6 (DCNT1 from Nexus1) triggers EVTO.
XXXXXXX1 Watchpoint #7 (DCNT2 from Nexus1) triggers EVTO.

bits 23–0 Reserved.

Nexus Reg: 0x0004 Access: User read only

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R DBG 0 0 0 LPC CHK 0

W

Reset 0

Figure 20-7. Development Status Register (DS)

Table 20-7. DS Field Descriptions

Field Description

DBG CPU Debug Mode Status.
0 CPU not in debug mode.
1 CPU in debug mode.

bits 30–28 Reserved.

LPC CPU Low-Power Mode Status.
00 Normal (run) mode.
01 CPU in halted state.
10 CPU in stopped state.
11 Reserved.

Nexus Development Interface (NDI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 20-13
 Preliminary

20.4.2.5 Read/Write Access Control/Status (RWCS)

The read write access control/status register provides control for read/write access. Read/write access
provides DMA-like access to memory-mapped resources on the system bus while the processor is halted
or during runtime. The RWCS register also provides read/write access status information as shown in
Table 20-9.

CHK CPU Checkstop Status.
0 CPU not in checkstop state.
1 CPU in checkstop state.

bits 24–0 Reserved.

Nexus Reg: 0x0007 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
AC RW SZ MAP PR BST

0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CNT ERR DV

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 20-8. Read/Write Access Control/Status Register (RWCS)

Table 20-8. RWCS Field Description

Field Description

AC Access Control.
0 End access.
1 Start access.

RW Read/Write Select.
0 Read access.
1 Write access.

SZ Word Size.
000 8-bit (byte.)
001 16-bit (halfword).
010 32-bit (word).
011 64-bit (doubleword—only in burst mode).
100–111 Reserved (default to word).

MAP MAP Select.
000 Primary memory map.
001-111 Reserved.

Table 20-7. DS Field Descriptions (continued)

Field Description

Nexus Development Interface (NDI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

20-14 Freescale Semiconductor
 Preliminary

Table 20-9 details the status bit encodings.

20.4.2.6 Read/Write Access Address (RWA)

The read/write access address register provides the system bus address to be accessed when initiating a
read or a write access.

20.4.2.7 Read/Write Access Data (RWD)

The read/write access data register provides the data to/from system bus memory-mapped locations when
initiating a read or a write access.

PR Read/Write Access Priority.
00 Lowest access priority.
01 Reserved (default to lowest priority).
10 Reserved (default to lowest priority).
11 Highest access priority.

BST Burst Control.
0 Module accesses are single bus cycle at a time.
1 Module accesses are performed as burst operation.

bits 20–16 Reserved.

CNT Access Control Count. Number of accesses of word size SZ.

ERR Read/Write Access Error. See Table 20-9.

DV Read/Write Access Data Valid. See Table 20-9.

Table 20-9. Read/Write Access Status Bit Encoding

Read Action Write Action ERR DV

Read access has not completed Write access completed without error 0 0

Read access error has occurred Write access error has occurred 1 0

Read access completed without error Write access has not completed 0 1

Not allowed Not allowed 1 1

Nexus Reg: 0x0009 Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Read/Write Address

W

Reset 0

Figure 20-9. Read/Write Access Address Register (RWA)

Table 20-8. RWCS Field Description (continued)

Field Description

Nexus Development Interface (NDI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 20-15
 Preliminary

20.4.2.8 Watchpoint Trigger Register (WT)

The watchpoint trigger register allows the watchpoints defined within the Nexus1 logic to trigger actions.
These watchpoints can control program and/or data trace enable and disable. The WT bits can be used to
produce an address-related window for triggering trace messages.

Table 20-10 details the watchpoint trigger register fields.

Nexus Reg: 0x000A Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Read/Write Data

W

Reset 0

Figure 20-10. Read/Write Access Data Register (RWD)

Nexus Reg: 0x000B Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PTS PTE DTS DTE

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0

Figure 20-11. Watchpoint Trigger Register (WT)

Table 20-10. WT Field Descriptions

Field Description

PTS Program Trace Start Control.
000 Trigger disabled.
001 Use watchpoint #0 (IAC1 from Nexus1).
010 Use watchpoint #1 (IAC2 from Nexus1).
011 Use watchpoint #2 (IAC3 from Nexus1).
100 Use watchpoint #3 (IAC4 from Nexus1).
101 Use watchpoint #4 (DAC1 from Nexus1).
110 Use watchpoint #5 (DAC2 from Nexus1).
111 Use watchpoint #6 or #7 (DCNT1 or DCNT2 from Nexus1).

PTE Program Trace End Control.
000 Trigger disabled.
001 Use watchpoint #0 (IAC1 from Nexus1).
010 Use watchpoint #1 (IAC2 from Nexus1).
011 Use watchpoint #2 (IAC3 from Nexus1).
100 Use watchpoint #3 (IAC4 from Nexus1).
101 Use watchpoint #4 (DAC1 from Nexus1).
110 Use watchpoint #5 (DAC2 from Nexus1).
111 Use watchpoint #6 or #7 (DCNT1 or DCNT2 from Nexus1).

Nexus Development Interface (NDI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

20-16 Freescale Semiconductor
 Preliminary

NOTE
The WT bits will only control program/data trace if the TM bits in the
development control register 1 (DC1) have not already been set to enable
program and data trace, respectively.

20.5 Functional Description
The NDI block is implemented by integrating the following blocks on the MPC5510:

• Nexus e200z0 development interface (OnCE and Nexus2p sub-blocks)

• Nexus port controller (NPC) Block

20.5.1 Enabling Nexus Clients for TAP Access

After the conditions have been met to bring the NDI out of the reset state, the loading of a specific
instruction in the JTAG controller (JTAGC) block is required to grant the NDI ownership of the TAP. Each
Nexus client has its own JTAGC instruction opcode for ownership of the TAP, granting that client the
means to read/write its registers. The JTAGC instruction opcode for each Nexus client is shown in
Table 20-11. After the JTAGC opcode for a client has been loaded, the client is enabled by loading its
NEXUS-ENABLE instruction. The NEXUS-ENABLE instruction opcode for each Nexus client is listed
in Table 20-12. Opcodes for all other instructions supported by Nexus clients can be found in the relevant
sections of this chapter.

When the ACCESS_AUX_TAP_MULTI instruction has been loaded into the JTAGC OCMD register, the
TDO output of the e200z1 TAP controller will be connected to the TDI input to the e200z0 TAP controller.

DTS Data Trace Start Control.
000 Trigger disabled.
001 Use watchpoint #0 (IAC1 from Nexus1).
010 Use watchpoint #1 (IAC2 from Nexus1).
011 Use watchpoint #2 (IAC3 from Nexus1).
100 Use watchpoint #3 (IAC4 from Nexus1).
101 Use watchpoint #4 (DAC1 from Nexus1).
110 Use watchpoint #5 (DAC2 from Nexus1).
111 Use watchpoint #6 or #7 (DCNT1 or DCNT2 from Nexus1).

DTE Data Trace End Control.
000 Trigger disabled.
001 Use watchpoint #0 (IAC1 from Nexus1).
010 Use watchpoint #1 (IAC2 from Nexus1).
011 Use watchpoint #2 (IAC3 from Nexus1).
100 Use watchpoint #3 (IAC4 from Nexus1).
101 Use watchpoint #4 (DAC1 from Nexus1).
110 Use watchpoint #5 (DAC2 from Nexus1).
111 Use watchpoint #6 or #7 (DCNT1 or DCNT2 from Nexus1).

bits 19–0 Reserved.

Table 20-10. WT Field Descriptions (continued)

Field Description

Nexus Development Interface (NDI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 20-17
 Preliminary

This allows debug commands to be simultaneously loaded into both TAP controllers, and is useful in
getting the cores to simultaneously exit debug mode for example.

20.5.2 Configuring the NDI for Nexus Messaging

The NDI is placed in disabled mode upon exit of reset. If message transmission via the auxiliary port is
desired, a write to the port configuration register (PCR) located in the NPC is then required to enable the
NDI and select the mode of operation. Asserting MCKO_EN in the PCR places the NDI in enabled mode
and enables MCKO. The frequency of MCKO is selected by writing the MCKO_DIV field. Asserting or
negating the FPM bit selects full-port or reduced-port mode, respectively. When writing to the PCR, the
PCR LSB must be written to a logic zero. Setting the LSB of the PCR enables factory debug mode and
prevents the transmission of Nexus messages.

Table 20-13 describes the NDI configuration options.

Table 20-11. JTAGC Instruction Opcodes to Enable Nexus Clients

JTAGC Instruction Opcode Description

ACCESS_AUX_TAP_NPC 10000 Enables access to the NPC TAP controller.

ACCESS_AUX_TAP_ONCE 10001 Enables access to the e200z1 TAP controller.

ACCESS_AUX_TAP_Z0 11001 Enables access to the e200z0 TAP controller.

ACCESS_AUX_TAP_MULTI 11100 Enables access to the e200z1 and e200z0 TAP controllers
chained together.

Table 20-12. Nexus Client JTAG Instructions

Instruction Description Opcode

NPC JTAG Instruction Opcodes

NEXUS_ENABLE Opcode for NPC Nexus ENABLE instruction (4-bits) 0x0

BYPASS Opcode for the NPC BYPASS instruction (4-bits) 0xF

e200z0 OnCE JTAG Instruction Opcodes1

1 Refer to the e200z0 reference manual for a complete list of available OnCE instructions.

NEXUS2_ACCESS Opcode for e200z0 OnCE Nexus ENABLE instruction
(10-bits)

0x7C

BYPASS Opcode for the e200z0 OnCE BYPASS instruction (10-bits) 0x7F

e200z1 OnCE JTAG Instruction Opcodes2

2 Refer to the e200z1 reference manual for a complete list of available OnCE instructions.

BYPASS Opcode for the e200z1 OnCE BYPASS instruction (10-bits) 0x7F

Table 20-13. NDI Configuration Options

JCOMP Asserted
MCKO_EN bit of the

Port Configuration Register
FPM bit of the

Port Configuration Register
Configuration

No X X Reset

Yes 0 X Disabled

Nexus Development Interface (NDI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

20-18 Freescale Semiconductor
 Preliminary

20.5.3 Switching Ownership of Nexus2+

On MPC5510, the Nexus2+ is shared by the e200z1 and e200z0 cores. Out of reset, the default ownership
of the Nexus2+ belongs to the e200z0 core.

To switch the trace between cores, without a system reset, requires a software reset of the Nexus2+
registers to clear the previously programmed values. The following sequence is an example of a software
reset. It is recommended that both CPUs be placed in debug mode when switching program trace.

1. Disable tracing by writing to the TM bits in DC1.

2. Switch control to the other core by writing to the NT bits in SNC.

3. Reprogram all trace related Nexus2+ registers as desired.

4. Enable tracing by writing to the TM bits in DC1 or by writing to WT.

5. Exit debug mode.

20.5.4 Programmable MCKO Frequency

MCKO is an output clock to the development tools used for the timing of MSEO and MDO pin functions.
MCKO is derived from the system clock, and its frequency is determined by the value of the MCKO_DIV
field in the port configuration register (PCR) located in the NPC. Possible operating frequencies include
one-quarter and one-eighth system clock speed.

Table 20-14 shows the MCKO_DIV encodings. In this table, SYS_CLK represents the system clock
frequency. The default value selected if a reserved encoding is programmed is SYS_CLK÷1.

NOTE
On MPC5510, the pad type used for the Nexus2+ signals will not support
the SYSCLK÷1 or SYSCLK÷2 setting, so the user must change the MCKO
frequency to be not faster than SYSCLK÷4.

Yes 1 1 Full-port mode

Yes 1 0 Reduced-port mode

Table 20-14. MCKO_DIV Values

MCKO_DIV MCKO Frequency

0b000 SYSCLK÷1

0b001 SYSCLK÷2

0b010 Reserved

0b011 SYS_CLK÷4

0b100 Reserved

Table 20-13. NDI Configuration Options (continued)

JCOMP Asserted
MCKO_EN bit of the

Port Configuration Register
FPM bit of the

Port Configuration Register
Configuration

Nexus Development Interface (NDI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 20-19
 Preliminary

20.5.5 Nexus Messaging

Most of the messages transmitted by the NDI include an SRC field. This field is used to identify which
source generated the message. Figure 20-15 shows the values used for the SRC field by the different
clients on the MPC5510. These values are specific to the MPC5510. The size of the SRC field in
transmitted messages is 4 bits. This value is also specific to the MPC5510. The same values are used for
the client select values written to the client select control register.

20.5.6 EVTO Sharing

The NPC block controls sharing of the EVTO output between all Nexus clients that generate an EVTO
signal. The sharing mechanism is a logical AND of all incoming EVTO signals from Nexus blocks,
thereby asserting EVTO whenever any block drives its EVTO. When there is no active MCKO, such as in
disabled mode, the NPC drives EVTO for two system clock periods. EVTO sharing is active as long as the
NDI is not in reset.

20.5.7 Nexus2+ DMA Control

The shared Nexus2+ implementation allows each core to perform DMA access independently of the core
being traced. The setting of the ND bits in the OnCE shared Nexus control register (SNC) determines
which CPU’s master ID is used during Nexus2+ DMA access. Depending on the configuration of the
MPU, different master IDs in DMA transfers may be needed to distinguish which core initiated the access
to the peripheral, so that the access is not blocked by the MPU.

The DMA control can be switched between the CPUs whenever the Nexus2+ DMA is idle.

20.5.8 Debug Mode Control

On MPC5510, program breaks can be requested either by using the EVTI pin as a break request, or when
a Nexus event is triggered. These break requests can affect either of the e200z1 or e200z0 cores, or can be
used to request a break for both cores.

0b101 Reserved

0b110 Reserved

0b111 SYS_CLK÷8

Table 20-15. SRC Packet Encodings

SRC MPC5510 Client

0b0000 e200z1

0b1000 e200z0

All other combinations Reserved

Table 20-14. MCKO_DIV Values (continued)

MCKO_DIV MCKO Frequency

Nexus Development Interface (NDI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

20-20 Freescale Semiconductor
 Preliminary

20.5.8.1 EVTI Generated Break Request

To use the EVTI pin as a debug request, the EIC field in the e200z0 Nexus2+ Development Control
Register 1 (DC1) must be set to configure the EVTI input as a debug request. The Shared Nexus Control
Register (SNC) EVTI Debug Request Enable field can then be used to control which core, or both,
responds to the assertion of the EVTI pin.

20.5.8.2 Nexus Event-Out Generated Break Request

On MPC5510, the Nexus2+ event-out signal has been connected to the external debug event 2 input to
both cores. This allows the assertion of a Nexus event-out signal to trigger a debug request to either or both
cores.

To use the Nexus event-out signal as a debug request, the EOC field in the e200z0 Nexus2+ development
control register 1 (DC1) must be set to enable the assertion of the event-out signal on the occurrence of a
watchpoint, entry into debug mode, or upon a time-stamping event.

To enable the debug request for a given core, the DEVT2 field of the associated core’s OnCE debug control
register 0 (DBCR0) must be set to enable debug events when the DEVT2 input asserts.

A description of Nexus support when leaving low power sleep mode is given in Section 5.3.4.1, “Low
Power Mode Debug Support”.

Figure 20-12 and Figure 20-13 show the process flow to initialize the e200z1 as the core generating the
event-out break request, and the e200z0 as the core receiving the break request. This configuration will
cause the e200z0 to follow the e200z1 into debug mode. The e200z0 may be configured as the core
generating the break request, and the e200z1 as the core receiving the break request, by reversing the roles
of the e200z0 and e200z1 in Figure 20-12 and Figure 20-13.

Nexus Development Interface (NDI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 20-21
 Preliminary

Figure 20-12. Nexus Event-Out Generated Break Request (5510) — Part 1

Process flow used to initialize z1 as
“break request master” and z0 as “break
request slave”
Basically, this configuration will cause
the z0 to follow the z1 into debug mode

Assert
System Reset

- Enable Nexus
- Select NPC PCR Register and
- Configure FPM, MCK_EN,

EVT_EN, and MCK fields.

- Access Nexus Dev Control Register 1
- Configure EOC Field (EVTO Control)

- Select ONcE DBCR0
- Set EDM Bit

- Select ONcE SNCR
(Shared Nexus Control Register)
- Configure NT bit field for Z1 Ownership

- Select ONcE Control Register (OCR)
- Set DR bit (request debug mode right

out of reset).

- Select ONcE Control Register (OCR)
- Set DR bit (request debug mode right

out of reset).

Negate
System Reset

NPC

Z0, Z1 Mult

Z0

Z1

Nexus Development Interface (NDI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

20-22 Freescale Semiconductor
 Preliminary

Figure 20-13. Nexus Event-Out Generated Break Request (5510) — Part 2

20.5.9 Nexus Reset Control

The JCOMP input that is used as the primary reset signal for the NPC is also used by the NPC to generate
a single-bit reset signal for other Nexus blocks. The single bit reset signal functions much like the IEEE
1149.1-2001 defined TRST signal but has a default value of disabled (JCOMP is pulled low during reset)
The IEEE 1149.1-2001 defines TRST to be pulled up (enabled) by default.

- Using Nexus Read/Write Access,
Configure the CRP Z0VEC register

- Select DBCR0 Register.
- Set DEVT2 Bit

- Select ONcE CMD register.
- Set EX bit to exit debug mode.

Z1 Breakpoint
Reached or
entered debug
mode?

- Select DBSR
- Write to DEVT2 bit to clear it.

Z0 Enters Debug
Mode

NPC

Z0, Z1 Mult

Z0

Z1

- Select ONcE Control Register (OCR)
- Set DR bit (request debug mode right

out of reset).

Yes

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 21-1
 Preliminary

Chapter 21
Internal Static RAM (SRAM)

21.1 Introduction
The MPC5510 provides 80 KB of general-purpose system SRAM, that is implemented using ten 8 KB
arrays. This implementation allows a configurable number of arrays to remain powered during low-power
sleep modes.

21.1.1 Block Diagram

A simplified block diagram of the SRAM illustrates the functionality and interdependence of major blocks
(see Figure 21-1).

Internal Static RAM (SRAM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

21-2 Freescale Semiconductor
 Preliminary

Figure 21-1. SRAM Block Diagram

21.1.2 Features

The SRAM has these major features:

• Supports read/write accesses mapped to the SRAM memory from any master

• Configurable number of 8 KB blocks powered during low-power sleep

• Byte, halfword, and word addressable

• Error correcting code (ECC) performs single bit correction, double bit detection on a 32-bit
boundary

SRAM A
8 KB

CRP_PSCR[RAMSEL] & SLEEP

Power gate
VDD15 voltage
regulator

SRAM B
8 KB

CRP_PSCR[RAMSEL] & SLEEP

Power gate

SRAM C
8 KB

CRP_PSCR[RAMSEL] & SLEEP

Power gate

SRAM D
8 KB

SRAM E
8 KB

SRAM F
8 KB

SRAM G
8 KB

SRAM H
8 KB

CRP_PSCR[RAMSEL] & SLEEP

Power gate

SRAM I
8 KB

CRP_PSCR[RAMSEL] & SLEEP

Power gate

SRAM J
8 KB

Internal Static RAM (SRAM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 21-3
 Preliminary

21.1.3 Modes of Operation

There are two main operating modes of SRAM: normal mode and sleep mode. These modes are briefly
described in this section.

21.1.3.1 Normal (Functional) Mode

Allows for reads and writes of the SRAM memory arrays.

21.1.3.2 Sleep Mode

Preserves the contents of the portion of the memory, as defined by the CRP_PSCR[RAMSEL] register,
during low-power sleep mode.

21.2 External Signal Description
There are no external signals associated with the SRAM.

21.3 Memory Map and Registers
This section provides an array memory map of the SRAM. There are no registers associated with the
SRAM.

21.3.1 Array Memory Map

Table 21-1 list the addresses ranges of the SRAM whose contents are maintained during the various
low-power sleep modes. All SRAM is powered during run and stop modes.

Table 21-1. SRAM Array Address Range

Address Range Size Description

0x4000_0000–0x4000_1FFF 8 KB RAM array A

0x4000_2000–0x4000_3FFF 8 KB RAM array B

0x4000_4000–0x4000_5FFF 8 KB RAM array C

0x4000_6000–0x4000_7FFF 8 KB RAM array D

0x4000_8000–0x4000_9FFF 8 KB RAM array E

0x4000_A000–0x4000_BFFF 8 KB RAM array F

0x4000_C000–0x4000_DFFF 8 KB RAM array G

0x4000_E000–0x4000_FFFF 8 KB RAM array H

0x4001_0000–0x4001_1FFF 8 KB RAM array I

0x4000_2000–0x4001_3FFF 8 KB RAM array J

Internal Static RAM (SRAM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

21-4 Freescale Semiconductor
 Preliminary

21.3.2 Register Descriptions

The SRAM has no registers. The registers associated with the ECC are located in the MCM, see
Section 16.2.2.5, “ECC Registers,” in Chapter 16, “Miscellaneous Control Module (MCM).”

21.4 Functional Description
The AMBA-AHB bus is a two stage pipelined bus that may require the SRAM controller to insert a wait
state during certain types of back-to-back accesses. The SRAM controller implements a late-write-buffer
to enable zero wait state write-read combinations.

To implement ECC, the RAM BIU generates a 39 bit code word based upon a 32 bit data write. During a
read operation, single bit corrections are made and multiple bit errors are flagged. The ECC code that was
chosen will perform single bit corrections and indicate a multiple bit error on all double-bit errors. A code
word of 39 zeros and 39 ones will cause a multiple bit error. Multiple bit errors will assert an error
indication with the bus cycle, as well as setting the PRNCE bit in the MCM’s ESR.

During a write operation for 8-bit and 16-bit writes, a read of 32-bit data will be checked for ECC, prior
to merging in the write data. If a correction is required, it will be corrected prior to merging in the write
data. Then a new ECC code word is generated and written to the RAM. If a multiple bit error occurs during
the read portion of the write operation, then the write will not be performed.

CAUTION
It is essential for the ECC check bits to be initialized after power on. The
write transfer must be 32 bits in size because a less than 32 bit write transfer
will generate a read/modify/write operation that will check the ECC value
upon the read.

21.4.1 Access Timing

The AMBA-AHB bus is a two stage pipelined bus, which makes the timing of any access dependent on
the access during the previous clock. Table 21-2 shows the wait states for accesses. Current is the type of
access being measured during the current clock. Previous is the SRAM access during the previous clock.

Table 21-2. Wait States During SRAM Access

Current Previous Wait States

Read Idle 0

Read 0

32-bit write 0

8/16-bit write 1

32-bit write Idle 0

Read 0

32-bit write 0

8/16-bit write 1

Internal Static RAM (SRAM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 21-5
 Preliminary

21.4.2 Reset Operation

A 'destructive' reset is associated with an event after which critical register or memory content can no
longer be guaranteed, if a write operation occurred during the event.

'Destructive' resets are as follows.

• Power-on reset

• 1.5 V low-voltage detect

• 3.3 V low-voltage detect

• 3.3SynV low-voltage detect

• 5.0Vlv5l low-voltage detect

• 5.0Vlv5 low-voltage detect (if enabled)

• External reset

• PLL loss of clock (if enabled)

• PLL loss of lock (if enabled)

The user code must re-initialize the RAM after any of the above resets; otherwise, an ECC event might
occur.

21.5 DMA Requests
There are no DMA requests associated with the system SRAM.

21.6 Interrupt Requests
There are no interrupt requests associated with the system SRAM, except for the ECC reporting through
the MCM module.

21.7 Initialization/Application Information
You must initialize the ECC check bits after the device is powered on before you can use the SRAM. The
write transfer must be 32 or 64 bits, on a 32-bit boundary. If not, a read/modify/write operation is generated
that checks the ECC value upon the read.

8/16-bit write Idle 0

Read 0

32-bit write 0

8/16-bit write 1

Table 21-2. Wait States During SRAM Access (continued)

Current Previous Wait States

Internal Static RAM (SRAM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

21-6 Freescale Semiconductor
 Preliminary

NOTE
You must initialize the SRAM, even if the application does not use ECC
reporting. If using a part with less than 80 KB of RAM, you must also
initialize four words past the end address (or up to the entire 80 KB space).

21.7.1 Example Code

It is essential that each memory address be written to a known value before it is read. This includes reads
generated from the read/modify/write operation which occurs when a write transfer of less than 32 bits or
unaligned write is requested. Without writing an address to a known value first, a read from this address
will most likely generate an ECC multiple error.

The following Book E assembly instructions (Example 21-1), formed as a subroutine, is an example of
clearing SRAM memory space. This code clears 0x2000 bytes of memory.

Example 21-1. Clearing SRAM Memory Space

 enable_and_invalidate_sram();
 asm ("li r14,0x2000"); // size to clear
 asm ("lis r13,0x4000"); // RAM base address
 asm ("clear_mem:");
 asm ("subi r14,r14,0x20");
 asm ("dcbz r14,r13");
 asm ("dcbf r14,r13");
 asm ("cmpwi r14,0x0");
 asm ("beq continue");
 asm ("b clear_mem");

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 22-1
 Preliminary

Chapter 22
Flash Array and Control

22.1 Introduction
The primary function of the flash memory block is to serve as electrically programmable and erasable
non-volatile memory. The NVM memory can be used for instruction and data storage. The block is a
non-volatile solid-state silicon memory device consisting of blocks of single-transistor storage elements,
an electrical means for selectively adding (programming) and removing (erasing) charge from these
elements, and a means of selectively sensing (reading) the charge stored in these elements. The flash is
addressable by word (32 bits) and page (128 bits).

The flash block is arranged as two functional units. The first functional unit is the flash core (FC). The FC
is composed of arrayed non-volatile storage elements, sense amplifiers, row selects, column selects, charge
pumps, and redundancy logic. The arrayed storage elements in the FC are sub-divided into physically
separate units referred to as blocks.

The second functional unit of the flash is the memory interface (MI). The MI contains the registers and
logic which control the operation of the FC. The MI is also the interface to the platform flash bus interface
unit (PFBIU).

The flash core has three address spaces. The low-address space is 256 KB. The mid-address space is also
256 KB. The high-address space is 1 MB. The 256 KB of low memory will be implemented using eight
16 KB blocks and two 64 KB blocks. The mid and high memory will be implemented using ten 128 KB
blocks.

Figure 22-1 shows the segmentation for the flash on MPC5510.

Flash Array and Control

MPC5510 Microcontroller Family Reference Manual, Rev. 1

22-2 Freescale Semiconductor
 Preliminary

Figure 22-1. Flash Segmentation

22.2 Block Diagram
Figure 22-2 shows a block diagram of the flash memory module. The FBIU is addressed through the
system bus while the flash control and status registers are addressed through the slave (peripheral) bus.

Figure 22-2. Flash System Block Diagram

Low-address space

High-address space

Mid-address space

Flash array blocks

Low-address space — 256 KB

Mid-address space — 256 KB

High-address space — 1 MB

8x16Kbyte + 2x64 KB

2x128 KB

8x128 KB

Flash bus
interface

unit
(FBIU)

Flash memory

Flash memory block

Flash core

Control/status
registers

interface
(MI)

VFLASHVSS VDD VPP

Slave
bus

System
bus

Note: VPP is the only externally visible power supply that is necessary for the
programming and erasing of the flash array (see Section 22.3, “External
Signal Description.”)

Flash Array and Control

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 22-3
 Preliminary

22.2.1 Features

The flash has these major features:

• Software programmable block program/erase restriction control for low-, mid-, and high-address
space

• Erase of selected block(s)

• Read page size of 128 bits (4 words)

• ECC with single-bit correction, double-bit detection

• Page programming (64-bit granularity)

• Embedded hardware program and erase algorithm

• Read while write with multiple partitions

• Stop mode for low-power stand-by

• Erase suspend, program suspend and erase-suspended program

• Automotive flash, which meets automotive endurance and reliability requirements

• Shadow information stored in non-volatile shadow block

• Independent program/erase of shadow block

22.2.2 Modes of Operation

There are three main operating modes of flash: user mode, stop mode, and disable mode. These modes are
briefly described in this section.

User mode is the default operating mode of the flash module. In this mode, it is possible to read and write,
program and erase the flash module. In user mode, program and erase operations are initiated by the user,
but controlled by an internal state machine.

Stop mode is a low-power stand-by mode in which only read and write of the MCR register space is
enabled. Stop mode turns off all DC current sources within the flash module.

Disable mode turns off all DC current sources and no reads from or writes to the flash module are allowed.
The FC and registers are not accessible for read and write after they are disabled.

22.3 External Signal Description
Vpp is the only externally visible power supply that is necessary for programming and erasing the flash
array. The other flash supplies are tied to the appropriate supply pads in the package. Refer to Table 2-1
and Section 2.7, “Detailed External Signal Descriptions,” and the MPC5510 Microcontroller Family Data
Sheet.

Flash Array and Control

MPC5510 Microcontroller Family Reference Manual, Rev. 1

22-4 Freescale Semiconductor
 Preliminary

22.4 Memory Map and Registers
This section provides a detailed description of all flash registers.

22.4.1 Module Memory Map

The flash memory map is shown in Table 22-1. The addresses are given as an offset to the flash base
address.

The flash register memory map is shown in Table 22-2. There are no program-visible registers that
physically reside inside the flash. The flash receives control and configuration information from the flash
array controller to determine operating configurations. These are part of the flash array controller’s
configuration registers mapped into the IPS address space but are described herein. These registers should
only be referenced with 32-bit accesses.

Table 22-1. Flash Memory Map

Offset from FLASH_BASE
(0x0000_0000)

Use Block Partition

0x0000_0000 Low-address space L0 1

0x0000_4000 L1

0x0000_8000 L2

0x0000_C000 L3

0x0001_0000 L4 2

0x0001_4000 L5

0x0001_8000 L6

0x0001_C000 L7

0x0002_0000 L8 3

0x0003_0000 L9

0x0004_0000 Mid-address space M0 4

0x0006_0000 M1

0x0008_0000 High-address space H0 5

0x000A_0000 H1

0x000C_0000 H2 6

0x000E_0000 H3

0x0010_0000 H4 7

0x0012_0000 H5

0x0014_0000 H6 8

0x0016_0000 H7

0x0018_0000–0xF0_FFFF Reserved

Flash Array and Control

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 22-5
 Preliminary

22.4.2 Register Descriptions

This section lists the flash registers in address order and describes the registers and their bit fields.

0x00FF_8000–0x00FF_FDD3 General use S All1

0x00FF_FDD8 Serial passcode (0xFEED_FACE_CAFE_BEEF)

0x00FF_FDE0 Censorship control word (0x55AA_55AA)

0x00FF_FDE4 IRC trim 8 bytes unused

0x00FF_FDE5 IRC trim 8 bytes unused

0x00FF_FDE6 TRIM32IRC 8 bytes

0x00FF_FDE7 TRIMIRC 8 bytes

0x00FF_FDE8 LML reset configuration (0x0010_0000)

0x00FF_FDEC General use

0x00FF_FDF0 HBL reset configuration (0x0FFF_FFFF)

0x00FF_FDF4 General use

0x00FF_FDF8 SLL reset configuration (0x000F_FFFF)

0x00FF_FDFC– 0x00FF_FFFF General use

1 For read while write operations, the shadow row behaves as if it is in all partitions.

Table 22-2. Flash Configuration Register Memory Map

Offset from
FLASH_REGS_BASE

(0xFFFF_8000)
Register Access Reset Value Section/Page

0x0000 MCR—Module configuration register R/W1

1 Some bits are read only.

0x0540_3200 22.4.2.1/22-6

0x0004 LML—Low-/Mid-address space block locking register R/W1 0x001F_FFFF 22.4.2.2/22-9

0x0008 HBL—High-address space block locking register R/W1 0x0FFF_FFFF 22.4.2.3/22-11

0x000C SLL—Secondary low-/mid-address space block locking
register

R/W1 0x001F_FFFF 22.4.2.4/22-12

0x0010 LMS—Low-/mid-address space block select register R/W1 0x0000_0000 22.4.2.5/22-13

0x0014 HBS—High-address space block select register R/W1 0x0000_0000 22.4.2.6/22-14

0x0018 ADR—Address register R/W1 0x0000_0000 22.4.2.7/22-14

0x001C PFCRP0—Platform flash configuration register for
port 0

R/W1 0x0000_FF00 22.4.2.8/22-15

0x0020 PFCRP1—Platform flash configuration register for
port 1

R/W1 0x3000_FF00 22.4.2.8/22-15

0x0028 – 0x3FFF Reserved

Table 22-1. Flash Memory Map (continued)

Offset from FLASH_BASE
(0x0000_0000)

Use Block Partition

Flash Array and Control

MPC5510 Microcontroller Family Reference Manual, Rev. 1

22-6 Freescale Semiconductor
 Preliminary

22.4.2.1 Module Configuration Register (MCR)

The MCR reset value is 0x0540_3200. This may read as 0x0540_3600 if enough time has passed to allow
the DONE bit to be set.

Offset: FLASH_REGS_BASE + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 SFS SIZE 0 LAS 0 0 0 MAS

W

Reset 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EER RWE BBEPE EPE PEAS DONE PEG 0
PRD STOP

0
PGM PSUS ERS ESUS EHV

W w1c w1c

Reset 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0

Figure 22-3. Module Configuration Register (MCR)

Table 22-3. MCR Field Descriptions

Field Description

bits 0–2 Reserved.

SFS Special Flash Sector. For MPC5510, this read-only bit field is 0b0 indicating no special flash sector size.

SIZE The value of the SIZE field depends on the size of the flash module. For MPC5510, this bit field is 0b0101
indicating a 1.5 MB array size (with 1 MB in high-address space).

bit 8 Reserved.

LAS Low-Address Space Size. The value of the LAS field corresponds to the configuration of the low-address space.
For MPC5510, this bit field is 0b100 indicating 8 x 16 KB + 2 x 64 KB blocks in low-address space.

bits 12–14 Reserved.

MAS Mid-Address Space Size. The value of the MAS corresponds to the configuration of the mid-address space. For
MPC5510, this bit field is 0b0 indicating 2 x 128 KB blocks in mid-address space.

EER ECC Event Error. EER provides information on previous reads. If a double bit detection occurred, the EER bit will
be set to 1. This bit must then be cleared or a reset must occur before this bit will return to a 0 state. This bit may
not be set by the user. In the event of a single bit detection and correction, this bit will not be set. If EER is not
set, or remains 0, this indicates that all previous reads (from the last reset, or clearing of EER) were correct. Since
this bit is an error flag, it must be cleared to a 0 by writing a 1 to the register location. A write of 0 will have no effect
0 Reads are occurring normally
1 An ECC Error occurred during a previous read

RWE Read While Write Event Error. Provides information on previous RWW reads. If a read while write error occurs,
this bit will be set to 1. This bit must then be cleared or a reset must occur before this bit will return to a 0 state.
This bit may not be written to a 1 by the user. If RWE is not set, or remains 0, this indicates that all previous RWW
reads (from the last reset, or clearing of RWE) were correct. Since this bit is an error flag, it must be cleared to
a 0 by writing a 1 to the register location. A write of 0 will have no effect.
0 Reads are occurring normally
1 A read while write error occurred during a previous read

18
BBEPE

Boot Block External Program Erase Status. This read-only bit reads as 1.

19
EPE

External Program Erase Status. EPE is a hardware lock that indicates that all blocks including the shadow block
and excluding the boot block are enabled for program/erase. This read-only bit reads as 1.

Flash Array and Control

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 22-7
 Preliminary

20
PEAS

Program/Erase Access Space. Indicates which space is valid for program and erase operations, either main array
space or shadow space. PEAS is read only.
0 Shadow address space is disabled for program/erase and main address space enabled
1 Shadow address space is enabled for program/erase and main address space disabled

21
DONE

State Machine Status. Indicates if the flash module is performing a high-voltage operation. DONE is set to a 1 on
termination of the flash module reset and at the end of program and erase high-voltage sequences.
0 Flash is executing a high-voltage operation
1 Flash is not executing a high-voltage operation

22
PEG

Program/Erase Good. Indicates the completion status of the last flash program or erase sequence for which
high-voltage operations were initiated. The value of PEG is updated automatically during the program and erase
high-voltage operations. Aborting a program/erase high-voltage operation will cause PEG to be cleared,
indicating the sequence failed. PEG is set to a 1 when the module is reset. PEG is read only.

The value of PEG is valid only when PGM = 1 or ERS = 1 and after DONE has transitioned from 0 to 1 due to an
abort or the completion of a program/erase operation. PEG is valid until PGM/ERS makes a 1 to 0 transition or
EHV makes a 0 to 1 transition. The value in PEG is not valid after a 0 to 1 transition of DONE caused by PSUS
or ESUS being set to logic 1. A diagram presenting PEG valid times is shown in Figure 22-4. If PGM and ERS
are both 1 when DONE makes a qualifying 0 to 1 transition the value of PEG indicates the completion status of
the PGM sequence. This happens in an erase-suspended program operation.
0 Program or erase operation failed.
1 Program or erase operation successful.

23 Reserved.

24
PRD

Pipelined Reads Disabled. PRD is used to allow pipelined reads to be disabled. By default PRD is 0, which
enables pipelined accesses. In systems with slower clocks (<30 MHz), the pipelined read feature can be disabled
by writing this bit to a 1. This would allow single cycle clock accesses in systems with a slower clock. In systems
with faster clocks (>30 MHz), accesses will be multiple cycles, and the pipelined read feature may be used to get
faster throughput on successive reads (PRD = 0).
1 Pipelined reads are disabled.
0 Pipelined reads are enabled.
Note: PRD must be set before setting the flash wait states to 0.

25
STOP

Stop Mode Enabled. Puts the flash into stop mode. Changing the value in STOP from a 0 to a 1 places the flash
module in stop mode. A 1 to 0 transition of STOP returns the flash module to normal operation. STOP may be
written only when PGM and ERS are low. When STOP = 1, only the STOP bit in the MCR can be written. In STOP
mode all address spaces, registers, and register bits are deactivated except for the MCR[STOP] bit.

0 Flash is not in stop mode; the read state is active
1 Flash is in stop mode

26 Reserved.

27
PGM

Program. Used to set up flash for a program operation. A 0-to-1 transition of PGM initiates a flash program
sequence. A 1-to-0 transition of PGM ends the program sequence. PGM can be set under one of the following
conditions only:
 • User mode read (STOP and ERS are low).
 • Erase suspend1 (ERS and ESUS are 1) with EHV low.
PGM can be cleared by the user only when PSUS and EHV are low and DONE is high. PGM is cleared on reset.
0 Flash is not executing a program sequence
1 Flash is executing a program sequence

Table 22-3. MCR Field Descriptions (continued)

Field Description

Flash Array and Control

MPC5510 Microcontroller Family Reference Manual, Rev. 1

22-8 Freescale Semiconductor
 Preliminary

28
PSUS

Program Suspend. Indicates the flash module is in program suspend or in the process of entering a suspend
state. The flash module is in program suspend when PSUS = 1 and DONE = 1. PSUS can be set high only when
PGM and EHV are high. A 0 to 1 transition of PSUS starts the sequence which sets DONE and places the flash
in program suspend. PSUS can be cleared only when DONE and EHV are high. A 1 to 0 transition of PSUS with
EHV = 1 starts the sequence which clears DONE and returns the flash module to program. The flash module
cannot exit program suspend and clear DONE while EHV is low. PSUS is cleared on reset.
0 Program sequence is not suspended
1 Program sequence is suspended

29
ERS

Erase. Used to set up flash for an erase operation. A 0 to 1 transition of ERS initiates an flash erase sequence.
A 1 to 0 transition of ERS ends the erase sequence. ERS can be set in a normal operating mode read only (STOP
and PGM are low). ERS can be cleared by the user only when ESUS and EHV are low and DONE is high. ERS
is cleared on reset.
0 Flash is not executing an erase sequence
1 Flash is executing an erase sequence

30
ESUS

Erase Suspend. Indicates that the flash module is in erase suspend or in the process of entering a suspend state.
The flash module is in erase suspend when ESUS = 1 and DONE = 1. ESUS can be set high only when ERS
and EHV are high and PGM is low. A 0 to 1 transition of ESUS starts the sequence which sets DONE and places
the flash in erase suspend. ESUS can be cleared only when DONE and EHV are high and PGM is low. A 1 to 0
transition of ESUS with EHV = 1 starts the sequence which clears DONE and returns the flash module to erase
mode. The flash module cannot exit erase suspend and clear DONE while EHV is low. ESUS is cleared on reset.
0 Erase sequence is not suspended
1 Erase sequence is suspended

31
EHV

Enable High Voltage. Enables the flash module for a high voltage program/erase operation. EHV is cleared on
reset. EHV must be set after an interlock write to start a program/erase sequence. EHV may be set, initiating a
program/erase, after an interlock write under one of the following conditions:
 • Erase (ERS = 1, ESUS = 0).
 • Program (ERS = 0, ESUS = 0, PGM = 1, PSUS = 0).
 • Erase-suspended program (ERS = 1, ESUS = 1, PGM = 1, PSUS = 0).
If a program operation is to be initiated while an erase is suspended, the user must clear EHV while in erase
suspend before setting PGM.
In normal operation, a 1 to 0 transition of EHV with DONE high, PSUS and ESUS low terminates the current
program/erase high-voltage operation.

When an operation is aborted2, there is a 1 to 0 transition of EHV with DONE low and the suspend bit for the
current program/erase sequence low. An abort causes the value of PEG to be cleared, indicating a failed
program/erase; address locations being operated on by the aborted operation contain indeterminate data after
an abort.
A suspended operation cannot be aborted. EHV may be written during suspend. EHV must be high for the flash
to exit suspend. EHV may not be written after a suspend bit is set high and before DONE has transitioned high.
EHV may not be set low after the current suspend bit is set low and before DONE has transitioned low.
0 Flash is not enabled to perform a high-voltage operation.
1 Flash is enabled to perform a high-voltage operation.

1 In an erase-suspended program, programming flash locations in blocks that were being operated on in the erase may corrupt
flash core data. This should be avoided due to reliability implications.

2 Aborting a high voltage operation will leave flash core addresses in an indeterminate data state. This may be recovered by
executing an erase on the affected blocks.

Table 22-3. MCR Field Descriptions (continued)

Field Description

Flash Array and Control

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 22-9
 Preliminary

Figure 22-4. PEG Valid Times

22.4.2.1.1 MCR Simultaneous Register Writes

A number of MCR bits are protected against write when another bit or set of bits is in a specific state. These
write locks are covered on a bit by bit basis in Section 22.4.2.1, “Module Configuration Register (MCR).”
The write locks detailed in that section do not consider the effects of trying to write two or more bits
simultaneously. The effects of writing bits simultaneously, which would put the flash module in an illegal
state, are detailed here.

The flash does not allow the user to write bits simultaneously. This is implemented through a priority
mechanism among the bits. The bit changing priorities are detailed in Table 22-4.

If the user attempts to write two or more MCR bits simultaneously, only the bit with the highest priority
level will be written. Setting two bits with the same priority level is prevented by existing write locks and
will not put the flash in an illegal state.

For example, setting MCR[STOP] and MCR[PGM] simultaneously results in MCR[STOP] only being set.
Attempting to clear MCR[EHV] while setting MCR[PSUS] will result in MCR[EHV] being cleared, but
MCR[PSUS] will remain unaffected.

22.4.2.2 Low-/Mid-Address Space Block Locking Register

The low- and mid-address block locking register provides a means to protect blocks from being modified.
These bits along with bits in the secondary locking register (SLL), determine if the block is locked from
program or erase. An “OR” of LML and SLL determine the final lock status. See Section 22.4.2.4,
“Secondary Low-/Mid-Address Space Block Locking Register (SLL),” for more information on SLL.

Table 22-4. MCR Bit Set/Clear Priority Levels

Priority Level MCR Bits

1 STOP

2 ERS

3 PGM

4 EHV

5 ESUS, PSUS

MCR[PGM/ERS]

MCR[EHV]

MCR[DONE]

MCR[PEG]

PEG
Valid

PEG
Valid

PEG
Valid

Abort Program/Erase

Flash Array and Control

MPC5510 Microcontroller Family Reference Manual, Rev. 1

22-10 Freescale Semiconductor
 Preliminary

NOTE
If blocks are not present (due to configuration or total memory size), the
LOCK bits will default to locked, and will not be writable. The reset value
will always be 1 (independent of the shadow block) and register writes will
have no effect.

Offset: FLASH_REGS_BASE + 0x0004 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R LME 0 0 0 0 0 0 0 0 0 0
SLOCK

1 1
MLOCK[1:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 1 1 1 1 1 1
LLOCK[9:0]

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 22-5. Low-/Mid-Address Space Block Locking Register (LML)

Table 22-5. LML Field Descriptions

Field Description

LME Low- and Mid-Address Lock Enable. Enables the locking register fields (SLOCK, MLOCK, and LLOCK) to be set
or cleared by register writes. This bit is a status bit only. It may not be written or cleared and the reset value is 0.
To set this bit, write a password and if the password matches, the LME bit will be set to reflect the status of
enabled. It is enabled until a reset operation occurs. For LME, the password 0xA1A1_1111 must be written to the
LML.
0 Low- and mid-address locks are disabled, and cannot be modified
1 Low- and mid-address locks are enabled and can be written

bits 1–10 Reserved.

SLOCK Shadow Lock. Locks the shadow row from programs and erases. The SLOCK bit is not writeable if a high-voltage
operation is suspended.
Upon reset, information from the shadow row is loaded into the SLOCK bit. The SLOCK bit may be written as a
register. Reset will cause the bits to go back to their shadow row value. The default value of the SLOCK bit
(assuming the corresponding shadow row bit is erased) would be locked. SLOCK is not writable unless LME is
high.
0 Shadow row is available to receive program and erase pulses.
1 Shadow row is locked for program and erase.

bits 12–13 Reserved.

Flash Array and Control

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 22-11
 Preliminary

22.4.2.3 High-Address Space Block Locking Register (HBL)

The high-address space block locking register provides a means to protect blocks from being modified.

MLOCK[1:0] Mid-Address Block Lock. A value of 1 in a bit of the lock register signifies that the corresponding block is locked
for program and erase. A value of 0 in the lock register signifies that the corresponding block is available to
receive program and erase pulses. Likewise, the lock register is not writable if a high-voltage operation is
suspended.
Upon reset, information from the shadow row is loaded into the block registers. The LOCK bits may be written as
a register. Reset will cause the bits to go back to their shadow row value. The default value of the LOCK bits
(assuming erased fuses) would be locked.

If blocks are not present (due to configuration or total memory size), the LOCK bits will default to locked, and will
not be writable. The reset value will always be 1 (independent of the shadow row), and register writes will have
no effect.
MLOCK is not writable unless LME is high.

bits 16–21 Reserved.

LLOCK[9:0] Low-Address Block Lock. These bits have the same description and attributes as MLOCK. As an example of how
the LLOCK bits are used, if a configuration has sixteen 16 KB blocks in the low-address space
(MCR[LAS] = 0b011), the block residing at address FLASH_REGS_BASE + 0x0000, will correspond to LLOCK0.
The next 16 KB block will correspond to LLOCK1, and so on up to LLOCK15.

Offset: FLASH_REGS_BASE + 0x0008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R HBE 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

W

Reset 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 1 1 1 1 1 1 1 1
HBLOCK[7:0]

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 22-6. High-Address Space Block Locking Register (HBL)

Table 22-6. HBL Field Descriptions

Field Description

HBE High-Address Lock Enable. Enables the locking field (HLOCK) to be set or cleared by register writes. This
bit is a status bit only, may not be written or cleared, and the reset value is 0. To set this bit, write a password
and if the password matches, the HBE bit will be set to reflect the status of enabled. It is enabled until a
reset operation occurs. For HBE, the password 0xB2B2_2222 must be written to HBL.
0 High address locks are disabled, and cannot be modified
1 High address locks are enabled to be written

Table 22-5. LML Field Descriptions (continued)

Field Description

Flash Array and Control

MPC5510 Microcontroller Family Reference Manual, Rev. 1

22-12 Freescale Semiconductor
 Preliminary

22.4.2.4 Secondary Low-/Mid-Address Space Block Locking Register (SLL)

The SLL provides an alternative means to protect blocks from being modified. These bits along with bits
in the lock register (LML), determine if the block is locked from program or erase. An OR of LML and
SLL determine the final lock status. See Section 22.4.2.2, “Low-/Mid-Address Space Block Locking
Register,” for more information on LML.

bits 1–23 Reserved.

HLOCK[7:0] High-Address Space Block Lock. Has the same characteristics as MLOCK. See Section 22.4.2.2,
“Low-/Mid-Address Space Block Locking Register,” for more information. The block numbering for
high-address space starts with HLOCK[0] and continues until all blocks are accounted.
HLOCK is not writable unless HBE is set.
If blocks are not present (due to configuration or total memory size), the HLOCK bits will default to locked,
and will not be writable.

Offset: FLASH_REGS_BASE + 0x000C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SLE 0 0 0 0 0 0 0 0 0 0
SSLOCK

1 1
SMLOCK[1:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 1 1 1 1 1 1
SLLOCK[9:0]

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 22-7. Secondary Low-/Mid-Address Space Block Locking Register (SLL)

Table 22-7. SLL Field Descriptions

Field Description

SLE Secondary Low- and Mid-Address Lock Enable. Enables the secondary lock fields (SSLOCK, SMLOCK,
and SLLOCK) to be set or cleared by register writes. This bit is a status bit only, and may not be written
or cleared, and the reset value is 0. To set this bit, write a password and if the password matches, the
SLE bit will be set to reflect the status of enabled. It is enabled until a reset operation occurs. For SLE,
the password 0xC3C3_3333 must be written to the SLL.
0 Secondary low- and mid-address locks are disabled and cannot be modified
1 Secondary low- and mid-address locks are enabled to be written

bits 1–10 Reserved.

SSLOCK Secondary Shadow Lock. An alternative method that may be used to lock the shadow row from programs
and erases. SSLOCK has the same description as SLOCK in Section 22.4.2.2, “Low-/Mid-Address
Space Block Locking Register.” SSLOCK is not writable unless SLE is high.

bits 12–13 Reserved.

Table 22-6. HBL Field Descriptions (continued)

Field Description

Flash Array and Control

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 22-13
 Preliminary

22.4.2.5 Low-/Mid-Address Space Block Select Register (LMS)

The LMS provides a means to select blocks to be operated on during erase.

SMLOCK[1:0] Secondary Mid-Address Block Lock. Alternative method that may be used to lock the mid-address space
blocks from programs and erases. SMLOCK has the same description as MLOCK in section
Section 22.4.2.2, “Low-/Mid-Address Space Block Locking Register.” SMLOCK is not writable unless
SLE is set.
If blocks are not present (due to configuration or total memory size), the SMLOCK bits will default to
locked and will not be writable.

bits 16–21 Reserved.

SLLOCK[9:0] Secondary Low-Address Block Lock. These bits are an alternative method that may be used to lock the
low-address space blocks from programs and erases. SLLOCK has the same description as LLOCK in
Section 22.4.2.2, “Low-/Mid-Address Space Block Locking Register. SLLOCK is not writable unless SLE
is high.
If blocks are not present (due to configuration or total memory size), the SLLOCK bits will default to
locked, and will not be writable.

Offset: FLASH_REGS_BASE + 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSEL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0
LSEL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-8. Low-/Mid-Address Space Block Select Register (LMS)

Table 22-8. LMS Field Descriptions

Field Description

bits 0–13 Reserved.

MSEL Mid-Address Space Block Select. Values in the selected register signify that a block is or is not selected for
erase. The reset value for the select registers is 0, or unselected. The blocks must be selected (or
unselected) before doing an erase interlock write as part of the erase sequence. The select register is not
writable once an interlock write is completed or if a high-voltage operation is suspended. In the event that
blocks are not present (due to configuration or total memory size), the corresponding SELECT bits will
default to unselected, and will not be writable. The reset value will always be 0 and register writes will have
no effect. A description of how blocks are numbered is detailed in Section 22.4.2.2, “Low-/Mid-Address
Space Block Locking Register.”
0b00 Mid-address space blocks are not selected for erase
0b01 One mid-address space block is selected for erase
0b11 Two mid-address space blocks are selected for erase

Table 22-7. SLL Field Descriptions (continued)

Field Description

Flash Array and Control

MPC5510 Microcontroller Family Reference Manual, Rev. 1

22-14 Freescale Semiconductor
 Preliminary

22.4.2.6 High-Address Space Block Select Register (HBS)

The HBS provides a means to select blocks to be operated on.

22.4.2.7 Address Register (ADR)

The ADR provides the first failing address in the event of ECC event error (MCR[EER] set) and the
address of a failure that may have occurred in a state machine operation (MCR[PEG] cleared). ECC event

16–21 Reserved.

22–31
LSEL[9:0]

Low-Address Space Block Select. Used to select blocks in the low-address space; these have the same
description and attributes as the MSEL bits
0b00_0000_0000 Low-address space blocks are not selected for erase
0b00_0000_0001 One low-address space block is selected for erase
0b00_0000_0011 Two low-address space blocks are selected for erase
0b00_0000_0111 Three low-address space blocks are selected for erase
...
0b11_1111_1111 Ten low-address space blocks are selected for erase

Offset: FLASH_REGS_BASE + 0x0014 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
HBSEL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-9. High-Address Space Block Select Register (HBS)

Table 22-9. HBS Field Descriptions

Field Description

bits 0–23 Reserved.

HBSEL High-Address Space Block Select. Has the same characteristics as MSEL. For more information see
Section 22.4.2.5, “Low-/Mid-Address Space Block Select Register (LMS).”
0b0000_0000 High-address space blocks are not selected for erase
0b0000_0001 One high-address space block is selected for erase
0b0000_0011 Two high-address space blocks are selected for erase
0b0000_0111 Three high-address space blocks are selected for erase
0b0000_1111 Four high-address space blocks are selected for erase
0b0001_1111 Five high-address space blocks are selected for erase
0b0011_1111 Six high-address space blocks are selected for erase
0b0111_1111 Seven high-address space blocks are selected for erase
0b1111_1111 Eight high-address space blocks are selected for erase

Table 22-8. LMS Field Descriptions (continued)

Field Description

Flash Array and Control

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 22-15
 Preliminary

errors take priority over state machine errors. This is especially valuable in the event of a RWW operation,
where the read senses an ECC error and the state machine fails simultaneously. This address is always a
doubleword address that selects 64 bits.

In normal operating mode, the ADR is not writable.

22.4.2.8 Platform Flash Configuration Register for Port n (PFCRPn)

The PFLASH configuration register for port 0 (PFCRP0) is used to specify operation of port p0 of the
PFLASH2P_H7Fb. This register also has two bits (ARB and PRI) to control arbitration between the p0/p1
ports.

The PFLASH configuration register for port 1 (PFCRP1) is used to specify operation of port p1 of the
PFLASH2P_H7Fb

Offset: FLASH_REGS_BASE + 0x0018 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 ADDR[10:15]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
ADDR[16:28]

0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-10. Address Register (ADR)

Table 22-10. ADR Field Descriptions

Field Description

bits 0–9 Reserved.

ADDR Doubleword address of first failing address in the event of an ECC error or the address of a failure occurring
during state machine operation.

bits 29–31 Reserved.

Flash Array and Control

MPC5510 Microcontroller Family Reference Manual, Rev. 1

22-16 Freescale Semiconductor
 Preliminary

Offset: FLASH_REGS_BASE + 0x001C (PFCRP0)
FLASH_REGS_BASE + 0x0020 (PFCRP1)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
LBCFG ARB1 PRI1

0 0 0 0 0
M4PFE M3PFE M2PFE M1PFE M0PFE

W

Reset 0 0 —2 —2 1 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
APC WWSC RWSC

0

D
P

F
E

N 0

IP
F

E
N 0

PFLIM BFENW

Reset 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 This bit is only available in PFCRP0. For PFCRP1, treat this bit as reserved.
2 Reset value for port 0 is LBCFG = 0b0000, port 1 is LBCFG = 0b0011

Figure 22-11. PFLASH Configuration Register for Port n (PFCRPn)

Table 22-11. PFCRP0 and PFCRP1 Field Descriptions

Field Description

LBCFG Line Buffer Configuration. Controls the configuration of the four line buffers in the PFLASH controller. The buffers
can be organized as a pool of available resources or with a fixed partition between instruction and data buffers.

In all cases, when a buffer miss occurs, it is allocated to the least recently used buffer within the group and the
just-fetched entry then marked as most recently used. If the flash access is for the next sequential line, the buffer
is not marked as most recently used until the given address produces a buffer hit.

For PFCRP0, this field is set to 0b0000 by hardware reset. For PFCRP1, this field is set to 0b0011 by hardware
reset.
xx00 All four buffers are available for any flash access, i.e., there is no partitioning of the buffers based on the

access type
xx01 Reserved
xx10 The buffers are partitioned into two groups: buffers 0 and 1 allocated for instruction fetches and buffers 2

and 3 for data accesses.
xx11 The buffers are partitioned into two groups: buffers 0,1,2 allocated for instruction fetches and buffer 3 for

data accesses.

ARB Arbitration Mode. This field controls which arbitration mode is used. In both fixed priority or round-robin modes,
write requests are prioritized higher than read requests, and read requests are prioritized higher than speculative
prefetch requests whenever both ports issue concurrent requests. This bit is set to 1 by hardware reset.
0 Fixed-priority arbitration is used; the port specified in PRI has highest fixed priority
1 Round-robin arbitration is used
Note: This bit is only available in PFCRP0. For PFCRP1, treat this bit as reserved.

PRI Fixed Priority. Controls which port has highest fixed priority when fixed priority arbitration is selected. This field
has no effect when operating in round-robin mode. This bit is cleared by hardware reset.
0 Port p0 is given highest fixed priority.
1 Port p1 is given highest fixed priority.
Note: This bit is only available in PFCRP0. For PFCRP1, treat this bit as reserved.

bits 6–10 Reserved.

Flash Array and Control

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 22-17
 Preliminary

MnPFE
n=4:0

Master n Prefetch Enable. Used to control whether prefetching may be triggered based on the AHB hmaster
attribute. For example, M0PFE will enable prefetching for accesses where hmaster[3:0] = 0b0000. Likewise,
M4PFE will enable prefetching only when hmaster[3:0] == 0b0100. Note that hmaster[3] is ignored when
determining which MnPFE to use for a given access. These bits are cleared by hardware reset.
0 No prefetching may be triggered by this master
1 Prefetching may be triggered by this master
Note: These bits refer to the master ID, not the master port number. Therefore, n=0 (e200z1), n=1 (e200z0), n=2

(eDMA), n=3 (FlexRay), and n=4 (EBI).

APC Address Pipelining Control. Used to control the number of cycles between pipelined access requests.

This field must be set to a value corresponding to the operating frequency of the PFLASH. The required settings
are documented in the SoC specification. Higher operating frequencies require non-zero settings for this field for
proper flash operation. This field is set to 0b111 by hardware reset.
000 Accesses may be pipelined back-to-back
001 Access requests require one additional hold cycle
010 Access requests require two additional hold cycles
...
110 Access requests require six additional hold cycles
111 No address pipelining

Note: The settings for APC and RWSC should be the same.

WWSC Write Wait State Control. Used to control the number of wait states to be added to the best case flash array
access time for writes. This field must be set to a value corresponding to the operating frequency of the PFLASH.
Higher operating frequencies require non-zero settings for this field for proper flash operation. This field is set to
0b11 by hardware reset.
00 No additional wait-states are added
01 One additional wait-state is added
10 Two additional wait-states are added
11 Three additional wait-states are added

RWSC Read Wait State Control. Used to control the number of wait states to be added to the best case flash array
access time for reads. This field must be set to a value corresponding to the operating frequency of the PFLASH
and the actual read access time of the PFLASH. This field is set to 0b111 by hardware reset.
000 No additional wait states are added
001 One additional wait state is added
...
111 Seven additional wait states are added

Note: The settings for APC and RWSC should be the same.

bit 24 Reserved.

DPFEN Data Prefetch Enable. Enables or disables prefetching initiated by a data read access. This field is cleared by
hardware reset.
0 No prefetching is triggered by a data read access
1 Prefetching may be triggered by any data read access

bit 26 Reserved.

IPFEN Instruction Prefetch Enable. Enables or disables prefetching initiated by an instruction read access. This field is
cleared by hardware reset.
0 No prefetching is triggered by an instruction read access
1 Prefetching may be triggered by any instruction read access

bit 28 Reserved.

Table 22-11. PFCRP0 and PFCRP1 Field Descriptions (continued)

Field Description

Flash Array and Control

MPC5510 Microcontroller Family Reference Manual, Rev. 1

22-18 Freescale Semiconductor
 Preliminary

22.5 Functional Description

22.5.1 Flash User Mode

In user mode the flash module can be read and written (register writes and interlock writes), programmed
or erased. The following sub-sections define all actions that can be performed in user mode.

22.5.2 Flash Read and Write

The default state of the flash module is read. The main and shadow address space can be read only in the
read state. The module configuration register (MCR) is always available for read. The flash module enters
the read state on reset. The flash module is in the read state under four sets of conditions:

• The read state is active when STOP=0 in the MCR (user mode read).

• The read state is active when PGM=1 or ERS=1 in the MCR and high-voltage operation is ongoing
(read while write).

NOTE
Reads done to the partition(s) being operated on (either erased or
programmed) will result in an error and the RWE bit in the MCR will be set.

• The read state is active when PGM=1 and PSUS=1 in the MCR (program suspend).

• The read state is active when ERS=1 and ESUS=1 and PGM=0 in the MCR (erase suspend).

NOTE
FC reads are done through the BIU. In many cases the BIU will do page
buffering to allow sequential reads to be done with higher performance. This
can create a data coherency issue that must be handled with software. Data
coherency can be an issue after a program, erase, or shadow row operations.

In flash user mode, registers can be written. Array can be written to do interlock writes.

PFLIM PFLASH Prefetch Limit. Controls the prefetch algorithm used by the PFLASH prefetch controller. This field
defines a limit on the maximum number of sequential prefetches which will be attempted between buffer misses.
In all situations when enabled, only a single prefetch is initiated on each buffer miss or hit. This field is cleared
by hardware reset.
00 No prefetching or buffering is performed
01 The referenced line is prefetched on a buffer miss, i.e., prefetch on miss
1x the referenced line is prefetched on a buffer miss, or the next sequential line is prefetched on a buffer hit (if

not already present), i.e., prefetch on miss or hit

BFEN PFLASH Line Read Buffers Enable. Enables or disables line read buffer hits. It is also used to invalidate the
buffers. This bit is cleared by hardware reset.
0 The line read buffers are disabled from satisfying read requests, and all buffer valid bits are cleared
1 The line read buffers are enabled to satisfy read requests on hits. Buffer valid bits may be set when the buffers

are successfully filled

Table 22-11. PFCRP0 and PFCRP1 Field Descriptions (continued)

Field Description

Flash Array and Control

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 22-19
 Preliminary

Reads attempted to invalid locations will result in indeterminate data. Invalid locations occur when
addressing is done to blocks that do not exist in non 2n array sizes.

Interlock writes attempted to invalid locations (due to blocks that do not exist in non 2n array sizes), will
result in an interlock occurring, but attempts to program or erase these blocks will not occur since they are
forced to be locked.

22.5.3 Read While Write (RWW)

The flash core is divided into partitions. Partitions are always comprised of two or more blocks. Partitions
are used to determine read-while-write (RWW) groupings. While a write (program or erase) is being done
within a given partition, a read can be simultaneously executed to any other partition. Partitions are listed
in Table 22-1. Each partition in high address space comprises of two 128KB blocks. The shadow block has
unique RWW restrictions described in Section 22.5.6, “Flash Shadow Block.”

The FC is also divided into blocks to implement independent erase or program protection. The shadow
block exists outside the normal address space and is programmed, erased, and read independently of the
other blocks. The shadow block is included to support systems that require NVM for security or system
initialization information.

A software mechanism is provided to independently lock or unlock each block in high-, mid-, and
low-address space against program and erase. Two hardware locks are also provided to enable/disable the
FC for program/erase. See Section 22.5.4.1, “Software Locking,” for more information.

22.5.4 Flash Programming

Programming changes the value stored in an array bit from logic 1 to logic 0 only. Programming cannot
change a stored logic 0 to a logic 1. Addresses in locked/disabled blocks cannot be programmed. The user
can program the values in any or all of four words within a page in a single program sequence. Word
addresses are selected using bits 3:2 of the page-bound word.

Whenever a program operation occurs, ECC bits are programmed. ECC is handled on a 64-bit boundary.
Thus, if only one word in any given 64-bit ECC segment is programmed, the adjoining word (in that
segment) should not be programmed because ECC calculation has already completed for that 64-bit
segment. Attempts to program the adjoining word will probably result in an operation failure. It is
recommended that all programming operations be from 64 bits to 128 bits, and be 64-bit aligned. The
programming operation should completely fill selected ECC segments within the page.

The program operation consists of the following sequence of events:

1. Change the value in the MCR[PGM] bit from a 0 to a 1.

NOTE
Ensure the block that contains the address to be programmed is unlocked.
See Section 22.4.2.2, “Low-/Mid-Address Space Block Locking Register,”
Section 22.4.2.3, “High-Address Space Block Locking Register (HBL),”
and Section 22.4.2.4, “Secondary Low-/Mid-Address Space Block Locking
Register (SLL),” for more information.

Flash Array and Control

MPC5510 Microcontroller Family Reference Manual, Rev. 1

22-20 Freescale Semiconductor
 Preliminary

2. Write the first address to be programmed in the flash module with the program data. This write is
referred to as a program data interlock write. An interlock write may be either be an aligned word
or doubleword.

3. If more than one word or doubleword is to be programmed, write each additional address in the
page with data to be programmed. This is referred to as a program data write. All unwritten data
words default to 0xFFFF_FFFF.

4. Write a logic 1 to the MCR[EHV] bit to start the internal program sequence or skip to step 9 to
terminate.

5. Wait until the MCR[DONE] bit goes high.

6. Confirm MCR[PEG] = 1.

7. Write a logic 0 to the MCR[EHV] bit.

8. If more addresses are to be programmed, return to step 2.

9. Write a logic 0 to the MCR[PGM] bit to terminate the program sequence.

The program sequence is presented graphically in Figure 22-12. The program suspend operation detailed
in Figure 22-12 is discussed in Section 22.5.4.1.1, “Flash Program Suspend/Resume.”

The first write after a program is initiated determines the page address to be programmed. Program may
be initiated with the 0 to 1 transition of the MCR[PGM] bit or by clearing the MCR[EHV] bit at the end
of a previous program. This first write is referred to as an interlock write. If the program is not an
erase-suspended program, the interlock write determines if the shadow or normal array space will be
programmed and causes MCR[PEAS] to be set/cleared.

In the case of an erase-suspended program, the value in MCR[PEAS], is retained from the erase.

An interlock write must be performed before setting MCR[EHV]. The user may terminate a program
sequence by clearing MCR[PGM] prior to setting MCR[EHV].

If multiple writes are done to the same location the data for the last write is used in programming.

While MCR[DONE] is low, MCR[EHV] is high, and MCR[PSUS] is low, the user may clear MCR[EHV],
resulting in a program abort. A program abort forces the module to step 8 of the program sequence. An
aborted program will result in MCR[PEG] being set low, indicating a failed operation. The data space
being operated on before the abort will contain indeterminate data. The user may not abort a program
sequence while in program suspend.

CAUTION
Aborting a program operation will leave the flash core addresses being
programmed in an indeterminate data state. This may be recovered by
executing an erase on the affected blocks.

Flash Array and Control

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 22-21
 Preliminary

Figure 22-12. Program Sequence

Erase suspendUser mode read state

Write MCR

PGM = 1

Program write

Step 1

Step 2

Step 3

Write MCR

EHV = 1

High voltage active

Access MCR

DONE

Step 4

WRITE
PSUS = 1

Read MCR
DONE = 1

Program suspend

PGM = 0 User mode read state

PEG = 0

Read MCR

DONE = 1

DONE = 0
Write MCR

PSUS = 0
EHV = 1

Abort
WRITE

EHV = 0

Step 5

Step 6

PEG
Success
PEG = 1

Write MCR

Failure
PEG = 0

Step 7

EHV = 0

PGM
more words

Step 8

?

No

Yes

Write MCR

PGM = 0

User mode read state

Step 9

Go to Step 2
Note: PEG will remain valid under this
condition until EHV is set high or
PGM is cleared.

Note: PSUS cannot be cleared while
EHV = 0. PSUS and EHV cannot
both be changed in a single
write operation.

PEG valid period

Last write
?

Yes

No

ESUS
?

0 1

Erase suspend

or erase suspend

?

value
?

Flash Array and Control

MPC5510 Microcontroller Family Reference Manual, Rev. 1

22-22 Freescale Semiconductor
 Preliminary

22.5.4.1 Software Locking

A software mechanism is provided to independently lock/unlock each high-, mid-, and low-address space
against program and erase.

Software locking is done through the LML (low-/mid-address space block locking register), SLL
(secondary low-/mid-address space block locking register), or HBL (high-address space block locking
register). These can be written through register writes and read through register reads.

When the program/erase operations are enabled through hardware, software locks are enforced through
doing register writes.

22.5.4.1.1 Flash Program Suspend/Resume

The program sequence may be suspended to allow read access to the flash core. It is not possible to erase
or program during a program suspend. Interlock writes should not be attempted during program suspend.

A program suspend can be initiated by changing the value of the MCR[PSUS] bit from a 0 to a 1.
MCR[PSUS] can be set high at any time when MCR[PGM] and MCR[EHV] are high. A 0 to 1 transition
of MCR[PSUS] causes the flash module to start the sequence to enter program suspend, which is a read
state. The module is not suspended until MCR[DONE] = 1. At this time flash core reads may be attempted.
After it is suspended, the flash core may be read only. Reads to the blocks being programmed/erased return
indeterminate data.

The program sequence is resumed by writing a logic 0 to MCR[PSUS]. MCR[EHV] must be set to a 1
before clearing MCR[PSUS] to resume operation. When the operation resumes, the flash module
continues the program sequence from one of a set of predefined points. This may extend the time required
for the program operation.

22.5.5 Flash Erase

Erase changes the value stored in all bits of the selected blocks to logic 1. Locked or disabled blocks cannot
be erased. If multiple blocks are selected for erase during an erase sequence, the blocks are erased
sequentially starting with the lowest numbered block and terminating with the highest. Aborting an erase
operation will leave the flash core blocks being erased in an indeterminate data state. This can be recovered
by executing an erase on the affected blocks.

The erase sequence consists of the following sequence of events:

1. Change the value in the MCR[ERS] bit from 0 to a 1.

2. Select the block, or blocks, to be erased by writing 1s to the appropriate registers in LMS or HBS.
If the shadow row is to be erased, this step may be skipped, and LMS and HBS are ignored. For
shadow row erase, see section Section 22.5.6, “Flash Shadow Block,” for more information.

Flash Array and Control

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 22-23
 Preliminary

NOTE
Lock and select are independent. If a block is selected and locked, no erase
will occur. See Section 22.4.2.2, “Low-/Mid-Address Space Block Locking
Register,” Section 22.4.2.3, “High-Address Space Block Locking Register
(HBL),” and Section 22.4.2.4, “Secondary Low-/Mid-Address Space Block
Locking Register (SLL),” for more information.

3. Write to any address in flash. This is referred to as an erase interlock write.

4. Write a logic 1 to the MCR[EHV] bit to start an internal erase sequence or skip to step 9 to
terminate.

5. Wait until the MCR[DONE] bit goes high.

6. Confirm MCR[PEG] = 1.

7. Write a logic 0 to the MCR[EHV] bit.

8. If more blocks are to be erased, return to step 2.

9. Write a logic 0 to the MCR[ERS] bit to terminate the erase.

The erase sequence is presented graphically in Figure 22-13. The erase suspend operation detailed in
Figure 22-13 is discussed in section Section 22.5.5.1, “Flash Erase Suspend/Resume.”

After setting MCR[ERS], one write (referred to as an interlock write) must be performed before
MCR[EHV] can be set to a 1. Data words written during erase sequence interlock writes are ignored. The
user may terminate the erase sequence by clearing MCR[ERS] before setting MCR[EHV].

An erase operation may be aborted by clearing MCR[EHV] assuming MCR[DONE] is low, MCR[EHV]
is high, and MCR[ESUS] is low. An erase abort forces the module to step 8 of the erase sequence. An
aborted erase will result in MCR[PEG] being set low, indicating a failed operation. The blocks being
operated on before the abort contain indeterminate data. The user may not abort an erase sequence while
in erase suspend.

CAUTION
Aborting an erase operation will leave the flash core blocks being erased in
an indeterminate data state. This may be recovered by executing an erase on
the affected blocks.

22.5.5.1 Flash Erase Suspend/Resume

The erase sequence may be suspended to allow read access to the flash core. The erase sequence may also
be suspended to program (erase-suspended program) the flash core. A program started during erase
suspend can be suspended. One erase suspend and one program suspend are allowed at a time during an
operation. It is not possible to erase during an erase suspend, or program during a program suspend. During
suspend, all reads to flash core locations targeted for program and blocks targeted for erase return
indeterminate data. Programming locations in blocks targeted for erase during erase-suspended program
may result in corrupted data.

An erase suspend operation is initiated by setting the MCR[ESUS] bit. MCR[ESUS] can be set to a 1 at
any time when MCR[ERS] and MCR[EHV] are high and MCR[PGM] is low. A 0 to 1 transition of
MCR[ESUS] causes the flash module to start the sequence which places it in erase suspend. The user must

Flash Array and Control

MPC5510 Microcontroller Family Reference Manual, Rev. 1

22-24 Freescale Semiconductor
 Preliminary

wait until MCR[DONE] = 1 before the module is suspended and further actions are attempted. After it is
suspended, the array may be read or a program sequence may be initiated (erase-suspended program).
Before initiating a program sequence the user must first clear MCR[EHV]. If a program sequence is
initiated, the value of the MCR[PEAS] is not reset. These values are fixed at the time of the first interlock
of the erase. Flash core reads from the blocks being erased while MCR[ESUS] = 1 return indeterminate
data.

The erase operation is resumed by clearing the MCR[ESUS] bit. The flash continues the erase sequence
from one of a set of predefined points. This can extend the time required for the erase operation.

CAUTION
In an erase-suspended program, programming flash locations in blocks
which were being operated on in the erase may corrupt flash core data.

Flash Array and Control

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 22-25
 Preliminary

Figure 22-13. Erase Sequence

22.5.6 Flash Shadow Block

The flash shadow block is a memory-mapped block in the flash memory map. Program and erase of the
shadow block are enabled when MCR[PEAS] = 1 only. After the user has begun an erase operation on the
shadow block, the operation cannot be suspended to program the main address space and vice-versa. The
user must terminate the shadow erase operation to program or erase the main address space.

User mode read state

Write MCR

ERS = 1

Select blocks

Erase interlock write

Step 1

Step 2

Step 3

Write MCR

EHV = 1

High voltage active

Access MCR

DONE
?

Step 4

WRITE
ESUS = 1

Read MCR
DONE = 1

Erase suspend

ERS = 0
User mode read state

PEG = 0

Read MCR

DONE = 1

DONE = 0
Write MCR

ESUS = 0
EHV = 1

Abort
WRITE

EHV = 0

Step 5

Step 6

PEG
?

Success
PEG = 1

Write MCR

Failure
PEG = 0

Step 7

EHV = 0

Erase
more blocks

Step 8

?

No

Yes

Write MCR

ERS = 0

User mode read state

Step 9

EHV = 0

Write MCR

PGM = 1

Program, Step 2

Go to Step 2
Note: PEG will remain valid under this
condition until EHV is set high or
ERS is cleared.

Note: ESUS cannot be cleared while
EHV = 0. ESUS and EHV cannot
be changed in a single
write operation.

PEG Valid Period

Flash Array and Control

MPC5510 Microcontroller Family Reference Manual, Rev. 1

22-26 Freescale Semiconductor
 Preliminary

NOTE
If an erase of user space is requested, and a suspend is done with attempts
to erase suspend program shadow space, this attempted program will be
directed to user space as dictated by the state of MCR[PEAS]. Likewise an
attempted erase suspended program of user space, while the shadow space
is being erased, will be directed to shadow space as dictated by the state of
MCR[PEAS].

The shadow block cannot use the RWW feature. After an operation is started in the shadow block, a read
cannot be done to the shadow block, or any other block. Likewise, after an operation is started in a block
in low-/mid-/high-address space, a read cannot be done in the shadow block.

The shadow block contains information about how the lock registers are reset. The first and second words
can be used for reset configuration words. All other words can be used for user-defined functions or other
configuration words.

The shadow block may be locked/unlocked against program or erase by using the LML or SLL discussed
in Section 22.4.2, “Register Descriptions.”

Programming the shadow row has similar restrictions to programming the array in terms of how ECC is
calculated. See Section 22.5.4, “Flash Programming,” for more information. Only one program is allowed
per 64 bit ECC segment between erases. Erase of the shadow row is done similarly as an array erase. See
section Section 22.5.5, “Flash Erase,” for more information.

22.5.7 Flash Stop Mode

Stop mode is entered by setting the STOP bit in the MCR. The STOP bit cannot be written when PGM=1
or ERS=1 in the MCR. In stop mode all DC current sources in the flash module are disabled. Stop mode
is exited by clearing the STOP bit.

NOTE
Exiting the stop mode requires a recovery time of tSRCV.

22.5.8 Flash Reset

A reset is the highest priority operation for the flash and terminates all other operations.

The flash uses reset to initialize register and status bits to their default reset values. If the flash is executing
a program or erase operation and a reset is issued, the operation will be aborted and the flash will disable
the high voltage logic without damage to the high-voltage circuits. Reset aborts all operations and forces
the flash into user mode ready to receive accesses.

After reset is negated, register accesses can be performed, although it should be noted that registers that
require updating from shadow information, or other inputs, cannot read updated until flash exits reset.

22.6 DMA Requests
The flash has no DMA requests.

Flash Array and Control

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 22-27
 Preliminary

22.7 Interrupt Requests
The flash has no interrupt requests.

Flash Array and Control

MPC5510 Microcontroller Family Reference Manual, Rev. 1

22-28 Freescale Semiconductor
 Preliminary

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-1
 Preliminary

Chapter 23
Deserial Serial Peripheral Interface (DSPI)

23.1 Introduction
The deserial serial peripheral interface (DSPI) block provides a synchronous serial interface for
communication between the MPC5510 and external devices. The DSPI supports pin-count reduction
through serialization and deserialization of eMIOS channels and memory-mapped registers. The channels
and register content are transmitted using a SPI-like protocol. There are up to four identical DSPI blocks:
DSPI_A, DSPI_B, DSPI_C, and DSPI_D; use Table 1-6 in Chapter 1, “Overview” to determine which
DSPI modules are available on your chosen device.

The DSPIs have three configurations:

• Serial peripheral interface (SPI) configuration where the DSPI operates as a SPI with support for
queues.

• Deserial serial interface (DSI) configuration where the DSPI serializes eMIOS200 output channels
and deserializes the received data by placing it on the eMIOS200 input channels.

• Combined serial interface (CSI) configuration where the DSPI operates in both SPI and DSI
configurations interleaving DSI frames with SPI frames, giving priority to SPI frames.

NOTE
The DSPI_D deserialized outputs cannot be used as eMIOS200 input
channel signals, but can be read from a memory mapped register.

For queued operations, the SPI queues reside in system memory external to the DSPI. Data transfers
between the memory and the DSPI FIFOs are accomplished through the use of the eDMA controller or
through host software.

23.1.1 Block Diagram

Figure 23-1 is a simplified block diagram of the DSPI that illustrates the functionality and interdependence
of major blocks.

NOTE
Not all chip selects are available in the 144-pin package. For example,
DSPI_B3 and DSPI_B4 are not available. Also, owing to the multiplexing
of functions on the various pins, some chip selects may not be available if
other functions are configured to use these pins. Please pay careful attention
to your system’s pin allocation requirements.

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-2 Freescale Semiconductor
 Preliminary

Figure 23-1. DSPI Block Diagram

23.1.2 Features

The DSPI supports these SPI features:

• Full-duplex, synchronous transfers

• Master and slave mode

• Buffered operation with separate four-entry TX and RX FIFOs

• Visibility into the TX and RX FIFOs for ease of debugging

• FIFO bypass mode for low-latency updates to SPI queues

• Programmable SPI transfer attributes on a per-frame basis:

— Eight clock and transfer attribute registers

— Serial clock with programmable polarity and phase

— Programmable delays:

– PCS to SCK delay

CMD

DMA and interrupt control

TX FIFO RX FIFO

TX data RX data

16

16

Shift register SOUT

SPI

SPI and DSI baud rate,
delay and transfer

control

CSI
priority
logic

TXSS
DSI

DSPI BIU

16 From eMIOS200
output channels

16 To eMIOS200
input channels
SIU / IMUX 1

SIN

SCK

PCS[0]/SS

PCS[4:1]

PCS[5]/PCSS

INTCeDMA Peripheral bus

4

16 Host CPU / DMA
update

16

16

16

1 Parallel outputs to the eMIOS200 are not su0pported by SDPI_D.

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-3
 Preliminary

– SCK to PCS delay

– Delay between frames

— Programmable serial frame size of 4 to 16 bits, expandable with software control

— Continuously held chip-select capability

• Six peripheral chip selects, expandable to 64 with external demultiplexer

• Deglitching support for up to 32 peripheral chip selects with external demultiplexer

• DMA support for SPI queues residing in RAM or flash:

— TX FIFO is not full

— RX FIFO is not empty

• Six interrupt conditions:

— End of queue reached

— TX FIFO is not full

— Transfer of current frame is complete

— RX FIFO is not empty

— FIFO underrun (slave-only and SPI mode, the slave is asked to transfer data when the TX FIFO
is empty)

• FIFO overrun (serial frame received while RX FIFO is full)

• Modified transfer formats for communication with slower peripheral devices

• Continuous serial communications clock (SCK)

• Power-saving architectural features

The DSPIs also support these features unique to the DSI and CSI configurations:

• Sources of the serialized data:

— eMIOS output channels

— Memory-mapped register in the DSPI

• Destinations for the deserialized data:

— eMIOS input channels (not supported by DSPI_D)

— Memory-mapped register in the DSPI

• Transfer initiation conditions:

— Continuous

— Change in data

• Pin serialization/deserialization with interleaved SPI frames for control and diagnostics

• Debug and STOP (with STOP ack) are supported.

• The reset value of the MDIS register bit is 1 and thus the DSPI is disabled by default after reset.

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-4 Freescale Semiconductor
 Preliminary

23.1.3 Modes of Operation

The DSPI has four modes of operation that can be divided into two categories: block-specific modes and
an MCU-specific mode. Master mode, slave mode, and module disable mode are the block-specific modes,
and debug mode is the MCU-specific mode.

The block-specific modes are entered by host software writing to a register bit. The MCU-specific mode
is selected by a signal external to the DSPI. The MCU-specific mode is a mode that the MCU may enter
in parallel to the DSPI being in one of its block-specific modes.

23.1.3.1 Master Mode

Master mode allows the DSPI to initiate and control serial communication. In this mode the SCK, PCS,
and SOUT signals are controlled by the DSPI and configured as outputs.

23.1.3.2 Slave Mode

Slave mode allows the DSPI to communicate with SPI/DSI bus masters. In this mode the DSPI responds
to externally-controlled serial transfers. The DSPI cannot initiate serial transfers in slave mode.

23.1.3.3 Module Disable Mode

The module disable mode is used for MCU power management. The clock to the non-memory-mapped
logic in the DSPI is stopped while in module disable mode. The DSPI enters the module disable mode
when the MDIS bit in DSPI_MCR is set.

23.1.3.4 Debug Mode

Debug mode is used for system development and debugging. If the device enters debug mode while the
DSPI_MCR[FRZ] bit is set, the DSPI halts operation on the next frame boundary. If the device enters
debug mode while the FRZ bit is negated, the DSPI behavior is unaffected and remains dictated by the
block-specific mode and configuration of the DSPI.

23.2 External Signal Description
Refer to Table 2-1 and Section 2.7, “Detailed External Signal Descriptions,” for detailed signal
descriptions.

23.3 Memory Map and Registers
This section provides a detailed description of all DSPI registers.

23.3.1 Module Memory Map

The DSPI memory map is shown in Table 23-1 (the memory map is the same for each individual DSPI
module). The address of each register is given as an offset to the DSPI base address. Registers are listed
in address order, identified by complete name and mnemonic, and list the type of accesses allowed.

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-5
 Preliminary

23.3.2 Register Descriptions

This section lists the DSPI registers in address order and describes the registers and their bit fields.

23.3.2.1 DSPI Module Configuration Register (DSPI_MCR)

The DSPI_MCR contains bits which configure various attributes associated with DSPI operation. The
HALT and MDIS bits can be changed at any time but will take effect on the next frame boundary only.

Table 23-1. DSPI Memory Map

Offset from
DSPI_BASE

(DSPI_A= 0xFFF9_0000
DSPI_B= 0xFFF9_4000
DSPI_C= 0xFFF9_8000
DSPI_D= 0xFFF9_C000)

Register Access Reset Value Section/Page

0x0000 DSPI_MCR — DSPI module configuration register R/W 0x0000_4001 23.3.2.1/23-5

0x0004 Reserved

0x0008 DSPI_TCR — DSPI transfer count register R/W 0x0000_0000 23.3.2.2/23-8

0x000C–0x0028 DSPI_CTAR0 — DSPI clock and transfer attributes
register 0 –

DSPI_CTAR7 — DSPI clock and transfer attributes
register 7

R/W 0x8400_0000 23.3.2.3/23-9

0x002C DSPI_SR — DSPI status register R 0x0200_0000 23.3.2.4/23-17

0x0030 DSPI_RSER — DSPI DMA/interrupt request select and
enable register

R/W 0x0000_0000 23.3.2.5/23-19

FIFO Registers

0x0034 DSPI_PUSHR — DSPI push TX FIFO register R/W 0x0000_0000 23.3.2.6/23-21

0x0038 DSPI_POPR — DSPI pop RX FIFO register R 0x0000_0000 23.3.2.7/23-23

0x003C–0x0048 DSPI_TXFR0 — DSPI transmit FIFO register 0 –

DSPI_TXFR3 — DSPI transmit FIFO register 3

R 0x0000_0000 23.3.2.8/23-23

0x004C–0x0078 Reserved

0x007C–0x0088 DSPI_RXFR0 — DSPI receive FIFO register 0 –

DSPI_RXFR3 — DSPI receive FIFO register 3

R 0x0000_0000 23.3.2.9/23-24

0x008C–0x00B8 Reserved

DSI Registers

0x00BC DSPI_DSICR — DSPI DSI configuration register R/W 0x0000_0000 23.3.2.10/23-25

0x00C0 DSPI_SDR — DSPI DSI serialization data register R 0x0000_0000 23.3.2.11/23-26

0x00C4 DSPI_ASDR — DSPI DSI alternate serialization data
register

R/W 0x0000_0000 23.3.2.12/23-27

0x00C8 DSPI_COMPR — DSPI DSI transmit comparison
register

R 0x0000_0000 23.3.2.13/23-28

0x00CC DSPI_DDR — DSPI DSI deserialization data register R 0x0000_0000 23.3.2.14/23-28

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-6 Freescale Semiconductor
 Preliminary

NOTE
Only the HALT and MDIS bits in the DSPI_MCR may be changed while
the DSPI is running.

Offset: DSPI_BASE + 0x0000 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MSTR

C
O

N
T

_
S

C
K

E

DCONF FRZ MTFE
PCS
SE

ROOE
0 0 PCSI

S5
PCSI

S4
PCSI
S3

PCSI
S2

PCSI
S1

PCSI
S0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
MDIS

DIS_
TXF

DIS_
RXF

CLR_
TXF

CLR_
RXF

SMPL_PT
0 0 0 0 0 0 0

HALT
W

Reset 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 23-2. DSPI Module Configuration Register (DSPI_MCR)

Table 23-2. DSPI_MCR Field Descriptions

Field Description

MSTR Master/Slave Mode Select. Configures the DSPI for either master mode or slave mode.
0 DSPI is in slave mode
1 DSPI is in master mode

CONT_SCKE Continuous SCK Enable. Enables the serial communication clock (SCK) to run continuously. See
Section 23.4.9, “Continuous Serial Communications Clock,” for details.
0 Continuous SCK disabled
1 Continuous SCK enabled

DCONF DSPI Configuration. Selects between the three different configurations of the DSPI. The table below lists the
DCONF values for the various configurations.

FRZ Freeze. Enables the DSPI transfers to be stopped on the next frame boundary when the device enters debug
mode.
0 Do not halt serial transfers
1 Halt serial transfers

MTFE Modified Timing Format Enable. Enables a modified transfer format to be used. See Section 23.4.8.4,
“Modified SPI/DSI Transfer Format (MTFE = 1, CPHA = 1),” for more information.
0 Modified SPI transfer format disabled
1 Modified SPI transfer format enabled

DCONF Configuration

00 SPI

01 DSI

10 CSI

11 Reserved

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-7
 Preliminary

PCSSE Peripheral Chip Select Strobe Enable. Enables the PCSx5/PCSS to operate as an PCS strobe output signal.
See Section 23.4.7.5, “Peripheral Chip Select Strobe Enable (PCSS),” for more information.
0 PCSx5/PCSS is used as the peripheral chip select 5 signal
1 PCSx5/PCSS is used as an active-low PCS strobe signal

ROOE Receive FIFO Overflow Overwrite Enable. Enables an RX FIFO overflow condition to ignore the incoming
serial data or to overwrite existing data. If the RX FIFO is full and new data is received, the data from the
transfer that generated the overflow is ignored or shifted in to the shift register. If the ROOE bit is asserted,
the incoming data is shifted in to the shift register. If the ROOE bit is negated, the incoming data is ignored.
See Section 23.4.11.6, “Receive FIFO Overflow Flag (RFOF),” for more information.
0 Incoming data is ignored
1 Incoming data is shifted in to the shift register

bits 8–9 Reserved.

PCSISn Peripheral Chip Select Inactive State. Determines the inactive state of the PCSn signal. PCS0/SS must be
configured as inactive high for slave mode operation.
0 The inactive state of PCSn is low
1 The inactive state of PCSn is high

bit 16 Reserved.

MDIS Module Disable. Allows the clock to be stopped to the non-memory-mapped logic in the DSPI effectively
putting the DSPI in a software controlled power-saving state. See Section 23.4.12, “Power Saving Features,”
for more information. The reset value of the MDIS bit is 1.
0 Enable DSPI clocks
1 Allow external logic to disable DSPI clocks

DIS_TXF Disable Transmit FIFO. Provides a mechanism to disable the TX FIFO. When the TX FIFO is disabled, the
transmit part of the DSPI operates as a simplified double-buffered SPI. See Section 23.4.3.3, “FIFO Disable
Operation,” for details.
0 TX FIFO is enabled
1 TX FIFO is disabled

DIS_RXF Disable Receive FIFO. Provides a mechanism to disable the RX FIFO. When the RX FIFO is disabled, the
receive part of the DSPI operates as a simplified double-buffered SPI. See Section 23.4.3.3, “FIFO Disable
Operation,” for details.
0 RX FIFO is enabled
1 RX FIFO is disabled

CLR_TXF Clear TX FIFO. Flushes the TX FIFO. Writing a 1 to CLR_TXF clears the TX FIFO counter. The CLR_TXF bit
is always read as zero.
0 Do not clear the TX FIFO counter
1 Clear the TX FIFO counter

CLR_RXF Clear RX FIFO. Flushes the RX FIFO. Writing a 1 to CLR_RXF clears the RX counter. The CLR_RXF bit is
always read as zero.
0 Do not clear the RX FIFO counter
1 Clear the RX FIFO counter

Table 23-2. DSPI_MCR Field Descriptions (continued)

Field Description

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-8 Freescale Semiconductor
 Preliminary

23.3.2.2 DSPI Transfer Count Register (DSPI_TCR)

The DSPI_TCR contains a counter that indicates the number of SPI transfers made. The transfer counter
is intended to assist in queue management.

NOTE
The user must not write to the DSPI_TCR while the DSPI is running.

SMPL_PT Sample Point. Allows the host software to select when the DSPI master samples SIN in modified transfer
format. Figure 23-32 shows where the master can sample the SIN pin. The table below lists the various
delayed sample points.

bits 24–30 Reserved.

HALT Halt. Provides a mechanism for software to start and stop DSPI transfers. See Section 23.4.2, “Start and Stop
of DSPI Transfers,” for details on the operation of this bit.
0 Start transfers
1 Stop transfers

Offset: DSPI_BASE + 0x0008 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SPI_TCNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-3. DSPI Transfer Count Register (DSPI_TCR)

Table 23-2. DSPI_MCR Field Descriptions (continued)

Field Description

SMPL_PT
Number of system clock cycles between

odd-numbered edge of SCKx and sampling of SINx.

00 0

01 1

10 2

11 Reserved

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-9
 Preliminary

23.3.2.3 DSPI Clock and Transfer Attributes Registers 0–7 (DSPI_CTARn)

The DSPI modules each contain eight clock and transfer attribute registers (DSPI_CTARn) which are used
to define different transfer attribute configurations. Each DSPI_CTAR controls:

• Frame size

• Baud rate and transfer delay values

• Clock phase

• Clock polarity

• MSB/LSB first

At the initiation of an SPI or DSI transfer, control logic selects the DSPI_CTAR that contains the transfer’s
attributes.

NOTE
The user must not write to the DSPI_CTARs while the DSPI is running.

In master mode, the DSPI_CTARn registers define combinations of transfer attributes such as frame size,
clock phase and polarity, data bit ordering, baud rate, and various delays. In slave mode, a subset of the bit
fields in the DSPI_CTAR0 and DSPI_CTAR1 registers are used to set the slave transfer attributes. See the
individual bit descriptions for details on which bits are used in slave modes.

When the DSPI is configured as an SPI master, the CTAS field in the command portion of the TX FIFO
entry selects which of the DSPI_CTAR registers is used on a per-frame basis. When the DSPI is configured
as an SPI bus slave, the DSPI_CTAR0 register is used.

When the DSPI is configured as a DSI master, the DSICTAS field in the DSPI DSI configuration register
(DSPI_DSICR) selects which of the DSPI_CTAR register is used. For more information on the
DSPI_DSICR see Section 23.3.2.10, “DSPI DSI Configuration Register (DSPI_DSICR).” When the DSPI
is configured as a DSI bus slave, the DSPI_CTAR1 register is used.

In CSI configuration, the transfer attributes are selected based on whether the current frame is SPI data or
DSI data. SPI transfers in CSI configuration follow the protocol described for SPI configuration, and DSI
transfers in CSI configuration follow the protocol described for DSI configuration. CSI configuration is
only valid with master mode. See Section 23.4.5, “Combined Serial Interface (CSI) Configuration,” for
more details.

Table 23-3. DSPI_TCR Field Descriptions

Field Description

SPI_TCNT SPI Transfer Counter. Counts the number of SPI transfers the DSPI makes. The SPI_TCNT field is incremented
every time the last bit of an SPI frame is transmitted. A value written to SPI_TCNT presets the counter to that value.
SPI_TCNT is reset to zero at the beginning of the frame when the CTCNT field is set in the executing SPI
command. The transfer counter wraps around, incrementing the counter past 65535 resets the counter to zero.

bits 16–31 Reserved.

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-10 Freescale Semiconductor
 Preliminary

.

Offset: DSPI_BASE +
0x000C (DSPI_CTAR0)
0x0010 (DSPI_CTAR1)
0x0014 (DSPI_CTAR2)
0x0018 (DSPI_CTAR3)
0x001C (DSPI_CTAR4)
0x0020 (DSPI_CTAR5)
0x0024 (DSPI_CTAR6)
0x0028 (DSPI_CTAR7)

Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DBR FMSZ CPOL CPHA

LSB
FE

PCSSCK PASC PDT PBR
W

Reset 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CSSCK ASC DT BR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-4. DSPI Clock and Transfer Attributes Registers 0–7 (DSPI_CTARn)

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-11
 Preliminary

Table 23-4. DSPI_CTARn Field Description

Field Description

DBR Double Baud Rate. The DBR bit doubles the effective baud rate of the serial communications clock (SCK). This
field is only used in master mode. It effectively halves the baud rate division ratio supporting faster frequencies
and odd division ratios for the serial communications clock (SCK). When the DBR bit is set, the duty cycle of the
serial communications clock (SCK) depends on the value in the baud rate prescaler and the clock phase bit as
listed below. See the BR field below and Section 23.4.7.1, “Baud Rate Generator,” for details on how to compute
the baud rate. If the overall baud rate is divide by two or divide by three of the system clock then the continuous
SCK enable or the modified timing format enable bits must not be set.
0 The baud rate is computed normally with a 50/50 duty cycle
1 Baud rate is doubled with the duty cycle depending on the baud rate prescaler

FMSZ FMSZ. Selects the number of bits transferred per frame. The FMSZ field is used in master mode and slave mode.
The table below lists the frame sizes.

DBR CPHA PBR SCK Duty Cycle

0 any any 50/50

1 0 00 50/50

1 0 01 33/66

1 0 10 40/60

1 0 11 43/57

1 1 00 50/50

1 1 01 66/33

1 1 10 60/40

1 1 11 57/43

FMSZ Framesize FMSZ Framesize

0000 Reserved 1000 9

0001 Reserved 1001 10

0010 Reserved 1010 11

0011 4 1011 12

0100 5 1100 13

0101 6 1101 14

0110 7 1110 15

0111 8 1111 16

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-12 Freescale Semiconductor
 Preliminary

CPOL Clock Polarity. Selects the inactive state of the serial communications clock (SCK). This bit is used in both master
and slave mode. For successful communication between serial devices, the devices must have identical clock
polarities. When the continuous selection format is selected (CONT = 1 or DCONT = 1), switching between clock
polarities without stopping the DSPI can cause errors in the transfer due to the peripheral device interpreting the
switch of clock polarity as a valid clock edge. For more information on continuous selection format, refer to
Section 23.4.8.5, “Continuous Selection Format.”
0 The inactive state value of SCK is low
1 The inactive state value of SCK is high

CPHA Clock Phase. Selects which edge of SCK causes data to change and which edge causes data to be captured.
This bit is used in both master and slave mode. For successful communication between serial devices, the
devices must have identical clock phase settings.
0 Data is captured on the leading edge of SCK and changed on the following edge
1 Data is changed on the leading edge of SCK and captured on the following edge

LSBFE LSB First Enable. Selects if the LSB or MSB of the frame is transferred first. This bit is only used in master mode.
0 Data is transferred MSB first
1 Data is transferred LSB first

PCSSCK PCS to SCK Delay Prescaler. Selects the prescaler value for the delay between assertion of PCS and the first
edge of the SCK. This field is only used in master mode. The table below lists the prescaler values. The
description for bitfield CSSCK in Table 23-4 details how to compute the PCS to SCK delay.

PASC After SCK Delay Prescaler. Selects the prescaler value for the delay between the last edge of SCK and the
negation of PCSx. This field is only used in master mode. The table below lists the prescaler values. The
description for bitfield ASC in Table 23-4 details how to compute the after SCK delay.

Table 23-4. DSPI_CTARn Field Description (continued)

Field Description

PCSSCK
PCS to SCK Delay

Prescaler Value

00 1

01 3

10 5

11 7

PASC
After SCK Delay
Prescaler Value

00 1

01 3

10 5

11 7

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-13
 Preliminary

PDT Delay After Transfer Prescaler. The PDT field selects the prescaler value for the delay between the negation of
the PCS signal at the end of a frame and the assertion of PCS at the beginning of the next frame. The PDT field
is used in master mode only. The table below lists the prescaler values. The description for bitfield DT in
Table 23-4 details how to compute the delay after transfer.

PBR Baud Rate Prescaler. Selects the prescaler value for the baud rate. This field is used in master mode only. The
baud rate is the frequency of the serial communications clock (SCK). The system clock is divided by the prescaler
value before the baud rate selection takes place. The baud rate prescaler values are listed in the table below.
The description for Section 23.4.7.1, “Baud Rate Generator,” details how to compute the baud rate.

Table 23-4. DSPI_CTARn Field Description (continued)

Field Description

PDT
Delay after Transfer

Prescaler Value

00 1

01 3

10 5

11 7

PBR
Baud Rate

Prescaler Value

00 2

01 3

10 5

11 7

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-14 Freescale Semiconductor
 Preliminary

CSSCK PCS to SCK Delay Scaler. Selects the scaler value for the PCS to SCK delay. This field is used in master mode
only. The PCS to SCK delay is the delay between the assertion of PCS and the first edge of the SCK. The table
below lists the scaler values.

The PCS to SCK delay is a multiple of the system clock period and it is computed according to the following
equation:

Note: See Section 23.4.7.2, “PCS to SCK Delay (tCSC),” for more details.

Table 23-4. DSPI_CTARn Field Description (continued)

Field Description

CSSCK
PCS to SCK Delay

Scaler Value
CSSCK

PCS to SCK Delay
Scaler Value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

0100 32 1100 8192

0101 64 1101 16384

0110 128 1110 32768

0111 256 1111 65536

tCSC
1

fSYS
-------------- PCSSCK Prescaler value CSSCK Scaler value××=

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-15
 Preliminary

ASC After SCK Delay Scaler. Selects the scaler value for the after SCK delay. This field is used in master mode only.
The after SCK delay is the delay between the last edge of SCKx and the negation of PCS. The table below lists
the scaler values.

The after SCK delay is a multiple of the system clock period, and it is computed according to the following
equation:

Note: See Section 23.4.7.3, “After SCK Delay (tASC),” for more details.

Table 23-4. DSPI_CTARn Field Description (continued)

Field Description

ASC
After SCK Delay

Scaler Value
ASC

After SCK Delay
Scaler Value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

0100 32 1100 8192

0101 64 1101 16384

0110 128 1110 32768

0111 256 1111 65536

tASC
1

fSYS
-------------- PASC Prescaler value ASC Scaler value××=

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-16 Freescale Semiconductor
 Preliminary

DT Delay After Transfer Scaler. The DT field selects the delay after transfer scaler. This field is used in master mode
only. The delay after transfer is the time between the negation of the PCS signal at the end of a frame and the
assertion of PCS at the beginning of the next frame. The table below lists the scaler values.

The delay after transfer is a multiple of the system clock period and it is computed according to the following
equation:

Note: See Section 23.4.7.4, “Delay after Transfer (tDT),” for more details

Table 23-4. DSPI_CTARn Field Description (continued)

Field Description

DT
Delay after Transfer

Scaler Value
DT

Delay after
Transfer Scaler

Value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

0100 32 1100 8192

0101 64 1101 16384

0110 128 1110 32768

0111 256 1111 65536

tDT
1

fSYS
-------------- PDT Prescaler value DT Scaler value××=

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-17
 Preliminary

23.3.2.4 DSPI Status Register (DSPI_SR)

The DSPI_SR contains status and flag bits. The bits reflect the status of the DSPI and indicate the
occurrence of events that can generate interrupt or DMA requests. Software can clear a flag bit in the
DSPI_SR by writing a 1 to it. Writing a 0 to a flag bit has no effect.

NOTE
This register cannot be written in MDIS Mode, owing to the use of power
saving mechanisms.

BR Baud Rate Scaler. Selects the scaler value for the baud rate. This field is used in master mode only. The
pre-scaled system clock is divided by the baud rate scaler to generate the frequency of the SCK. The table below
lists the baud rate scaler values.

The baud rate is computed according to the following equation:

Note: See Section 23.4.7.1, “Baud Rate Generator,” for more details.

Table 23-4. DSPI_CTARn Field Description (continued)

Field Description

BR
Baud Rate Scaler

Value
BR

Baud Rate Scaler
Value

0000 2 1000 256

0001 4 1001 512

0010 6 1010 1024

0011 8 1011 2048

0100 16 1100 4096

0101 32 1101 8192

0110 64 1110 16384

0111 128 1111 32768

SCK baud rate
fSYS

PBRPrescalerValue
-- 1 DBR+

BRScalerValue
--×=

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-18 Freescale Semiconductor
 Preliminary

Offset: DSPI_BASE + 0x002C Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R TCF TXRXS 0 EOQF TFUF 0 TFFF 0 0 0 0 0 RFOF 0 RFDF 0

W w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TXCTR TXNXTPTR RXCTR POPNXTPTR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-5. DSPI Status Register (DSPI_SR)

Table 23-5. DSPI_SR Field Descriptions

Field Description

TCF Transfer Complete Flag. Indicates that all bits in a frame have been shifted out. The TCF bit is set after the last
incoming databit is sampled, but before the tASC delay starts. Refer to Section 23.4.8.1, “Classic SPI Transfer
Format (CPHA = 0),” for details. The TCF bit is cleared by writing 1 to it.
0 Transfer not complete
1 Transfer complete

TXRXS TX and RX Status. Reflects the status of the DSPI. See Section 23.4.2, “Start and Stop of DSPI Transfers,” for
information on what causes this bit to be negated or asserted.
0 TX and RX operations are disabled (DSPI is in stopped state)
1 TX and RX operations are enabled (DSPI is in running state)

bit 2 Reserved.

EOQF End of Queue Flag. Indicates that transmission in progress is the last entry in a queue. The EOQF bit is set
when the TX FIFO entry has the EOQ bit set in the command halfword and after the last incoming databit is
sampled, but before the tASC delay starts. Refer to Section 23.4.8.1, “Classic SPI Transfer Format (CPHA =
0),” for details.
The EOQF bit is cleared by writing 1 to it. When the EOQF bit is set, the TXRXS bit is automatically cleared.
0 EOQ is not set in the executing command
1 EOQ bit is set in the executing SPI command
Note: EOQF does not function in slave mode.

TFUF Transmit FIFO Underflow Flag. Indicates that an underflow condition in the TX FIFO has occurred. The transmit
underflow condition is detected only for DSPI modules operating in slave mode and SPI configuration. The
TFUF bit is set when the TX FIFO of a DSPI operating in SPI slave mode is empty, and a transfer is initiated
by an external SPI master. The TFUF bit is cleared by writing 1 to it.
0 TX FIFO underflow has not occurred
1 TX FIFO underflow has occurred

bit 5 Reserved.

7266>>> Transmit FIFO Fill Flag. Indicates that the TX FIFO can be filled. Provides a method for the DSPI to request
more entries to be added to the TX FIFO. The TFFF bit is set while the TX FIFO is not full. The TFFF bit can
be cleared by writing 1 to it or by an acknowledgement from the eDMA controller when the TX FIFO is full.
0 TX FIFO is full
1 TX FIFO is not full

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-19
 Preliminary

23.3.2.5 DSPI DMA/Interrupt Request Select and Enable Register (DSPI_RSER)

The DSPI_RSER serves two purposes. It enables flag bits in the DSPI_SR to generate DMA requests or
interrupt requests. The DSPI_RSER also selects the type of request to be generated. See the individual bit
descriptions for information on the types of requests the bits support.

NOTE
The user must not write to the DSPI_RSER while the DSPI is running.

bit 7–11 Reserved.

RFOF Receive FIFO Overflow Flag. Indicates that an overflow condition in the RX FIFO has occurred. The bit is set
when the RX FIFO and shift register are full and a transfer is initiated. The bit is cleared by writing 1 to it.
0 RX FIFO overflow has not occurred
1 RX FIFO overflow has occurred

bit 13 Reserved.

RFDF Receive FIFO Drain Flag. Indicates that the RX FIFO can be drained. Provides a method for the DSPI to
request that entries be removed from the RX FIFO. The bit is set while the RX FIFO is not empty. The RFDF
bit can be cleared by writing 1 to it or by an acknowledgement from the eDMA controller when the RX FIFO is
empty.
0 RX FIFO is empty
1 RX FIFO is not empty
Note: In the interrupt service routine, RFDF must be cleared only after the DSPI_POPR register is read.

bit 15 Reserved.

TXCTR TX FIFO Counter. Indicates the number of valid entries in the TX FIFO. The TXCTR is incremented every time
the DSPI _PUSHR is written. The TXCTR is decremented every time an SPI command is executed and the
SPI data is transferred to the shift register.

TXNXT
PTR

Transmit Next Pointer. Indicates which TX FIFO entry will be transmitted during the next transfer. The
TXNXTPTR field is updated every time SPI data is transferred from the TX FIFO to the shift register. See
Section 23.4.3.4, “Transmit First-In First-Out (TX FIFO) Buffering Mechanism,” for more details.

RXCTR RX FIFO Counter. Indicates the number of entries in the RX FIFO. The RXCTR is decremented every time the
DSPI_POPR is read. The RXCTR is incremented after the last incoming databit is sampled, but before the
tASC delay starts. Refer to Section 23.4.8.1, “Classic SPI Transfer Format (CPHA = 0),” for details.

POPNXTPTR Pop Next Pointer. Contains a pointer to the RX FIFO entry that will be returned when the DSPI_POPR is read.
The POPNXTPTR is updated when the DSPI_POPR is read. See Section 23.4.3.5, “Receive First-In First-Out
(RX FIFO) Buffering Mechanism,” for more details.

Table 23-5. DSPI_SR Field Descriptions (continued)

Field Description

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-20 Freescale Semiconductor
 Preliminary

Offset: DSPI_BASE + 0x0030 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R TCF_
RE

0 0 EOQF
_RE

TFUF
_RE

0 TFFF
_RE

TFFF_
DIRS

0 0 0 0 RFOF
_RE

0 RFDF
_RE

RFDF_
DIRSW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-6. DSPI DMA/Interrupt Request Select and Enable Register (DSPI_RSER)

Table 23-6. DSPI_RSER Field Descriptions

Field Description

TCF_RE Transmission Complete Request Enable. Enables TCF flag in the DSPI_SR to generate an interrupt request.
0 TCF interrupt requests are disabled
1 TCF interrupt requests are enabled

bit 1–2 Reserved.

EOQF_
RE

DSPI Finished Request Enable. Enables the EOQF flag in the DSPI_SR to generate an interrupt request.
0 EOQF interrupt requests are disabled
1 EOQF interrupt requests are enabled

TFUF_RE Transmit FIFO Underflow Request Enable.The TFUF_RE bit enables the TFUF flag in the DSPI_SR to generate
an interrupt request.
0 TFUF interrupt requests are disabled
1 TFUF interrupt requests are enabled

bit 5 Reserved.

TFFF_RE Transmit FIFO Fill Request Enable. Enables the TFFF flag in the DSPI_SR to generate a request. The
TFFF_DIRS bit selects between generating an interrupt request or a DMA requests.
0 TFFF interrupt requests or DMA requests are disabled
1 TFFF interrupt requests or DMA requests are enabled

TFFF_DIRS Transmit FIFO Fill DMA or Interrupt Request Select. Selects between generating a DMA request or an interrupt
request. When the TFFF flag bit in the DSPI_SR is set and the TFFF_RE bit in the DSPI_RSER is set, this bit
selects between generating an interrupt request or a DMA request.
0 Interrupt request will be generated
1 DMA request will be generated

bits 8–11 Reserved.

RFOF_RE Receive FIFO Overflow Request Enable. Enables the RFOF flag in the DSPI_SR to generate an interrupt
requests.
0 RFOF interrupt requests are disabled
1 RFOF interrupt requests are enabled

bit 13 Reserved.

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-21
 Preliminary

23.3.2.6 DSPI PUSH TX FIFO Register (DSPI_PUSHR)

The DSPI_PUSHR provides a means to write to the TX FIFO. Data written to this register is transferred
to the TX FIFO. See Section 23.4.3.4, “Transmit First-In First-Out (TX FIFO) Buffering Mechanism,” for
more information. Write accesses of 8- or 16-bits to the DSPI_PUSHR will transfer 32 bits to the TX FIFO.

NOTE
Only the TXDATA field is used for DSPI slaves.

RFDF_RE Receive FIFO Drain Request Enable. Enables the RFDF flag in the DSPI_SR to generate a request. The
RFDF_DIRS bit selects between generating an interrupt request or a DMA request.
0 RFDF interrupt requests or DMA requests are disabled
1 RFDF interrupt requests or DMA requests are enabled

RFDF_DIRS Receive FIFO Drain DMA or Interrupt Request Select. Selects between generating a DMA request or an interrupt
request. When the RFDF flag bit in the DSPI_SR is set and the RFDF_RE bit in the DSPI_RSER is set, the
RFDF_DIRS bit selects between generating an interrupt request or a DMA request.
0 Interrupt request will be generated
1 DMA request will be generated

bits 16–31 Reserved.

Offset: DSPI_BASE + 0x0034 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CONT CTAS EOQ

CT
CNT

0 0 0 0
PCS5 PCS4 PCS3 PCS2 PCS1 PCS0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
TXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-7. DSPI PUSH TX FIFO Register (DSPI_PUSHR)

Table 23-6. DSPI_RSER Field Descriptions (continued)

Field Description

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-22 Freescale Semiconductor
 Preliminary

Table 23-7. DSPI_PUSHR Field Descriptions

Field Description

CONT Continuous Peripheral Chip Select Enable.Selects a continuous selection format. The bit is used in SPI master
mode. The bit enables the selected PCS signals to remain asserted between transfers. See Section 23.4.8.5,
“Continuous Selection Format,” for more information.
0 Return peripheral chip select signals to their inactive state between transfers
1 Keep peripheral chip select signals asserted between transfers

CTAS Clock and Transfer Attributes Select. Selects which of the DSPI_CTARs is used to set the transfer attributes for the
associated SPI frame. In SPI slave mode DSPI_CTAR0 is used. The table below shows how the CTAS values map
to the DSPI_CTARs. There are eight DSPI_CTARs in this device’s DSPI.
Note: The field is used in SPI master mode only.

EOQ End of Queue. Provides a means for host software to signal to the DSPI that the current SPI transfer is the last in a
queue. At the end of the transfer, the EOQF bit in the DSPI_SR is set.
0 The SPI data is not the last data to transfer
1 The SPI data is the last data to transfer
Note: This bitfield is used in SPI master mode only.

CTCNT Clear SPI_TCNT. Provides a means for host software to clear the SPI transfer counter. The CTCNT bit clears the
SPI_TCNT field in the DSPI_TCR. The SPI_TCNT field is cleared before transmission of the current SPI frame
begins.
0 Do not clear SPI_TCNT field in the DSPI_TCR
1 Clear SPI_TCNT field in the DSPI_TCR
Note: This bitfield is used in SPI master mode only.

bits 6–7 Reserved.

bits 8–9 Reserved.

PCSn Peripheral Chip Select n. Selects which PCSx signals will be asserted for the transfer.
0 Negate the PCSn signal
1 Assert the PCSn signal
Note: This bitfield is used in SPI master mode only.

TXDATA Transmit Data. Holds SPI data to be transferred according to the associated SPI command.

CTAS
Use Clock and Transfer

Attributes from

000 DSPI_CTAR0

001 DSPI_CTAR1

010 DSPI_CTAR2

011 DSPI_CTAR3

100 DSPI_CTAR4

101 DSPI_CTAR5

110 DSPI_CTAR6

111 DSPI_CTAR7

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-23
 Preliminary

23.3.2.7 DSPI POP RX FIFO Register (DSPI_POPR)

The DSPI_POPR provides a means to read the RX FIFO. See Section 23.4.3.5, “Receive First-In First-Out
(RX FIFO) Buffering Mechanism,” for a description of the RX FIFO operations. Eight- or 16-bit read
accesses to the DSPI_POPR will read from the RX FIFO and update the counter and pointer.

NOTE
The DSPI_POPR must not be read speculatively. For future compatibility,
the TLB (MMU table) entry covering the DSPI_POPR must be configured
to be guarded.

23.3.2.8 DSPI Transmit FIFO Registers 0–3 (DSPI_TXFRn)

The DSPI_TXFRn registers provide visibility into the TX FIFO for debugging purposes. Each register is
an entry in the TX FIFO. The registers are read-only and cannot be modified. Reading the DSPI_TXFRn
registers does not alter the state of the TX FIFO. The MCU uses four registers to implement the TX FIFO,
that is DSPI_TXFR0–DSPI_TXFR3 are used.

Offset: DSPI_BASE + 0x0038 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-8. DSPI POP RX FIFO Register (DSPI_POPR)

Table 23-8. DSPI_POPR Field Descriptions

Field Description

bits 0–15 Reserved.

RXDATA Received Data. The RXDATA field contains the SPI data from the RX FIFO entry pointed to by the pop next data
pointer (POPNXTPTR).

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-24 Freescale Semiconductor
 Preliminary

23.3.2.9 DSPI Receive FIFO Registers 0–3 (DSPI_RXFRn)

The DSPI_RXFRn registers provide visibility into the RX FIFO for debugging purposes. Each register is
an entry in the RX FIFO. The DSPI_RXFR registers are read-only. Reading the DSPI_RXFRn registers
does not alter the state of the RX FIFO. The device uses four registers to implement the RX FIFO, that is
DSPI_RXFR0–DSPI_RXFR3 are used.

Offset: DSPI_BASE +
0x003C (DSPI_TXFR0)
0x0040 (DSPI_TXFR1)
0x0044 (DSPI_TXFR2)
0x0048 (DSPI_TXFR3)

Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R TXCMD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-9. DSPI Transmit FIFO Register 0–3 (DSPI_TXFRn)

Table 23-9. DSPI_TXFRn Field Descriptions

Field Description

TXCMD Transmit Command. Contains the command that sets the transfer attributes for the SPI data. See Section 23.3.2.6,
“DSPI PUSH TX FIFO Register (DSPI_PUSHR),” for details on the command field.

TXDATA Transmit Data. Contains the SPI data to be shifted out.

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-25
 Preliminary

23.3.2.10 DSPI DSI Configuration Register (DSPI_DSICR)

The DSPI_DSICR selects various attributes associated with DSI and CSI configurations.

NOTE
The user must not write to the DSPI_DSICR while the DSPI is running.

Offset: DSPI_BASE +
0x007C (DSPI_RXFR0)
0x0080 (DSPI_RXFR1)
0x0084 (DSPI_RXFR2)
0x0088 (DSPI_RXFR3)

Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-10. DSPI Receive FIFO Registers 0–3 (DSPI_RXFRn)

Table 23-10. DSPI_RXFRn Field Description

Field Description

bits 0–15 Reserved.

RXDATA Receive Data. Contains the received SPI data.

Offset: DSPI_BASE + 0x00BC Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0
TXSS

0 0
CID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DCO
NT

DSICTAS
0 0 0 0 0 0 DPCS

5
DPCS

4
DPCS

3
DPCS

2
DPCS

1
DPCS

0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-11. DSPI DSI Configuration Register (DSPI_DSICR)

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-26 Freescale Semiconductor
 Preliminary

23.3.2.11 DSPI DSI Serialization Data Register (DSPI_SDR)

The DSPI_SDR contains the signal states of the parallel input signals from the eMIOS. The pin states of
the parallel input signals are latched into the DSPI_SDR on the rising edge of every system clock. The

Table 23-11. DSPI_DSICR Field Descriptions

Field Description

bits 0–11 Reserved.

TXSS Transmit Data Source Select. Selects the source of data to be serialized. The source can be data from host
software written to the DSPI DSI alternate serialization data register (DSPI_ASDR) or parallel output pin states
latched into the DSPI DSI serialization data register (DSPI_SDR).
0 Source of serialized data is the DSPI_SDR
1 Source of serialized data is the DSPI_ASDR

bits 13–14 Reserved.

CID Change in Data Transfer Enable. Enables a change in serialization data to initiate a transfer. The bit is used in
master mode in DSI and CSI configurations to control when to initiate transfers. When the CID bit is set,
serialization is initiated when the current DSI data differs from the previous DSI data shifted out. The
DSPI_COMPR is compared with the DSPI_SDR or DSPI_ASDR to detect a change in data. Refer to
Section 23.4.4.5, “DSI Transfer Initiation Control,” for more information.
0 Change in data transfer operation disabled
1 Change in data transfer operation enabled

DCONT DSI Continuous Peripheral Chip Select Enable. Enables the PCSx signals to remain asserted between transfers.
The DCONT bit affects the PCS signals in DSI master mode only. See Section 23.4.8.5, “Continuous Selection
Format,” for details.
0 Return peripheral chip select signals to their inactive state after transfer is complete
1 Keep peripheral chip select signals asserted after transfer is complete

DSICTAS DSI Clock and Transfer Attributes Select. The DSICTAS field selects which of the DSPI_CTARs is used to provide
transfer attributes in DSI configuration. The DSICTAS field is used in DSI master mode. In DSI slave mode, the
DSPI_CTAR1 is always selected. The table below shows how the DSICTAS values map to the DSPI_CTARs.

bits 20–25 Reserved.

DPCSn DSI Peripheral Chip Select n. The DPCS bits select which of the PCSx signals to assert during a DSI transfer.
The DPCS bits control the assertions of the PCSx signals in DSI master mode only.
0 Negate PCSn
1 Assert PCSn

DSICTAS
DSI Clock and Transfer Attributes

Controlled by

000 DSPI_CTAR0

001 DSPI_CTAR1

010 DSPI_CTAR2

011 DSPI_CTAR3

100 DSPI_CTAR4

101 DSPI_CTAR5

110 DSPI_CTAR6

111 DSPI_CTAR7

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-27
 Preliminary

DSPI_SDR is read-only. When the TXSS bit in the DSPI_DSICR is negated, the data in the DSPI_SDR is
the source of the serialized data.

23.3.2.12 DSPI DSI Alternate Serialization Data Register (DSPI_ASDR)

The DSPI_ASDR provides a means for host software to write the data to be serialized. When the TXSS
bit in the DSPI_DSICR is set, the data in the DSPI_ASDR is the source of the serialized data. Writes to
the DSPI_ASDR take effect on the next frame boundary.

Offset: DSPI_BASE + 00C0 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SER_DATA [15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-12. DSPI DSI Serialization Data Register (DSPI_SDR)

Table 23-12. DSPI_SDR Field Description

Bits Description

bits 0–15 Reserved.

SER_DATA
[15:0]

Serialized Data. The SER_DATA field contains the signal states of the parallel input signals. SER_DATA
[15:0] maps to DSPI serialization inputs IN[15:0].

Offset: DSPI_BASE + 0x00C4 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
ASER_DATA [15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-13. DSPI DSI Alternate Serialization Data Register (DSPI_ASDR)

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-28 Freescale Semiconductor
 Preliminary

23.3.2.13 DSPI DSI Transmit Comparison Register (DSPI_COMPR)

The DSPI_COMPR holds a copy of the last transmitted DSI data. The DSPI_COMPR is read-only. DSI
data is transferred to this register as it is loaded into the TX shift register.

23.3.2.14 DSPI DSI Deserialization Data Register (DSPI_DDR)

The DSPI_DDR holds the signal states for the parallel output signals. The DSPI_DDR is read-only and is
memory mapped so that host software can read the incoming DSI frames.

Table 23-13. DSPI_ASDR Field Description

Field Description

bits 0–15 Reserved.

ASER_DATA
[15:0]

Alternate Serialized Data. The ASER_DATA field holds the alternate data to be serialized.

Offset: DSPI_BASE + 0x00C8 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R COMP_DATA [15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-14. DSPI DSI Transmit Comparison Register (DSPI_COMPR)

Table 23-14. DSPI_COMPR Field Description

Field Description

bits 0–15 Reserved.

COMP_DATA
[15:0]

Compare Data. The COMP_DATA field holds the last serialized DSI data.

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-29
 Preliminary

23.4 Functional Description
The DSPI supports full-duplex, synchronous serial communications between the MCU and peripheral
devices. The DSPI can also be used to reduce the number of pins required for I/O by serializing and
deserializing up to 16 parallel input/output signals from the eMIOS. All communications are through an
SPI-like protocol.

The DSPI has three configurations:

• SPI configuration in which the DSPI operates as a basic SPI or a queued SPI.

• DSI configuration in which the DSPI serializes and deserializes parallel input/output signals or bits
from memory mapped registers.

• CSI configuration in which the DSPI combines the functionality of the SPI and DSI configurations.

The DCONF field in the DSPIx_MCR register determines the DSPI configuration. See Table 23-2 for the
DSPI configuration values.

The DSPIx_CTAR0–DSPIx_CTAR7 registers hold clock and transfer attributes. The manner in which a
CTAR is selected depends on the DSPI configuration (SPI, DSI, or CSI). The SPI configuration can select
which CTAR to use on a frame by frame basis by setting the CTAS field in the DSPIx_PUSHR. The DSI
configuration statically selects which CTAR to use. In CSI configuration, priority logic determines if SPI
data or DSI data is transferred. The type of data transferred (whether DSI or SPI) dictates which CTAR the
CSI configuration will use. See Section 23.3.2.3, “DSPI Clock and Transfer Attributes Registers 0–7
(DSPI_CTARn),” for information on DSPIx_CTAR fields.

Offset: DSPI_BASE + 0x00CC Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DESER_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-15. DSPI Deserialization Data Register (DSPI_DDR)

Table 23-15. DSPI_DDR Field Description

Field Description

bits 0–15 Reserved.

DESER_DATA Deserialized Data. Holds deserialized data that is presented as signal states to the parallel output signals.

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-30 Freescale Semiconductor
 Preliminary

23.4.1 Modes of Operation

The DSPI modules have four available distinct modes:

• Master mode

• Slave mode

• Module disable mode

• Debug mode

Master, slave, and module disable modes are module-specific modes, but debug mode is a device-specific
mode.

The module-specific modes are determined by bits in the DSPIx_MCR. Debug mode is a mode that the
entire device can enter in parallel with the DSPI being configured in one of its module-specific modes.

23.4.1.1 Master Mode

In master mode the DSPI can initiate communications with peripheral devices. The DSPI operates as bus
master when the MSTR bit in the DSPIx_MCR is set. The serial communications clock (SCK) is
controlled by the master DSPI. All three DSPI configurations are valid in master mode.

In SPI configuration, master mode transfer attributes are controlled by the SPI command in the current TX
FIFO entry. The CTAS field in the SPI command selects which of the eight DSPIx_CTARs will be used to
set the transfer attributes. Transfer attribute control is on a frame by frame basis. See Section 23.4.3,
“Serial Peripheral Interface (SPI) Configuration,” for more details.

In DSI configuration, master mode transfer attributes are controlled by the DSPIx_DSCIR. A detailed
description of the DSPIx_DSCIR is located in Section 23.3.2.10, “DSPI DSI Configuration Register
(DSPI_DSICR).” The DSISCTAS field in the DSPIx_DSICR selects which of the DSPIx_CTARs will be
used to set the transfer attributes. Transfer attributes are set up during initialization and must not be
changed between frames. See Section 23.4.4, “Deserial Serial Interface (DSI) Configuration,” for more
details.

The CSI configuration is only available in master mode. In CSI configuration, the DSI data is transferred
using DSI configuration transfer attributes and SPI data is transferred using the SPI configuration transfer
attributes. For the bus slave to distinguish between DSI and SPI frames, the transfer attributes for the two
types of frames must use different peripheral chip select signals. See Section 23.4.5, “Combined Serial
Interface (CSI) Configuration,” for details.

23.4.1.2 Slave Mode

In slave mode the DSPI responds to transfers initiated by an SPI master. The DSPI operates as bus slave
when the MSTR bit in the DSPIx_MCR is negated. The DSPI slave is selected by a bus master by asserting
the slave’s SS. In slave mode, the bus master provides the SCK. All transfer attributes are controlled by
the bus master but clock polarity, clock phase, and numbers of bits to transfer must still be configured in
the DSPI slave for proper communications.

The SPI and DSI configurations are valid in slave mode. CSI configuration is not available in slave mode.
In SPI slave mode the slave transfer attributes are set in the DSPIx_CTAR0. In DSI slave mode the slave

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-31
 Preliminary

transfer attributes are set in the DSPIx_CTAR1. In slave mode, for both SPI and DSI configurations, data
is transferred MSB first. The LSBFE field of the associated CTAR is ignored.

23.4.1.3 Module Disable Mode

The module disable mode is used for MCU power management. The clock to the non-memory-mapped
logic in the DSPI is stopped while in module disable mode. The DSPI enters the module disable mode
when the MDIS bit in DSPIx_MCR is set. See Section 23.4.12, “Power Saving Features,” for more details
on the module disable mode.

23.4.1.4 Halt Mode

When the appropriate bit in the SIU_HLT register is set, a request to enter halt mode will be made to the
DSPI. The DSPI will not acknowledge the request to enter halt mode until it has reached a frame boundary.
When the DSPI has reached a frame boundary it will halt all operations and indicate that it is ready to have
its clocks shut off. The DSPI exits halt mode and resumes normal operation once the clocks are turned on.
Serial communications or register accesses made while in halt mode are ignored even if the clocks have
not been shut off yet. See Section 23.4.12, “Power Saving Features,”for more details on the halt mode.

23.4.1.5 Debug Mode

The debug mode is used for system development and debugging. If the MCU enters debug mode while the
FRZ bit in the DSPIx_MCR is set, the DSPI stops all serial transfers and enters a stopped state. If the MCU
enters debug mode while the FRZ bit is negated, the DSPI behavior is unaffected and remains dictated by
the module-specific mode and configuration of the DSPI. The DSPI enters debug mode when a debug
request is asserted by an external controller. See Figure 23-16 for a state diagram.

23.4.2 Start and Stop of DSPI Transfers

The DSPI has two operating states: stopped and running. The states are independent of DSPI
configuration. The default state of the DSPI is stopped. In the stopped state no serial transfers are initiated
in master mode and no transfers are responded to in slave mode. The stopped state is also a safe state for
writing the various configuration registers of the DSPI without causing undetermined results. The TXRXS
bit in the DSPIx_SR is negated in this state. In the running state, serial transfers take place. The TXRXS
bit in the DSPIx_SR is asserted in the running state. Figure 23-16 shows a state diagram of the start and
stop mechanism. The transitions are described in Table 23-16.

Figure 23-16. DSPI Start and Stop State Diagram

Running
TXRXS = 1

Stopped
TXRXS = 0

Reset

Power-on-Reset 0

1

2

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-32 Freescale Semiconductor
 Preliminary

State transitions from running to stopped occur on the next frame boundary if a transfer is in progress, or
on the next system clock cycle if no transfers are in progress.

23.4.3 Serial Peripheral Interface (SPI) Configuration

The SPI configuration transfers data serially using a shift register and a selection of programmable transfer
attributes. The DSPI is in SPI configuration when the DCONF field in the DSPIx_MCR is 0b00. The SPI
frames can be from four to 16 bits long. The data to be transmitted can come from queues stored in RAM
external to the DSPI. Host software or an eDMA controller can transfer the SPI data from the queues to a
first-in first-out (FIFO) buffer. The received data is stored in entries in the receive FIFO (RX FIFO) buffer.
Host software or an eDMA controller transfers the received data from the RX FIFO to memory external
to the DSPI. The FIFO buffer operations are described in Section 23.4.3.4, “Transmit First-In First-Out
(TX FIFO) Buffering Mechanism,” and Section 23.4.3.5, “Receive First-In First-Out (RX FIFO)
Buffering Mechanism.” The interrupt and DMA request conditions are described in Section 23.4.11,
“DMA and Interrupt Conditions.”

Figure 23-17 shows an example of how a master DSPI connects to a SPI slave in SPI Configuration.

Figure 23-17. DSPI Connections for SPI and DSI Transfers

The SPI configuration supports two module-specific modes: master mode and slave mode. The FIFO
operations are similar for the master mode and slave mode. The main difference is that in master mode the
DSPI initiates and controls the transfer according to the fields in the SPI command field of the TX FIFO

Table 23-16. State Transitions for Start and Stop of DSPI Transfers

Transition # Current State Next State Description

0 Reset Stopped Generic power-on-reset transition

1 Stopped Running The DSPI is started (DSPI transitions to running) when all of the
following conditions are true:
 • EOQF bit is clear
 • Debug mode is unselected or the FRZ bit is clear
 • HALT bit is clear

2 Running Stopped The DSPI stops (transitions from running to stopped) after the
current frame for any one of the following conditions:
 • EOQF bit is set
 • Debug mode is selected and the FRZ bit is set
 • HALT bit is set

DSPI Master

Shift Register

Baud Rate Generator

SPI/DSI Slave

Shift Register

SOUTSIN

SOUT SIN

SCK SCK

PCSx SS

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-33
 Preliminary

entry. In slave mode the DSPI only responds to transfers initiated by a bus master external to the DSPI and
the SPI command field of the TX FIFO entry is ignored.

23.4.3.1 SPI Master Mode

In SPI master mode the DSPI initiates the serial transfers by controlling the serial communications clock
(SCKx) and the peripheral chip select (PCSx) signals. The SPI command field in the executing TX FIFO
entry determines which CTARs will be used to set the transfer attributes and which PCSx signal to assert.
The command field also contains various bits that help with queue management and transfer protocol. See
Section 23.3.2.6, “DSPI PUSH TX FIFO Register (DSPI_PUSHR),” for details on the SPI command
fields. The data field in the executing TX FIFO entry is loaded into the shift register and shifted out on the
serial out (SOUTx) pin. In SPI master mode, each SPI frame to be transmitted has a command associated
with it allowing for transfer attribute control on a frame by frame basis.

23.4.3.2 SPI Slave Mode

In SPI slave mode the DSPI responds to transfers initiated by an SPI bus master. The DSPI does not initiate
transfers. Certain transfer attributes such as clock polarity, clock phase and frame size must be set for
successful communication with an SPI master. The SPI slave mode transfer attributes are set in the
DSPIx_CTAR0.

23.4.3.3 FIFO Disable Operation

The FIFO disable mechanisms allow SPI transfers without using the TX FIFO or RX FIFO. The DSPI
operates as a double-buffered simplified SPI when the FIFOs are disabled. The TX and RX FIFOs are
disabled separately. The TX FIFO is disabled by writing a 1 to the DIS_TXF bit in the DSPIx_MCR. The
RX FIFO is disabled by writing a 1 to the DIS_RXF bit in the DSPIx_MCR.

The FIFO disable mechanisms are transparent to the user and to host software; transmit data and
commands are written to the DSPIx_PUSHR and received data is read from the DSPIx_POPR. When the
TX FIFO is disabled, the TFFF, TFUF, and TXCTR fields in DSPIx_SR behave as if there is a one-entry
FIFO but the contents of the DSPIx_TXFRs and TXNXTPTR are undefined. When the RX FIFO is
disabled, the RFDF, RFOF, and RXCTR fields in the DSPIx_SR behave as if there is a one-entry FIFO but
the contents of the DSPIx_RXFRs and POPNXTPTR are undefined.

The TX and RX FIFOs must be disabled only if the application's operating mode requires the FIFO to be
disabled. A FIFO must be disabled before it is accessed. Failure to disable a FIFO prior to a first FIFO
access is not supported, and may result in incorrect results.

23.4.3.4 Transmit First-In First-Out (TX FIFO) Buffering Mechanism

The TX FIFO functions as a buffer of SPI data and SPI commands for transmission. The TX FIFO holds
four entries, each consisting of a command field and a data field. SPI commands and data are added to the
TX FIFO by writing to the DSPI push TX FIFO register (DSPIx_PUSHR). For more information on
DSPIx_PUSHR, refer to Section 23.3.2.6, “DSPI PUSH TX FIFO Register (DSPI_PUSHR).” TX FIFO
entries can be removed from the TX FIFO only by being shifted out or by flushing the TX FIFO.

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-34 Freescale Semiconductor
 Preliminary

The TX FIFO counter field (TXCTR) in the DSPI status register (DSPIx_SR) indicates the number of valid
entries in the TX FIFO. The TXCTR is updated every time the DSPI _PUSHR is written or SPI data is
transferred into the shift register from the TX FIFO. For more information on DSPIx_SR, refer to
Section 23.3.2.4, “DSPI Status Register (DSPI_SR).”

The TXNXTPTR field indicates which TX FIFO entry will be transmitted during the next transfer. The
TXNXTPTR contains the positive offset from DSPIx_TXFR0 in number of 32-bit registers. For example,
TXNXTPTR equal to two means that the DSPIx_TXFR2 contains the SPI data and command for the next
transfer. The TXNXTPTR field is incremented every time SPI data is transferred from the TX FIFO to the
shift register.

23.4.3.4.1 Filling the TX FIFO

Host software or the eDMA controller can add (push) entries to the TX FIFO by writing to the
DSPIx_PUSHR. When the TX FIFO is not full, the TX FIFO fill flag (TFFF) in the DSPIx_SR is set. The
TFFF bit is cleared when the TX FIFO is full and the eDMA controller indicates that a write to
DSPIx_PUSHR is complete or alternatively by host software writing a 1 to the TFFF in the DSPIx_SR.
The TFFF can generate a DMA request or an interrupt request. See Section 23.4.11.2, “Transmit FIFO Fill
Interrupt or DMA Request (TFFF),” for details.

The DSPI ignores attempts to push data to a full TX FIFO; that is, the state of the TX FIFO is unchanged.
No error condition is indicated.

23.4.3.4.2 Draining the TX FIFO

The TX FIFO entries are removed (drained) by shifting SPI data out through the shift register. Entries are
transferred from the TX FIFO to the shift register and shifted out as long as there are valid entries in the
TX FIFO. Every time an entry is transferred from the TX FIFO to the shift register, the TX FIFO counter
is decremented by one. At the end of a transfer, the TCF bit in the DSPIx_SR is set to indicate the
completion of a transfer. The TX FIFO is flushed by writing a 1 to the CLR_TXF bit in DSPIx_MCR.

If an external SPI bus master initiates a transfer with a DSPI slave while the slave’s DSPI TX FIFO is
empty, the transmit FIFO underflow flag (TFUF) in the slave’s DSPIx_SR is set. See Section 23.4.11.4,
“Transmit FIFO Underflow Flag (TFUF),”for details.

23.4.3.5 Receive First-In First-Out (RX FIFO) Buffering Mechanism

The RX FIFO functions as a buffer for data received on the SIN pin. The RX FIFO holds four received
SPI data frames. SPI data is added to the RX FIFO at the completion of a transfer when the received data
in the shift register is transferred into the RX FIFO. SPI data is removed (popped) from the RX FIFO by
reading the DSPIx_POPR register. RX FIFO entries can only be removed from the RX FIFO by reading
the DSPIx_POPR or by flushing the RX FIFO. For more information on the DSPIx_POPR, refer to
Section 23.3.2.7, “DSPI POP RX FIFO Register (DSPI_POPR).”

The RX FIFO counter field (RXCTR) in the DSPI status register (DSPIx_SR) indicates the number of
valid entries in the RX FIFO. The RXCTR is updated every time the DSPI _POPR is read or SPI data is
copied from the shift register to the RX FIFO.

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-35
 Preliminary

The POPNXTPTR field in the DSPIx_SR points to the RX FIFO entry that is returned when the
DSPIx_POPR is read. The POPNXTPTR contains the positive, 32-bit word offset from DSPIx_RXFR0.
For example, POPNXTPTR equal to two means that the DSPIx_RXFR2 contains the received SPI data
that will be returned when DSPIx_POPR is read. The POPNXTPTR field is incremented every time the
DSPIx_POPR is read. POPNXTPTR rolls over every four frames on the MCU.

23.4.3.5.1 Filling the RX FIFO

The RX FIFO is filled with the received SPI data from the shift register. While the RX FIFO is not full,
SPI frames from the shift register are transferred to the RX FIFO. Every time an SPI frame is transferred
to the RX FIFO the RX FIFO counter is incremented by one.

If the RX FIFO and shift register are full and a transfer is initiated, the RFOF bit in the DSPIx_SR is
asserted indicating an overflow condition. Depending on the state of the ROOE bit in the DSPIx_MCR,
the data from the transfer that generated the overflow is ignored or shifted in to the shift register. If the
ROOE bit is asserted, the incoming data is shifted in to the shift register. If the ROOE bit is negated, the
incoming data is ignored.

23.4.3.5.2 Draining the RX FIFO

Host software or the eDMA can remove (pop) entries from the RX FIFO by reading the DSPIx_POPR. For
more information on DSPIx_POPR, refer to Section 23.3.2.7, “DSPI POP RX FIFO Register
(DSPI_POPR).” A read of the DSPIx_POPR decrements the RX FIFO counter by one. Attempts to pop
data from an empty RX FIFO are ignored, the RX FIFO counter remains unchanged. The data returned
from reading an empty RX FIFO is undetermined.

When the RX FIFO is not empty, the RX FIFO drain flag (RFDF) in the DSPIx_SR is set. The RFDF bit
is cleared when the RX_FIFO is empty and the eDMA controller indicates that a read from DSPIx_POPR
is complete; alternatively the RFDF bit can be cleared by the host writing a 1 to it.

23.4.4 Deserial Serial Interface (DSI) Configuration

The DSI configuration supports pin-count reduction by serializing eMIOS output channels or register bits
and shifting them out in an SPI-like protocol. The timing and transfer protocol is described in
Section 23.4.8, “Transfer Formats.” The received serial frames are converted to a parallel form
(deserialized) and placed on the eMIOS input channels or in a register. See Section 23.4.4.6, “DSPI_A
Connectivity,” for the source of the serialization data for each DSPI block.

The various features of the DSI configuration are set in the DSPIx_DSICR. For more information on the
DSPIx_DSICR, refer to Section 23.3.2.10, “DSPI DSI Configuration Register (DSPI_DSICR).” The DSPI
is in DSI configuration when the DCONF field in the DSPIx_MCR is 0b01.

The DSI frames can be from four to 16 bits long.

Figure 23-18 shows an example of how a master DSPI connects to a SPI slave in DSI configuration.

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-36 Freescale Semiconductor
 Preliminary

23.4.4.1 DSI Master Mode

In DSI master mode the DSPI initiates and controls the DSI transfers. The DSI master has two different
conditions that can initiate a transfer:

• Continuous

• Change in data

The two transfer initiation conditions are described in Section 23.4.4.5, “DSI Transfer Initiation Control.”
Transfer attributes are set during initialization. The DSICTAS field in the DSPIx_DSICR determines
which of the DSPIx_CTARs will control the transfer attributes.

23.4.4.2 DSI Slave Mode

In DSI slave mode the DSPI responds to transfers initiated by an SPI or DSI bus master. In this mode the
DSPI does not initiate DSI transfers. Certain transfer attributes such as clock polarity and phase must be
set for successful communication with a DSI master. The DSI slave mode transfer attributes are set in the
DSPIx_CTAR1.

If the CID bit in the DSPIx_DSICR is set and the data in the DSPIx_COMPR differs from the selected
source of the serialized data, the slave DSPI will assert the MTRIG signal.

23.4.4.3 DSI Serialization

In the DSI configuration, four to 16 bits can be serialized using two different sources. The TXSS bit in the
DSPIx_DSICR selects between the DSPIx_SDR and DSPIx_ASDR as the source of serialized data. See
Section 23.3.2.11, “DSPI DSI Serialization Data Register (DSPI_SDR),” and Section 23.3.2.12, “DSPI
DSI Alternate Serialization Data Register (DSPI_ASDR),” for more details. The DSPIx_SDR holds the
latest parallel input signal values which is sampled at every rising edge of the system clock. The
DSPIx_ASDR is written by host software and used as an alternate source of serialized data.

A copy of the last DSI frame shifted out of the shift register is stored in the DSPIx_COMPR. This register
provides added visibility for debugging and it serves as a reference for transfer initiation control.
Figure 23-18 shows the DSI serialization logic. Section 23.3.2.13, “DSPI DSI Transmit Comparison
Register (DSPI_COMPR),” contains details on the DSPIx_COMPR.

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-37
 Preliminary

Figure 23-18. DSI Serialization Diagram

23.4.4.4 DSI Deserialization

When all bits in a DSI frame have been shifted in, the frame is copied to the DSPIx_DDR. This register
presents the deserialized data as parallel output signal values. The DSPIx_DDR is memory mapped to
allow host software to read the deserialized data directly. Figure 23-19 shows the DSI deserialization logic.
for more information on the DSPIx_DDR, refer to Section 23.3.2.14, “DSPI DSI Deserialization Data
Register (DSPI_DDR).”

Figure 23-19. DSI Deserialization Diagram

23.4.4.5 DSI Transfer Initiation Control

Data transfers for a master DSPI in DSI configuration are initiated by a condition. When chaining DSPIs,
the master and all slaves must be configured for the transfer initiation. The transfer initiation conditions
are selected by the CID bit in the DSPIx_DSICR. Table 23-17 lists the two transfer initiation conditions.

1

0

DSPI Alternate
Serialization Data Register

SOUTx
Parallel

DSI Configuration
Register

DSI Transmit
Comparison Register

Clock
Logic

0 1 • • • • • 15

Shift RegisterDSI Serialization
Data Register

Control
Logic

SCKx

Inputs

PCSx

16

16

16

16
TXSS

Slave Bus Interface

16

SIN

Control
Logic

0 1 • • • • • 15

Shift Register

16

Slave Bus Interface

ParallelDSI Deserialization
Data Register Outputs 1

16

1 Parallel outputs not supported by DSPI_D.

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-38 Freescale Semiconductor
 Preliminary

23.4.4.5.1 Continuous Control

For continuous control, the initiation of a transfer is based on the baud rate at which data is transferred
between the DSPI and the external device. The baud rate is set in the DSPIx_CTAR selected by the
DSICTAS field in the DSPIx_DSICR. A new DSI frame shifts out when the previous transfer cycle has
completed and the delay after transfer (tDT) has elapsed.

23.4.4.5.2 Change In Data Control

For change in data control, a transfer is initiated when the data to be serialized has changed since the
transfer of the last DSI frame. A copy of the previously transferred DSI data is stored in the
DSPIx_COMPR. When the data in the DSPIx_SDR or the DSPIx_ASDR is different from the data in the
DSPIx_COMPR, a new DSI frame is transmitted. The TXSS bit in the DSPIx_DSICR selects which
register the DSPIx_COMPR is compared to. The MTRIG output signal is asserted every time a change in
data is detected.

23.4.4.6 DSPI_A Connectivity

Figure 23-20. DSPI_A Connectivity

Table 23-17. DSI Data Transfer Initiation Control

DSPIx_DSICR[CID] Type of Transfer Initiation Control

0 Continuous

1 Change in Data

Table 23-18. DSPI_A Connectivity Table

DSPI_A
Input

Connected to:
DSPI_A
Output

Connected to:

0 eMIOS output channel 0 0 Set by SIU IMUX2. See Table 6-23.

1 eMIOS output channel 1 1 Set by SIU IMUX2. See Table 6-23.

2 eMIOS output channel 2 2 Set by SIU IMUX2. See Table 6-23.

3 eMIOS output channel 3 3 Set by SIU IMUX2. See Table 6-23.

4 eMIOS output channel 4 4 Set by SIU IMUX2. See Table 6-23.

5 eMIOS output channel 5 5 Set by SIU IMUX2. See Table 6-23.

6 eMIOS output channel 6 6 Set by SIU IMUX2. See Table 6-23.

7 eMIOS output channel 7 7 Set by SIU IMUX2. See Table 6-23.

8 eMIOS output channel 8 8 Set by SIU IMUX2. See Table 6-23.

eMIOS

UC 15

UC 0

•
•

•
•

DSPI_A

IN 15

IN 0

•
•

OUT 15

OUT 0

•
•

•
•

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-39
 Preliminary

23.4.4.7 DSPI_B Connectivity

Figure 23-21. DSPI_B Connectivity

9 eMIOS output channel 9 9 Set by SIU IMUX2. See Table 6-23.

10 eMIOS output channel 10 10 Set by SIU IMUX2. See Table 6-23.

11 eMIOS output channel 11 11 Set by SIU IMUX2. See Table 6-23.

12 eMIOS output channel 12 12 Set by SIU IMUX2. See Table 6-23.

13 eMIOS output channel 13 13 Set by SIU IMUX2. See Table 6-23.

14 eMIOS output channel 14 14 Set by SIU IMUX2. See Table 6-23.

15 eMIOS output channel 15 15 Set by SIU IMUX2. See Table 6-23.

Table 23-19. DSPI_B Connectivity Table

DSPI_B
Input

Connected to:
DSPI_B
Output

Connected to:

0 eMIOS output channel 0 0 Set by SIU IMUX2. See Table 6-23.

1 eMIOS output channel 1 1 Set by SIU IMUX2. See Table 6-23.

2 eMIOS output channel 2 2 Set by SIU IMUX2. See Table 6-23.

3 eMIOS output channel 3 3 Set by SIU IMUX2. See Table 6-23.

4 eMIOS output channel 4 4 Set by SIU IMUX2. See Table 6-23.

5 eMIOS output channel 5 5 Set by SIU IMUX2. See Table 6-23.

6 eMIOS output channel 6 6 Set by SIU IMUX2. See Table 6-23.

7 eMIOS output channel 7 7 Set by SIU IMUX2. See Table 6-23.

8 eMIOS output channel 8 8 Set by SIU IMUX2. See Table 6-23.

9 eMIOS output channel 9 9 Set by SIU IMUX2. See Table 6-23.

10 eMIOS output channel 10 10 Set by SIU IMUX2. See Table 6-23.

11 eMIOS output channel 11 11 Set by SIU IMUX2. See Table 6-23.

12 eMIOS output channel 12 12 Set by SIU IMUX2. See Table 6-23.

13 eMIOS output channel 13 13 Set by SIU IMUX2. See Table 6-23.

Table 23-18. DSPI_A Connectivity Table (continued)

DSPI_A
Input

Connected to:
DSPI_A
Output

Connected to:

eMIOS

UC 15

UC 0

•
•

•
•

DSPI_B

IN 15

IN 0

•
• OUT 15

OUT 1

•
•

•
•

OUT 0

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-40 Freescale Semiconductor
 Preliminary

23.4.4.8 DSPI_C Connectivity

Figure 23-22. DSPI_C Connectivity

14 eMIOS output channel 14 14 Set by SIU IMUX2. See Table 6-23.

15 eMIOS output channel 15 15 Set by SIU IMUX2. See Table 6-23.

Table 23-20. DSPI_C Connectivity Table

DSPI_C
Input

Connected to:
DSPI_C
Output

Connected to:

0 eMIOS output channel 0 0 Set by SIU IMUX2. See Table 6-23.

1 eMIOS output channel 1 1 Set by SIU IMUX2. See Table 6-23.

2 eMIOS output channel 2 2 Set by SIU IMUX2. See Table 6-23.

3 eMIOS output channel 3 3 Set by SIU IMUX2. See Table 6-23.

4 eMIOS output channel 4 4 Set by SIU IMUX2. See Table 6-23.

5 eMIOS output channel 5 5 Set by SIU IMUX2. See Table 6-23.

6 eMIOS output channel 6 6 Set by SIU IMUX2. See Table 6-23.

7 eMIOS output channel 7 7 Set by SIU IMUX2. See Table 6-23.

8 eMIOS output channel 8 8 Set by SIU IMUX2. See Table 6-23.

9 eMIOS output channel 9 9 Set by SIU IMUX2. See Table 6-23.

10 eMIOS output channel 10 10 Set by SIU IMUX2. See Table 6-23.

11 eMIOS output channel 11 11 Set by SIU IMUX2. See Table 6-23.

12 eMIOS output channel 12 12 Set by SIU IMUX2. See Table 6-23.

13 eMIOS output channel 13 13 Set by SIU IMUX2. See Table 6-23.

14 eMIOS output channel 14 14 Set by SIU IMUX2. See Table 6-23.

15 eMIOS output channel 15 15 Set by SIU IMUX2. See Table 6-23.

Table 23-19. DSPI_B Connectivity Table (continued)

DSPI_B
Input

Connected to:
DSPI_B
Output

Connected to:

eMIOS

UC 15

UC 0

•
•

•
•

DSPI_C

IN 15

IN 0

•
•

OUT 15

OUT 2

•
•

•
•

OUT 1

OUT 0

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-41
 Preliminary

23.4.4.9 DSPI_D Connectivity

Figure 23-23. DSPI_D Connectivity

23.4.5 Combined Serial Interface (CSI) Configuration

In master mode, the CSI configuration of the DSPI is used to support SPI and DSI functions on a frame by
frame basis. CSI configuration allows interleaving of DSI data frames from the parallel input signals (from
the eMIOS) with SPI commands and data from the TX FIFO. The data returned from the bus slave is either
used to drive the parallel output signals (to the eMIOS) or is stored in the RX FIFO. CSI configuration

Table 23-21. DSPI_D Connectivity Table

DSPI_D
Input

Connected to:

0 eMIOS output channel 0

1 eMIOS output channel 1

2 eMIOS output channel 2

3 eMIOS output channel 3

4 eMIOS output channel 4

5 eMIOS output channel 5

6 eMIOS output channel 6

7 eMIOS output channel 7

8 eMIOS output channel 8

9 eMIOS output channel 9

10 eMIOS output channel 10

11 eMIOS output channel 11

12 eMIOS output channel 12

13 eMIOS output channel 13

14 eMIOS output channel 14

15 eMIOS output channel 15

eMIOS

UC 15

UC 0

•
•

•
•

DSPI_D

IN 15

IN 0

•
•

OUT 15

OUT 2

•
•

•
•

OUT 1

OUT 0

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-42 Freescale Semiconductor
 Preliminary

allows serialized data and configuration or diagnostic data to be transferred to a slave device using only
one serial link. The DSPI is in CSI configuration when the DCONF field in the DSPIx_MCR is 0b10.
Figure 23-24 shows an example of how a DSPI can be used with a deserializing peripheral that supports
SPI control for control and diagnostic frames.

Figure 23-24. Example of System Using DSPI in CSI Configuration

In CSI configuration the DSPI transfers DSI data based on Section 23.4.4.5, “DSI Transfer Initiation
Control.” When there are SPI commands in the TX FIFO, the SPI data has priority over the DSI frames.
When the TX FIFO is empty, DSI transfer resumes.

Two peripheral chip select signals indicate whether DSI data or SPI data is transmitted. The user must
configure the DSPI so the two CTARs associated with DSI data and SPI data assert different peripheral
chip-select signals denoted in the figure as PCSx and PCSy. The CSI configuration is only supported in
master mode.

Data returned from the external slave while a DSI frame is transferred is placed on the parallel output
signals. Data returned from the external slave while an SPI frame is transferred is moved to the RX FIFO.
The TX FIFO and RX FIFO are fully functional in CSI mode.

23.4.5.1 CSI Serialization

Serialization in the CSI configuration is similar to serialization in DSI configuration. The transfer
attributes for SPI frames are determined by the DSPIx_CTAR selected by the CTAS field in the SPI
command halfword. The transfer attributes for the DSI frames are determined by the DSPIx_CTAR
selected by the DSICTAS field in the DSPIx_DSICR. Figure 23-25 shows the CSI serialization logic.

SPI

DSPI master

DSI

Shift register

TX FIFO

TX
priority
control

SINx

SOUTx

SCKx

PCSx

PCSy SPI

External slave deserializer

Shift register

frame

Frame
select
logic

SOUTx

SINx

SCKx

SSx

SSy DSI
frame

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-43
 Preliminary

Figure 23-25. CSI Serialization Diagram

The parallel inputs signal states are latched into the DSPIx_SDR on the rising edge of every system clock
and serialized based on the transfer initiation control settings in the DSPIx_DSICR. For more information
on the DSPIx_SDR, refer to Section 23.3.2.11, “DSPI DSI Serialization Data Register (DSPI_SDR).” SPI
frames written to the TX FIFO have priority over DSI data from the DSPIx_SDR and are transferred at the
next frame boundary. A copy of the most recently transferred DSI frame is stored in the DSPIx_COMPR.
The transfer priority logic selects the source of the serialized data and asserts the appropriate CS signal.

23.4.5.2 CSI Deserialization

The deserialized frames in CSI configuration go into the DSPIx_SDR or the RX FIFO based on the transfer
priority logic. When DSI frames are transferred the returned frames are deserialized and latched into the
DSPIx_DDR. When SPI frames are transferred the returned frames are deserialized and written to the RX
FIFO. Figure 23-26 shows the CSI deserialization logic.

Figure 23-26. CSI Deserialization Diagram

SOUTx

Parallel

DSI control
register

DSI transmit
comparison register

Clock
logic

0 1 • • • • • 15

Shift registerDSI serialization
data register

Control
logic

SCKx

inputs

PCSx (SPI)
PCSy (DSI)

16

16

16

16

Transfer

Slave bus interface

16

TX FIFO

(P_IN)

priority logic

SIN

Control
logic

0 1 • • • • • 15

Shift register

16

Slave bus interface

Parallel
DSI deserialization

data register
outputs

16

Transfer
priority logic

16

RX FIFO

(P_OUT)

16

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-44 Freescale Semiconductor
 Preliminary

23.4.6 Buffered SPI Operation

The DSPI can use a FIFO buffering mechanism to transmit and receive commands and data to and from
external devices. The transmit FIFO buffers SPI commands and data to be transferred. The receive FIFO
buffers incoming serial data. Both FIFOs are four entries deep. The TX FIFO stores 32-bit words when the
DSPIs are configured for master mode. The 32-bit words are composed of 16-bit command fields and data
fields up to 16 bits wide. The RX FIFOs store 16-bit words of received data from external devices. When
the DSPI is configured for slave mode, the DSPI ignores the SPI command in the TX FIFO. See the DSPI
block guide for a complete description of the command portion of the TX FIFO.

For queued operations, the SPI queues reside in system memory external to the DSPI. Data transfers
between the memory and the DSPI FIFOs are accomplished through the use of the eDMA controller or
through host software. See Figure 23-27 for conceptual diagram of the queue data transfer control in the
MCU.

Figure 23-27. DSPI Queue Transfer Control in MPC5510

23.4.7 DSPI Baud Rate and Clock Delay Generation

The SCKx frequency and the delay values for serial transfer are generated by dividing the system clock
frequency by a prescaler and a scaler with the option of doubling the baud rate. Figure 23-28 shows
conceptually how the SCK signal is generated.

Figure 23-28. Communications Clock Prescalers and Scalers

System RAM

DSPI

DMA controller/

TX queue

RX FIFOTX FIFO

Shift register

Data

Data

Address

RX queue

Data Data

Address
DMA

control/

host

host

Prescaler

1

Scaler

1+DBR
System clock SCKx

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-45
 Preliminary

23.4.7.1 Baud Rate Generator

The baud rate is the frequency of the serial communication clock (SCKx). The system clock is divided by
a baud rate prescaler (defined by DSPIx_CTAR[PBR]) and baud rate scaler (defined by
DSPIx_CTAR[BR]) to produce SCKx with the possibility of doubling the baud rate. The DBR, PBR, and
BR fields in the DSPIx_CTARs select the frequency of SCKx using the following formula:

Table 23-22 shows an example of a computed baud rate.

23.4.7.2 PCS to SCK Delay (tCSC)

The PCSx to SCKx delay is the length of time from assertion of the PCSx signal to the first SCKx edge.
See Figure 23-30 for an illustration of the PCSx to SCKx delay. The PCSSCK and CSSCK fields in the
DSPIx_CTARn registers select the PCSx to SCKx delay, and the relationship is expressed by the following
formula:

Table 23-23 shows an example of the computed PCS to SCK delay.

23.4.7.3 After SCK Delay (tASC)

The after SCKx delay is the length of time between the last edge of SCKx and the negation of PCSx. See
Figure 23-30 and Figure 23-31 for illustrations of the after SCKx delay. The PASC and ASC fields in the
DSPIx_CTARn registers select the after SCK delay. The relationship between these variables is given in
the following formula:

Table 23-24 shows an example of the computed after SCK delay.

Table 23-22. Baud Rate Computation Example

fSYS PBR
Prescaler

Value
BR

Scaler
Value

DBR
Value

Baud Rate

66 MHz 0b00 2 0b0000 2 0 16.67 Mb/s

20 MHz 0b00 2 0b0000 2 1 10 Mb/s

Table 23-23. PCS to SCK Delay Computation Example

PCSSCK
Prescaler

Value
CSSCK

Scaler
Value

fSYS PCS to SCK Delay

0b01 3 0b0100 32 66 MHz 1.44 μs

SCK baud rate
fSYS

PBRPrescalerValue
-- 1 DBR+

BRScalerValue
--×=

tCSC =
fSYS

CSSCK× PCSSCK1 ×

tASC =
fSYS

ASC× PASC1 ×

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-46 Freescale Semiconductor
 Preliminary

23.4.7.4 Delay after Transfer (tDT)

The delay after transfer is the length of time between negation of the PCSx signal for a frame and the
assertion of the PCSx signal for the next frame. See Figure 23-30 for an illustration of the delay after
transfer. The PDT and DT fields in the DSPIx_CTARn registers select the delay after transfer. The
following formula expresses the PDT/DT/delay after transfer relationship:

Table 23-25 shows an example of the computed delay after transfer.

23.4.7.5 Peripheral Chip Select Strobe Enable (PCSS)

The PCSS signal provides a delay to allow the PCSx signals to settle after transitioning thereby avoiding
glitches. When the DSPI is in master mode and PCSSE bit is set in the DSPIx_MCR, PCSS provides a
signal for an external demultiplexer to decode the PCSx[0:4] signals into as many as 32 glitch-free PCSx
signals. Figure 23-29 shows the timing of the PCSS signal relative to PCS signals.

Figure 23-29. Peripheral Chip Select Strobe Timing

The delay between the assertion of the PCSx signals and the assertion of PCSS is selected by the PCSSCK
field in the DSPIx_CTAR based on the following formula:

At the end of the transfer the delay between PCSS negation and PCSx negation is selected by the PASC
field in the DSPIx_CTAR based on the following formula:

Table 23-24. After SCK Delay Computation Example

PASC
Prescaler

Value
ASC

Scaler
Value

Fsys After SCK Delay

0b01 3 0b0100 32 66 MHz 1.44 μs

Table 23-25. Delay after Transfer Computation Example

PDT
Prescaler

Value
DT

Scaler
Value

fSYS Delay after Transfer

0b01 3 0b1110 32768 66 Hz 1.47 ms

 tDT =
 fSYS

DT× PDT
1

×

PCSS

PCSx

tPCSSCK tPASC

 tPCSSCK = PCSSCK×
fSYS

1

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-47
 Preliminary

Table 23-26 shows an example of the computed tPCSSCK delay.

Table 23-27 shows an example of the computed the tPASC delay.

23.4.8 Transfer Formats

The SPI serial communication is controlled by the serial communications clock (SCKx) signal and the
PCSx signals. The SCKx signal provided by the master device synchronizes shifting and sampling of the
data by the SINx and SOUTx pins. The PCSx signals serve as enable signals for the slave devices.

When the DSPI is the bus master, the CPOL and CPHA bits in the DSPI clock and transfer attributes
registers (DSPIx_CTARn) select the polarity and phase of the serial clock, SCKx. The polarity bit selects
the idle state of the SCKx. The clock phase bit selects if the data on SOUTx is valid before or on the first
SCKx edge.

When the DSPI is the bus slave, CPOL and CPHA bits in the DSPIx_CTAR0 (SPI slave mode) or
DSPIx_CTAR1 (DSI slave mode) select the polarity and phase of the serial clock. Even though the bus
slave does not control the SCK signal, clock polarity, clock phase, and number of bits to transfer must be
identical for the master device and the slave device to ensure proper transmission.

The DSPI supports four different transfer formats:

• Classic SPI with CPHA = 0

• Classic SPI with CPHA = 1

• Modified transfer format with CPHA = 0

• Modified transfer format with CPHA = 1

A modified transfer format is supported to allow for high-speed communication with peripherals that
require longer setup times. The DSPI can sample the incoming data later than halfway through the cycle
to give the peripheral more setup time. The MTFE bit in the DSPIx_MCR selects between classic SPI
format and modified transfer format. The classic SPI formats are described in Section 23.4.8.1, “Classic
SPI Transfer Format (CPHA = 0),” and Section 23.4.8.2, “Classic SPI Transfer Format (CPHA = 1).” The
modified transfer formats are described in Section 23.4.8.3, “Modified SPI/DSI Transfer Format (MTFE
= 1, CPHA = 0),” and Section 23.4.8.4, “Modified SPI/DSI Transfer Format (MTFE = 1, CPHA = 1).”

Table 23-26. Peripheral Chip Select Strobe Assert Computation Example

PCSSCK Prescaler fSYS Delay before Transfer

0b11 7 66 MHz 105.0 ns

Table 23-27. Peripheral Chip Select Strobe Negate Computation Example

PASC Prescaler fSYS Delay after Transfer

0b11 7 66 MHz 105.0 ns

 tPASC = PASC×
fSYS

1

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-48 Freescale Semiconductor
 Preliminary

In the SPI and DSI configurations, the DSPI provides the option of keeping the PCS signals asserted
between frames. See Section 23.4.8.5, “Continuous Selection Format” for details.

23.4.8.1 Classic SPI Transfer Format (CPHA = 0)

The transfer format shown in Figure 23-30 is used to communicate with peripheral SPI slave devices
where the first data bit is available on the first clock edge. In this format, the master and slave sample their
SINx pins on the odd-numbered SCKx edges and change the data on their SOUTx pins on the
even-numbered SCKx edges.

Figure 23-30. DSPI Transfer Timing Diagram (MTFE = 0, CPHA = 0, FMSZ = 8)

The master initiates the transfer by placing its first data bit on the SOUTx pin and asserting the appropriate
peripheral chip select signals to the slave device. The slave responds by placing its first data bit on its
SOUTx pin. After the tCSC delay has elapsed, the master outputs the first edge of SCKx. This is the edge
used by the master and slave devices to sample the first input data bit on their serial data input signals. At
the second edge of the SCKx the master and slave devices place their second data bit on their serial data
output signals. For the rest of the frame the master and the slave sample their SINx pins on the
odd-numbered clock edges and changes the data on their SOUTx pins on the even-numbered clock edges.
After the last clock edge occurs a delay of tASC is inserted before the master negates the PCS signals. A
delay of tDT is inserted before a new frame transfer can be initiated by the master.

For the CPHA =0 condition of the master, TCF and EOQF are set and the RXCTR counter is updated at
the next to last serial clock edge of the frame (edge 15) of Figure 23-30.

For the CPHA=0 condition of the slave, TCF is set and the RXCTR counter is updated at the last serial
clock edge of the frame (edge 16) of Figure 23-30.

SCK
(CPOL = 0)

PCSx/SS

tASC

SCK
(CPOL = 1)

Master & Slave
Sample

Master SOUT/
Slave SIN

Master SIN/
Slave SOUT

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB
LSB

tDT
tCSC

tCSC

MSB First (LSBFE = 0):
LSB First (LSBFE = 1):

tCSC = PCS to SCK delay.
tASC = After SCK delay.
tDT = Delay after transfer (minimum CS idle time).

 Master (CPHA = 0): TCF and EOQF are set and RXCTR counter
is updated at next to last SCK edge of frame (edge 15)

Slave (CPHA = 0): TCF is set and RXCTR counter is updated at
last SCK edge of frame (edge 16)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1615

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-49
 Preliminary

23.4.8.2 Classic SPI Transfer Format (CPHA = 1)

This transfer format shown in Figure 23-31 is used to communicate with peripheral SPI slave devices that
require the first SCKx edge before the first data bit becomes available on the slave SOUT pin. In this
format the master and slave devices change the data on their SOUTx pins on the odd-numbered SCKx
edges and sample the data on their SINx pins on the even-numbered SCKx edges.

Figure 23-31. DSPI Transfer Timing Diagram (MTFE = 0, CPHA = 1, FMSZ = 8)

The master initiates the transfer by asserting the PCSx signal to the slave. After the tCSC delay has elapsed,
the master generates the first SCKx edge and at the same time places valid data on the master SOUTx pin.
The slave responds to the first SCKx edge by placing its first data bit on its slave SOUTx pin.

At the second edge of the SCKx the master and slave sample their SINx pins. For the rest of the frame the
master and the slave change the data on their SOUTx pins on the odd-numbered clock edges and sample
their SINx pins on the even-numbered clock edges. After the last clock edge occurs a delay of tASC is
inserted before the master negates the PCSx signal. A delay of tDT is inserted before a new frame transfer
can be initiated by the master.

For CPHA=1 the master EOQF and TCF and slave TCF are set at the last serial clock edge (edge 16) of
Figure 23-31. For CPHA=1 the master and slave RXCTR counters are updated on the same clock edge.

23.4.8.3 Modified SPI/DSI Transfer Format (MTFE = 1, CPHA = 0)

In this modified transfer format both the master and the slave sample later in the SCK period than in classic
SPI mode to allow for delays in device pads and board traces. These delays become a more significant
fraction of the SCK period as the SCK period decreases with increasing baud rates.

Slave (CPHA = 1): TCF is set and RXCTR counter is updated at
last SCK edge of frame (edge 16)

SCK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(CPOL = 0)

PCSx/SS

tASC

SCK
(CPOL = 1)

Master & Slave
Sample

Master SOUT/
Slave SIN

Master SIN/
Slave SOUT

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB
LSB

tDT

tCSC

MSB First (LSBFE = 0):
LSB First (LSBFE = 1):

tCSC = PCS to SCK delay.
tASC = After SCK delay.
tDT = Delay after transfer (minimum CS negation time).

Master (CPHA = 1): TCF and EOQF are set and RXCTR counter
is updated at last SCK edge of frame (edge 16)

16

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-50 Freescale Semiconductor
 Preliminary

NOTE
For correct operation of the modified transfer format, the user must
thoroughly analyze the SPI link timing budget.

The master and the slave place data on the SOUTx pins at the assertion of the PCSx signal. After the PCSx
to SCKx delay has elapsed the first SCKx edge is generated. The slave samples the master SOUTx signal
on every odd numbered SCKx edge. The slave also places new data on the slave SOUTx on every odd
numbered clock edge.

The master places its second data bit on the SOUTx line one system clock after odd numbered SCKx edge.
The point where the master samples the slave SOUTx is selected by writing to the SMPL_PT field in the
DSPIx_MCR. Table 23-28 lists the number of system clock cycles between the active edge of SCKx and
the master sample point for different values of the SMPL_PT bit field. The master sample point can be
delayed by one or two system clock cycles.

Figure 23-32 shows the modified transfer format for CPHA = 0. Only the condition where CPOL = 0 is
illustrated. The delayed master sample points are indicated with a lighter shaded arrow.

Figure 23-32. DSPI Modified Transfer Format (MTFE = 1, CPHA = 0, Fsck = Fsys/4)

Table 23-28. Delayed Master Sample Point

SMPL_PT
Number of System Clock Cycles Between

Odd-Numbered Edge of SCK and Sampling of SIN

00 0

01 1

10 2

11 Reserved

tCSC = PCS to SCK delay.
tASC = After SCK delay.

System clock

1 2 3 4 5 6

PCSx

tASC

SCK

Master sample

Slave SOUT

Master SOUT

System clock
System clock

Slave sample

tCSC

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-51
 Preliminary

23.4.8.4 Modified SPI/DSI Transfer Format (MTFE = 1, CPHA = 1)

Figure 23-33 shows the modified transfer format for CPHA = 1. Only the condition where CPOL = 0 is
described. At the start of a transfer the DSPI asserts the PCS signal to the slave device. After the PCS to
SCK delay has elapsed, the master and the slave put data on their SOUT pins at the first edge of SCK. The
slave samples the master SOUT signal on the even numbered edges of SCK. The master samples the slave
SOUT signal on the odd numbered SCK edges starting with the third SCK edge. The slave samples the
last bit on the last edge of the SCK. The master samples the last slave SOUT bit one half SCK cycle after
the last edge of SCK. No clock edge will be visible on the master SCK pin during the sampling of the last
bit. The SCK to PCS delay must be greater or equal to half of the SCK period.

NOTE
For correct operation of the modified transfer format, the user must
thoroughly analyze the SPI link timing budget.

Figure 23-33. DSPI Modified Transfer Format (MTFE = 1, CPHA = 1, Fsck = Fsys/4)

23.4.8.5 Continuous Selection Format

Some peripherals must be deselected between every transfer. Other peripherals must remain selected
between several sequential serial transfers. The continuous selection format provides the flexibility to
handle both cases. The continuous selection format is enabled for the SPI configuration by setting the
CONT bit in the SPI command. Continuous selection is enabled for the DSI configuration by setting the
DCONT bit in the DSPIx_DSICR. The behavior of the PCS signals in the two configurations is identical
so only SPI configuration will be described.

When the CONT bit = 0, the DSPI drives the asserted chip select signals to their idle states in between
frames. The idle states of the chip select signals are selected by the PCSIS field in the DSPIx_MCR.
Figure 23-34 shows the timing diagram for two four-bit transfers with CPHA = 1 and CONT = 0.

tCSC = PCS to SCK delay.
tASC = After SCK delay.

System clock

1 2 3 4 5 6

PCS

tASC

SCK

Master sample

Master SOUT

Slave SOUT

Slave sample

tCSC

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-52 Freescale Semiconductor
 Preliminary

Figure 23-34. Example of Non-Continuous Format (CPHA=1, CONT=0)

When the CONT = 1 and the PCS signal for the next transfer is the same as for the current transfer, the
PCS signal remains asserted for the duration of the two transfers. The delay between transfers (tDT) is not
inserted between the transfers. Figure 23-35 shows the timing diagram for two four-bit transfers with
CPHA = 1 and CONT = 1.

Figure 23-35. Example of Continuous Transfer (CPHA = 1, CONT = 1)

In Figure 23-35, the period length at the start of the next transfer is the sum of tASC and tCSC; i.e., it does
not include a half-clock period. The default settings for these provide a total of four system clocks. In many
situations, tASC and tCSC must be increased if a full half-clock period is required.

Switching CTARs between frames while using continuous selection can cause errors in the transfer. The
PCS signal must be negated before CTAR is switched.

When the CONT bit = 1 and the PCS signals for the next transfer are different from the present transfer,
the PCS signals behave as if the CONT bit was not set.

SCK
(CPOL = 0)

PCSx

tASC

SCK
(CPOL = 1)

Master SOUT

tDT

tCSC

tCSC = PCS to SCK delay.
tASC = After SCK delay.
tDT = Delay after transfer (minimum CS negation time).

Master SIN

tCSC

SCK
(CPOL = 0)

PCS

tASC

SCK
(CPOL = 1)

Master SOUT

tCSC

tCSC

tCSC = PCS to SCK delay.
tASC = After SCK delay.

Master SIN

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-53
 Preliminary

23.4.8.6 Clock Polarity Switching Between DSPI Transfers

If it is desired to switch polarity between non-continuous DSPI frames, the edge generated by the change
in the idle state of the clock occurs one system clock before the assertion of the chip select for the next
frame. In Figure 23-36, time A shows the one clock interval. Time B is user programmable from a
minimum of two system clocks. Refer to Section 23.3.2.3, “DSPI Clock and Transfer Attributes Registers
0–7 (DSPI_CTARn).”

Figure 23-36. Polarity Switching Between Frames

23.4.9 Continuous Serial Communications Clock

The DSPI provides the option of generating a continuous SCK signal for slave peripherals that require a
continuous clock.

Continuous SCK is enabled by setting the CONT_SCKE bit in the DSPIx_MCR. Continuous SCK is valid
in all configurations.

Continuous SCK is only supported for CPHA = 1. Setting CPHA = 0 will be ignored if the CONT_SCKE
bit is set. Continuous SCK is supported for modified transfer format.

Clock and transfer attributes for the continuous SCK mode are set according to the following rules:

• When the DSPI is in SPI configuration, CTAR0 shall be used initially. At the start of each SPI
frame transfer, the CTAR specified by the CTAS for the frame will be used.

• When the DSPI is in DSI configuration, the CTAR specified by the DSICTAS field will be used at
all times.

• When the DSPI is in CSI configuration, the CTAR selected by the DSICTAS field will be used
initially. At the start of an SPI frame transfer, the CTAR specified by the CTAS value for the frame
will be used. At the start of a DSI frame transfer, the CTAR specified by the DSICTAS field will
be used.

• In all configurations, the currently selected CTAR will remain in use until the start of a frame with
a different CTAR specified, or the continuous SCK mode is terminated.

It is recommended that the baud rate is the same for all transfers made while using the continuous SCK.
Switching clock polarity between frames while using continuous SCK can cause errors in the transfer.
Continuous SCK operation is not guaranteed if the DSPI is put into module disable mode.

PCS

System Clock

SCK

Frame 1Frame 0

CPOL = 0 CPOL = 1

A B

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-54 Freescale Semiconductor
 Preliminary

Enabling continuous SCK disables the PCS to SCK delay and the after SCK delay. The delay after transfer
is fixed at one SCK cycle. Figure 23-37 shows timing diagram for continuous SCK format with continuous
selection disabled.

Figure 23-37. Continuous SCK Timing Diagram (CONT= 0)

If the CONT bit in the TX FIFO entry is set or the DCONT in the DSPIx_DSICR is set, PCS remains
asserted between the transfers when the PCS signal for the next transfer is the same as for the current
transfer. Figure 23-38 shows timing diagram for continuous SCK format with continuous selection
enabled.

Figure 23-38. Continuous SCK Timing Diagram (CONT=1)

23.4.10 Peripheral Chip Select Expansion and Deglitching

The DSPI supports up to 64 peripheral chip select signals with the use of an external demultiplexer. Up to
32 peripheral chip select signals can be used if deglitching is desired. The PCSS signal provides the
appropriate timing to enable and disable the demultiplexer for the PCS[0:4] signals.

Figure 23-39 shows how an external 5-to-32 demultiplexer (decoder) can be connected to the DSPI.

SCK
(CPOL = 0)

PCS

SCK
(CPOL = 1)

Master SOUT

tDT
tDT = 1 SCK.

Master SIN

SCK
(CPOL = 0)

PCS

SCK
(CPOL = 1)

Master SOUT

Master SIN

Transfer 1 Transfer 2

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-55
 Preliminary

Figure 23-39. DSPI PCS Expansion and Deglitching

23.4.11 DMA and Interrupt Conditions

The DSPI has six conditions that can generate interrupt requests only and two conditions that can generate
interrupt or DMA request. Table 23-29 lists the conditions. The x indicates which signals are connected.

All request conditions are detected in the SPI configuration and in the CSI configuration. In DSI
configuration only the transfer of current frame complete condition is detected. See Table 13-4 for the
DSPI DMA channel assignments and Section 8.3.1, “Interrupt Source Summary Table,” for the DSPI
interrupt vectors.

23.4.11.1 End of Queue Interrupt Request (EOQF)

The end of queue request indicates that the end of a transmit queue is reached. The end of queue request
is generated when the EOQ bit in the executing SPI command is asserted and the EOQF_RE bit in the
DSPIx_RSER is asserted. See the EOQ bit description in Section 23.3.2.4, “DSPI Status Register
(DSPI_SR).” Refer to Figure 23-30 and Figure 23-31 that illustrate when EOQF is set.

23.4.11.2 Transmit FIFO Fill Interrupt or DMA Request (TFFF)

The transmit FIFO fill request indicates that the TX FIFO is not full. The transmit FIFO fill request is
generated when the number of entries in the TX FIFO is less than the maximum number of possible entries,
and the TFFF_RE bit in the DSPIx_RSER is asserted. The TFFF_DIRS bit in the DSPIx_RSER selects
whether a DMA request or an interrupt request is generated.

Table 23-29. DSPI Interrupt and DMA Request Conditions

Condition Flag Interrupt DMA

End of queue reached (EOQ) EOQF X

TX FIFO is not full TFFF X X

Transfer of current frame complete TCF X

Attempt to transmit with an empty transmit FIFO TFUF X

RX FIFO is not empty RFDF X X

Frame received while receive FIFO is full RFOF X

 DSPI

PCS0–PCS4

PCSS

PCS0
PCS1

PCS31

5

PCS6-7 No connect

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-56 Freescale Semiconductor
 Preliminary

23.4.11.3 Transfer Complete Interrupt Request (TCF)

The transfer complete request indicates the end of the transfer of a serial frame. The transfer complete
request is generated at the end of each frame transfer when the TCF_RE bit is set in the DSPIx_RSER. See
the TCF bit description in Section 23.3.2.4, “DSPI Status Register (DSPI_SR).” Refer to Figure 23-30 and
Figure 23-31 that illustrate when TCF is set.

23.4.11.4 Transmit FIFO Underflow Flag (TFUF)

The Transmit FIFO Underflow Flag indicates that an underflow condition in the TX FIFO has occurred.
The transmit underflow condition is detected only for DSPI blocks operating in slave mode and SPI
configuration. The transmit underflow condition is detected when the TX FIFO of a DSPI operating as a
SPI slave is empty, and a transfer is initiated from an external SPI master.

23.4.11.5 Receive FIFO Drain Interrupt or DMA Request (RFDF)

The receive FIFO drain request indicates that the RX FIFO is not empty. The receive FIFO drain request
is generated when the number of entries in the RX FIFO is not zero, and the RFDF_RE bit in the
DSPIx_RSER is asserted. The RFDF_DIRS bit in the DSPIx_RSER selects whether a DMA request or an
interrupt request is generated.

23.4.11.6 Receive FIFO Overflow Flag (RFOF)

The receive FIFO overflow flag indicates that an overflow condition in the RX FIFO has occurred, and
that data may be lost. The receive FIFO overflow flag is asserted when the RX FIFO is full, a new frame
has been received in the shift register, and a transfer is initiated.

23.4.11.7 DMA Requests

The connection of the DSPI DMA request signals to the DMA channel mux is described in Table 13-4.

23.4.11.8 Interrupt Requests

The DSPI interrupts on connected as described in Table 8-2.

23.4.12 Power Saving Features

The DSPI supports three power-saving strategies:

• Halt mode

• Module disable mode—clock gating of non-memory mapped logic

• Clock gating of slave interface signals and clock to memory-mapped logic

23.4.12.1 Halt Mode

By setting the appropriate bit in the SIU_HLT register, a request is made to shut down all clocks in the
DSPI. If there is no serial transfer in progress, the DSPI immediately asserts an acknowledge signal to the
system, allowing the clocks to be disabled. If a serial transfer is in progress when the request is received,

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-57
 Preliminary

the DSPI waits until it reaches a frame boundary before it asserts the acknowledge signal to the system.
The status of this acknowledge signal can be determined by reading the SIU_HLTACK register.

While the clocks are shut off, the DSPI memory-mapped logic is not accessible. The states of the interrupt
and DMA request signals cannot be changed while in Halt Mode.

Halt Mode is exited by negating the appropriate bit in the SIU_HLT register.

23.4.12.2 Module Disable Mode

Module disable mode is a module-specific mode that the DSPI can enter to save power. Host software can
initiate the module disable mode by writing a 1 to the MDIS bit in the DSPIx_MCR.

In module disable mode, the DSPI is in a dormant state, but the memory mapped registers are still
accessible. Certain read or write operations have a different affect when the DSPI is in the module disable
mode. Reading the RX FIFO pop register will not change the state of the RX FIFO. Likewise, writing to
the TX FIFO push register will not change the state of the TX FIFO. Clearing either of the FIFOs will not
have any affect in the module disable mode. Changes to the DIS_TXF and DIS_RXF fields of the
DSPIx_MCR will not have any affect in the module disable mode. In the module disable mode, all status
bits and register flags in the DSPI will return the correct values when read, but writing to them will have
no affect. Writing to the DSPIx_TCR during module disable mode will not have any affect. Interrupt and
DMA request signals cannot be cleared while in the module disable mode.

23.4.12.3 Slave Interface Signal Gating

The DSPI’s module enable signal is used to gate slave interface signals such as address, byte enable,
read/write and data. This prevents toggling slave interface signals from consuming power unless the DSPI
is accessed.

23.5 Initialization/Application Information

23.5.1 How to Change Queues

DSPI queues are not part of the DSPI module, but the DSPI includes features in support of queue
management. Queues are primarily supported in SPI configuration. This section presents an example of
how to change queues for the DSPI.

1. The last command word from a queue is executed. The EOQ bit in the command word is set to
indicate to the DSPI that this is the last entry in the queue.

2. At the end of the transfer, corresponding to the command word with EOQ set is sampled, the EOQ
flag (EOQF) in the DSPIx_SR is set.

3. The setting of the EOQF flag will disable both serial transmission, and serial reception of data,
putting the DSPI in the STOPPED state. The TXRXS bit is negated to indicate the STOPPED state.

4. The eDMA will continue to fill TX FIFO until it is full or step 5 occurs.

5. Disable DSPI DMA transfers by disabling the DMA enable request for the DMA channel assigned
to TX FIFO and RX FIFO. This is done by clearing the corresponding DMA enable request bits in
the eDMA controller.

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-58 Freescale Semiconductor
 Preliminary

6. Ensure all received data in RX FIFO has been transferred to memory receive queue by reading the
RXCNT in DSPIx_SR or by checking RFDF in the DSPIx_SR after each read operation of the
DSPIx_POPR.

7. Modify DMA descriptor of TX and RX channels for new queues.

8. Flush TX FIFO by writing a 1 to the CLR_TXF bit in the DSPIx_MCR, Flush RX FIFO by writing
a 1 to the CLR_RXF bit in the DSPIx_MCR.

9. Clear transfer count either by setting CTCNT bit in the command word of the first entry in the new
queue or via CPU writing directly to SPI_TCNT field in the DSPIx_TCR.

10. Enable DMA channel by enabling the DMA enable request for the DMA channel assigned to the
DSPI TX FIFO, and RX FIFO by setting the corresponding DMA set enable request bit.

11. Enable serial transmission and serial reception of data by clearing the EOQF bit.

23.5.2 Baud Rate Settings

Table 23-30 shows the baud rate that is generated based on the combination of the baud rate prescaler PBR
and the baud rate scaler BR in the DSPIx_CTARs. The values calculated assume a 66 MHz system
frequency.

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-59
 Preliminary

23.5.3 Delay Settings

Table 23-31 shows the values for the delay after transfer (tDT) and CS to SCK delay (tCSC) that can be
generated based on the prescaler values and the scaler values set in the DSPIx_CTARs. The values
calculated assume a 66 MHz system frequency.

Table 23-30. Baud Rate Values

Baud Rate Divider Prescaler Values
(DSPI_CTAR[PBR])

2 3 5 7

B
au

d
 R

at
e

S
ca

le
r

V
al

u
es

 (
D

S
P

I_
C

TA
R

[B
R

])

2 16.67 MHz 11.11 MHz 6.67 MHz 4.76 MHz

4 8.33 MHz 5.55 MHz 3.33 MHz 2.38 MHz

6 5.55 MHz 3.70 MHz 2.22 MHz 1.59 MHz

8 4.17 MHz 2.78 MHz 1.67 MHz 1.19 MHz

16 2.08 MHz 1.37 MHz 833.3 kHz 595.3 kHz

32 1.04 MHz 693 kHz 417 kHz 297 kHz

64 521 kHz 347 kHz 208 kHz 149 kHz

128 261 kHz 174 kHz 104 kHz 75 kHz

256 130 kHz 87.7 kHz 52.1 kHz 37.2 kHz

512 65.1 kHz 43.4 kHz 26.1 kHz 18.6 kHz

1024 32.5 kHz 21.7 kHz 13 kHz 9.33 kHz

2048 16.3 kHz 10.8 kHz 6.51 kHz 4.65 kHz

4096 8.13 kHz 5.42 kHz 3.25 kHz 2.33 kHz

8192 4.07 kHz 2.71 kHz 1.63 kHz 1.16 kHz

16384 2.03 kHz 1.36 kHz 813 Hz 581 Hz

32768 1.02 kHz 680 Hz 407 Hz 291 Hz

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-60 Freescale Semiconductor
 Preliminary

23.5.4 Calculation of FIFO Pointer Addresses

The user has complete visibility of the TX and RX FIFO contents through the FIFO registers, and valid
entries can be identified through a memory-mapped pointer and a memory-mapped counter for each FIFO.
The pointer to the first-in entry in each FIFO is memory mapped. For the TX FIFO the first-in pointer is
the transmit next pointer (TXNXTPTR). For the RX FIFO the first-in pointer is the pop next pointer
(POPNXTPTR). Figure 23-40 illustrates the concept of first-in and last-in FIFO entries along with the
FIFO counter. The TX FIFO is chosen for the illustration, but the concepts carry over to the RX FIFO. See
Section 23.4.3.4, “Transmit First-In First-Out (TX FIFO) Buffering Mechanism,” and Section 23.4.3.5,
“Receive First-In First-Out (RX FIFO) Buffering Mechanism,” for details on the FIFO operation.

Table 23-31. Delay Values

Delay Prescaler Values
(DSPI_CTAR[PBR])

1 3 5 7

D
el

ay
 S

ca
le

r
V

al
u

es
 (

D
S

P
I_

C
TA

R
[D

T
])

2 30.0 ns 90.0 ns 150.0 ns 210.0 ns

4 60.0 ns 180.0 ns 300.0 ns 420.0 ns

8 120.0 ns 360.0 ns 600.0 ns 840.0 ns

16 240.0 ns 720.0 ns 1.2μs 1.65 μs

32 480.0 ns 1.44 μns 2.4 μs 3.3 μs

64 960.0 ns 2.9 μs 4.8 μs 6.8 μs

128 2.0 μs 5.7 μs 9.6 μs 13.5 μs

256 3.9 μs 11.6 μs 19.2 μs 26.9 μs

512 7.7 μs 23.1 μs 38.4 μs 53.7 μs

1024 15.3 μs 46.1 μs 76.8 μs 107.6 μs

2048 30.8 μs 92.1 μs 153.6 μs 215.1 μs

4096 61.6 μs 184.4 μs 307.2 μs 430.1 μs

8192 122.9 μs 368.7 μs 614.4 μs 860.1 μs

16384 245.7 μs 737.3 μs 1.2 ms 1.7 ms

32768 491.6 μs 1.5 ms 2.4 ms 3.5 ms

65536 998.1 μs 2.0 ms 3.0 ms 6.9 ms

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 23-61
 Preliminary

Figure 23-40. TX FIFO Pointers and Counter

23.5.4.1 Address Calculation for the First-in Entry and Last-in Entry in the TX
FIFO

The memory address of the first-in entry in the TX FIFO is computed by the following equation:

First-in entry address = TXFIFO base + 4 (TXNXTPTR)

The memory address of the last-in entry in the TX FIFO is computed by the following equation:

Last-in entry address = TX FIFO base + 4*[(TXCTR + TXNXTPTR - 1) modulo TX FIFO depth]

where:

TX FIFO base: base address of TX FIFO

TXCTR: TX FIFO counter

TXNXTPTR: transmit next pointer

TX FIFO depth: transmit FIFO depth

23.5.4.2 Address Calculation for the First-in Entry and Last-in Entry in the RX
FIFO

The memory address of the first-in entry in the RX FIFO is computed by the following equation:

First-in entry address = TX FIFO base + 4*(POPNXTPTR)

The memory address of the last-in entry in the RX FIFO is computed by the following equation:

Last-in entry address = RX FIFO base + 4*[(RXCTR + POPNXTPTR - 1) modulo RX FIFO depth]

RX FIFO base: base address of RX FIFO

RXCTR: RX FIFO counter

POPNXTPTR: pop next pointer

RX FIFO depth: receive FIFO depth

Entry C

Entry A (first In)

– 1

Entry B

Entry D (last In)

TX FIFO base

Push TX FIFO

TX FIFO counter

Shift register SOUT

register

Transmit next
data pointer

–

–

–

–

+ 1

(TXNXTPTR)

Deserial Serial Peripheral Interface (DSPI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

23-62 Freescale Semiconductor
 Preliminary

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 24-1
 Preliminary

Chapter 24
Enhanced Serial Communication Interface (eSCI)

24.1 Introduction
The eSCI allows asynchronous serial communications with peripheral devices and other CPUs. The eSCI
has special features that allow the eSCI to operate as a LIN bus master, complying with the LIN 2.0
specification.

24.1.1 Block Diagram

A simplified block diagram of the eSCI illustrates the functionality and interdependence of major blocks
(see Figure 24-1).

Figure 24-1. eSCI Block Diagram

IRQ
generation

Receive and wakeup control

Receive shift register

eSCI data register

LIN receive register

LIN transmit register
DMA

interface

TX DMA

RX DMA

RDRF/
OR IRQ

ORING IRQ to CPU

Data format control÷16BAUD
generator

Transmit control

Transmit shift register

eSCI data register

IDLE
IRQ

IRQ
generation

TC IRQ

TDRE
IRQ

TX data out

LIN FSM LIN error detection

RXRDY
TXRDY
LWAKE
FRC

PBERR
BERR
CERR
CKERR
STO
OVFL

LIN error flags

LIN status flags

LIN Hardware

Peripheral
bus clock

RX data in

(Finite State
Machine)

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

24-2 Freescale Semiconductor
 Preliminary

24.1.2 Features

The eSCI has these major features:

• Full-duplex operation

• Standard mark/space non-return-to-zero (NRZ) format

• 13-bit baud rate selection

• Programmable 8-bit or 9-bit data format

• LIN master node support

• Configurable CRC detection for LIN

• Separately enabled transmitter and receiver

• Two receiver wakeup methods:

— Idle line wakeup

— Address mark wakeup

• Interrupt-driven operation with flags

• Receiver framing error detection

• Hardware parity checking

• 1/16 bit-time noise detection

• Two-channel DMA interface

24.1.3 Modes of Operation

There are two operating modes of the eSCI module: run mode and stop mode. In run mode, eSCI_x = 0 in
the SIU_HLT register and all functional parts of the eSCI_x module are running. In stop mode, eSCI_x = 1
in the SIU_HLT register and all clocks to the eSCI_x module are disabled.

The eSCI delays the system going into stop mode, until it has completely transmitted the current TX byte,
or completely received the current RX byte. In LIN mode it will complete any frames that do not require
further processor intervention (e.g. transmission of a checksum byte).

24.2 External Signal Description
Each eSCI_x module has two external signals: TXD_x (transmit data output of eSCI_x) and RXD_x
(receive data input of eSCI_x). Refer to Table 2-1 and Section 2.7, “Detailed External Signal
Descriptions,” for detailed signal descriptions.

24.3 Memory Map and Registers
This section provides a detailed description of all eSCI registers.

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 24-3
 Preliminary

24.3.1 Module Memory Map

The eSCI memory map is shown in Table 24-1. The address of each register is given as an offset to the
eSCI base address. Registers are listed in address order, identified by complete name and mnemonic, and
include the type of accesses allowed.

24.3.2 Register Descriptions

This section lists the eSCI registers in address order and describes the registers and their bit fields.

24.3.2.1 eSCI Control Register 1 (ESCIx_CR1)

Table 24-1. eSCI Memory Map

Offset from
eSCI_BASE

(eSCI_A = 0xFFFA_0000
eSCI_B = 0xFFFA_4000
eSCI_C = 0xFFFA_8000
eSCI_D = 0xFFFA_C000
eSCI_E = 0xFFFB_0000
eSCI_F = 0xFFFB_4000
eSCI_G = 0xFFFB_8000
eSCI_H = 0xFFFB_C000

Register Access Reset Value Section/Page

0x0000 ESCIx_CR1—eSCI control register 1 R/W 0x0004_0000 24.3.2.1/24-3

0x0004 ESCIx_CR2—eSCI control register 2 R/W 0xA000 24.3.2.2/24-6

000x06 ESCIx_DR—eSCI data register R/W 0x0000 24.3.2.3/24-7

0x0008 ESCIx_SR—eSCI status register R 0x8000_0000 24.3.2.4/24-8

0x000C ESCIx_LCR—LIN control register R/W 0x0000_0000 24.3.2.5/24-10

0x0010 ESCIx_LTR—LIN transmit register R/W 0x0000_0000 24.3.2.6/24-12

0x0014 ESCIx_LRR—LIN receive register R/W 0x0000_0000 24.3.2.7/24-15

0x0018 ESCIx_LPR—LIN cyclic redundancy check (CRC)
polynomial register

R 0xC599_0000 24.3.2.8/24-15

Offset: Base + 0x0000 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0
SBR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
LOOPS

0
RSRC M WAKE ILT PE PT TIE TCIE RIE ILIE TE RE RWU SBK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-2. eSCI Control Register 1 (ESCIx_CR1)

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

24-4 Freescale Semiconductor
 Preliminary

Table 24-2. ESCIx_CR1 Field Descriptions

Field Description

bits 0–2 Reserved.

SBR SCI Baud Rate. Used by the counter to determine the baud rate of the eSCI. The formula for calculating the baud
rate is:

where SBR can contain a value from 1 to 8191. After reset, the baud generator is disabled until the TE bit or the RE
bit is set for the first time. The baud rate generator is disabled when SBR = 0x0.

LOOPS Loop Select. Enables loop operation. In loop operation, the RXD pin is disconnected from the eSCI and the
transmitter output is internally connected to the receiver input. Both the transmitter and the receiver must be enabled
to use the loop function.
0 Normal operation enabled, loop operation disabled
1 Loop operation enabled
Note: The receiver input is determined by the RSRC bit.

bit 17 Reserved.

Note: Reserved bit 17 is writeable, but writing to this bit has no effect other than to update the value of the register.

RSRC Receiver Source. When LOOPS = 1, the RSRC bit determines the source for the receiver shift register input.
0 Receiver input internally connected to transmitter output
1 Receiver input connected externally to transmitter
The table below shows how LOOPS and RSRC determine the loop function of the eSCI.

M Data Format Mode. Determines whether data characters are 8 or 9 bits long.
0 1 start bit, 8 data bits, 1 stop bit
1 1 start bit, 9 data bits, 1 stop bit

WAKE Wakeup Condition. Determines which condition wakes up the eSCI: a logic 1 (address mark) in the most significant
bit position of a received data character or an idle condition on the RXD.
0 Idle line wakeup
1 Address mark wakeup
Note: This is not a wakeup out of a power-save mode, it refers solely to the receiver standby mode.

ILT Idle Line Type. Determines when the receiver starts counting logic 1s as idle character bits. The counting begins after
the start bit or after the stop bit. If the count begins after the start bit, a string of logic 1s preceding the stop bit may
cause false recognition of an idle character. Beginning the count after the stop bit avoids false idle character
recognition, but requires properly synchronized transmissions.
0 Idle character bit count begins after start bit
1 Idle character bit count begins after stop bit

SCI baud rate eSCI system clock
16 SBR×

---=

LOOPS RSRC Function

0 x Normal operation

1 0 Loop mode with RXD input internally connected to TXD output

1 1 Single-wire mode with RXD input connected to TXD

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 24-5
 Preliminary

PE Parity Enable. Enables the parity function. When enabled, the parity function inserts a parity bit in the most significant
bit position of the transmitted word. During reception, the received parity bit will be verified in the most significant bit
position. The received parity bit will not be masked out.
0 Parity function disabled
1 Parity function enabled

PT Parity Type. Determines whether the eSCI generates and checks for even parity or odd parity. With even parity, an
even number of 1s clears the parity bit and an odd number of 1s sets the parity bit. With odd parity, an odd number
of 1s clears the parity bit and an even number of 1s sets the parity bit.
0 Even parity
1 Odd parity

TIE Transmitter Interrupt Enable. Enables the transmit data register empty flag ESCIx_SR[TDRE] to generate interrupt
requests. The interrupt is suppressed in TX DMA mode.
0 TDRE interrupt requests disabled
1 TDRE interrupt requests enabled

TCIE Transmission Complete Interrupt Enable. Enables the transmission complete flag ESCIx_SR[TC] to generate
interrupt requests. The interrupt is suppressed in TX DMA mode.
0 TC interrupt requests disabled
1 TC interrupt requests enabled

RIE Receiver Full Interrupt Enable. Enables the receive data register full flag ESCIx_SR[RDRF] and the overrun flag
ESCIx_SR[OR] to generate interrupt requests. The interrupt is suppressed in RX DMA mode.
0 RDRF and OR interrupt requests disabled
1 RDRF and OR interrupt requests enabled

ILIE Idle Line Interrupt Enable. Enables the idle line flag ESCIx_SR[IDLE] to generate interrupt requests.
0 IDLE interrupt requests disabled
1 IDLE interrupt requests enabled

TE Transmitter Enable. Enables the eSCI transmitter and configures the TXD pin as being controlled by the eSCI. The
TE bit can be used to queue an idle preamble.
0 Transmitter disabled
1 Transmitter enabled

RE Receiver Enable. Enables the eSCI receiver.
0 Receiver disabled
1 Receiver enabled

RWU Receiver wakeup. Standby state.
0 Normal operation
1 RWU enables the wakeup function and inhibits further receiver interrupt requests. Normally, hardware wakes the

receiver by automatically clearing RWU.

SBK Send Break. Toggling SBK sends one break character (see the description of ESCIx_CR2[BRK13] for break
character length). Toggling implies clearing the SBK bit before the break character has finished transmitting. As long
as SBK is set, the transmitter continues to send complete break characters.
0 No break characters
1 Transmit break characters

Table 24-2. ESCIx_CR1 Field Descriptions (continued)

Field Description

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

24-6 Freescale Semiconductor
 Preliminary

24.3.2.2 eSCI Control Register 2 (ESCIx_CR2)

Offset: Base + 0x0004 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MDIS FBR BSTP

IEB
ERR

RX
DMA

TX
DMA

BRK
13

TXDI
R

BESM
13

SB
STP

0
PMSK ORIE NFIE FEIE PFIE

W

Reset 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-3. eSCI Control Register 2 (ESCIx_CR2)

Table 24-3. ESCIx_CR2 Field Description

Field Description

MDIS Module Disable. The MDIS bit enables or disables the module. DMA requests are negated if the device is in module
disable mode.
0 Module enabled
1 Module disabled

FBR Fast Bit Error Detection. Manages bit error detection on a per-bit basis. If this is not enabled, bit errors will be
detected on a per-byte basis.

BSTP Bit Error/Physical Bus Error Stop. Causes DMA TX requests to be suppressed, as long as the bit error and physical
bus error flags are not cleared. This stops further DMA writes, which would otherwise cause data bytes to be
interpreted as LIN header information.

IEBERR Enable Bit Error Interrupt. Generates an interrupt, when a LIN bit error is detected.

RXDMA Activate RX DMA Channel. If this bit is enabled and the eSCI has received data, it will raise a DMA RX request.

TXDMA Activate TX DMA Channel. When the eSCI is able to transmit data, it will raise a DMA TX request.

BRK13 Break Transmit Character Length. Determines whether the transmit break character is 10/11 or 13/14 bits long. The
detection of a framing error is not affected by this bit.

0 Break Character is 10 or 11 bits long
1 Break character is 13 or 14 bits long
Note: LIN 2.0 now requires that a break character is always 13 bits long, so this bit must always be set to 1. The

eSCI will work with BRK13=0, but it will violate LIN 2.0.

TXDIR Transmitter Pin Data Direction in Single-Wire Mode. The TXDIR bit determines whether the TXD pin is going to be
used as an input or output in the Single-Wire mode of operation. This bit is only relevant in the Single-Wire mode of
operation.
0 TXD pin to be used as an input in Single-Wire mode
1 TXD pin to be used as an output in Single-Wire mode

Break Length:

ESCIx_CR1[M]

0 1

BRK13
0 10 11

1 13 14

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 24-7
 Preliminary

24.3.2.3 eSCI Data Register (ESCIx_DR)

NOTES
ESCIx_DR should not be used in LIN mode, writes to this register are
blocked in LIN mode (ESCIx_LCR[LIN] = 1).

BESM13 Bit Error Sample Mode, Bit 13. Determines when to sample the incoming bit to detect a bit error. (This is only relevant
when FBR is set.)
0 Sample at RT clock 9
1 Sample at RT clock 13 (see Section 24.4.4.3, “Data Sampling”)

SBSTP SCI Bit Error Stop. Stops the SCI when a bit error is asserted. This allows to stop driving the LIN bus quickly after a
bit error has been detected.
0 Byte is completely transmitted
1 Byte is partially transmitted

bit 10 Reserved.

PMSK Parity Mask. The PMSK bit forces bit 7 in the Data Register to 0 on reads. This can be used to mask the parity bit in
applications which use 7 data bits and 1 parity bit.

ORIE Overrun Error Interrupt Enable. Generates an interrupt, when a frame error is detected.

NFIE Noise Flag Interrupt Enable. Generates an interrupt, when noise flag is set.

FEIE Frame Error Interrupt Enable. Generates an interrupt when a frame error is detected.

PFIE Parity Flag Interrupt Enable. Generates an interrupt when parity flag is set.

Offset: Base + 0x0006 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R R8
T8

0 0 0 0 0 0 R7 R6 R5 R4 R3 R2 R1 R0

W T7 T6 T5 T4 T3 T2 T1 T0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-4. eSCI Data Register (ESCIx_DR)

Table 24-4. ESCIx_DR Field Description

Field Description

R8 Received Bit 8. R8 is the ninth data bit received when the eSCI is configured for 9-bit data format (M = 1).

T8 Transmit Bit 8. T8 is the ninth data bit transmitted when the eSCI is configured for 9-bit data format (M = 1).
Note: If the value of T8 is the same as in the previous transmission, T8 does not have to be rewritten. The same

value is transmitted until T8 is rewritten.

bits 2–7 Reserved.

R7–R0
T7–T0

Received Bits/Transmit Bits 7–0 for 9-bit or 8-bit Formats. Bits 7–0 from SCI communication may be read from
ESCIx_DR[8–15] (provided that SCI communication was successful). Writing to ESCIx_DR [8–15] provides bits 7–0
for SCI transmission.

Table 24-3. ESCIx_CR2 Field Description (continued)

Field Description

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

24-8 Freescale Semiconductor
 Preliminary

Even if parity generation/checking is enabled via ESCIx_CR[PE], the parity
bit will not be masked out.

24.3.2.4 eSCI Status Register (ESCIx_SR)

The ESCIx_SR indicates the current status. The status flags can be polled, and some can also be used to
generate interrupts. All bits in ESCIx_SR except for RAF are cleared by writing 1 to them.

Offset: Base + 0x0008 Access: Read/Write to clear

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R TDRE TC RDRF IDLE OR NF FE PF 0 0 0 BERR 0 0 0 RAF

W w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RX
RDY

TX
RDY

LWAKE STO
PB

ERR
CERR

CK
ERR

FRC 0 0 0 0 0 0
URE

Q
OVFL

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-5. eSCI Status Register (ESCIx_SR)

Table 24-5. ESCIx_SR Field Descriptions

Field Description

TDRE Transmit Data Register Empty Flag. TDRE is set when the transmit shift register receives a byte from the eSCI
data register. When TDRE is 1, the data register (ESCIx_DR) is empty and can receive a new value to transmit.
Clear TDRE by writing 1 to it.
0 No byte transferred to transmit shift register
1 Byte transferred to transmit shift register; transmit data register empty

TC Transmit Complete Flag. TC is set low when there is a transmission in progress or when a preamble or break
character is loaded. TC is set high when the TDRE flag is set and no data, preamble, or break character is being
transmitted. When TC is set, the TXD out signal becomes idle (logic 1).

After the device is switched on (by clearing the MDIS bit, see Section 24.3.2.2, “eSCI Control Register 2
(ESCIx_CR2),” a preamble is transmitted; if no byte is written to the SCI data register then the completion of the
preamble can be monitored using the TC flag. Clear TC by writing 1 to it.
0 Transmission in progress
1 No transmission in progress; indicates that TXD out is idle

RDRF Receive Data Register Full Flag. RDRF is set when the data in the receive shift register transfers to the eSCI
data register. Clear RDRF by writing 1 to it.
0 Data not available in eSCI data register
1 Received data available in eSCI data register

IDLE Idle Line Flag. IDLE is set when 10 consecutive logic 1s (if M = 0) or 11 consecutive logic 1s (if M = 1) appear on
the receiver input. After the IDLE flag is cleared, a valid frame must again set the RDRF flag before an idle
condition can set the IDLE flag. Clear IDLE by writing 1 to it.
0 Receiver input is either active now or has never become active because the IDLE flag was last cleared
1 Receiver input has become idle
Note: When the receiver wakeup bit (RWU) is set, an idle line condition does not set the IDLE flag.

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 24-9
 Preliminary

OR Overrun Flag. OR is set when software fails to read the eSCI data register before the receive shift register
receives the next frame. The OR bit is set immediately after the stop bit has been completely received for the
second frame. The data in the shift register is lost, but the data already in the eSCI data registers is not affected.
Clear OR by writing 1 to it.
0 No overrun
1 Overrun

NF Noise Flag. NF is set when the eSCI detects noise on the receiver input. NF bit is set during the same cycle as
the RDRF flag but does not get set in the case of an overrun. Clear NF by writing 1 to it.
0 No noise
1 Noise

FE Framing Error Flag. FE is set when a logic 0 is accepted as the stop bit. FE bit is set during the same cycle as
the RDRF flag but does not get set in the case of an overrun. Clear FE by writing 1 to it.
0 No framing error
1 Framing error

PF Parity error flag. PF is set when the parity enable bit, PE, is set and the parity of the received data does not match
its parity bit. Clear PE by writing 1 to it.
0 No parity error
1 Parity error

bits 8–10 Reserved.

BERR Bit Error. Indicates a bit on the bus did not match the transmitted bit. If FBR = 0, checking happens after a
complete byte has been transmitted and received again. If FBR = 1, checking happens bit by bit. This bit is used
for LIN mode only.
BERR is also set if an unrequested byte is received (i.e. a byte that is not part of an RX frame) that is not
recognized as a wakeup flag. (Because the data on the RX line does not match the idle state that was assigned
to the TX line.)
Clear BERR by writing 1 to it.
A bit error causes the LIN finite state machine (FSM) to reset unless ESCIx_LCR[LDBG] is set.
0 No bit error
1 Bit error

bits 12–14 Reserved.

RAF Receiver Active Flag. RAF is set when the receiver detects a logic 0 during the RT1 time period of the start bit
search. RAF is cleared when the receiver detects an idle character.
0 No reception in progress
1 Reception in progress

RXRDY Receive Data Ready. The eSCI has received LIN data. This bit is set when the ESCIx_LCR receives a byte. Clear
RXRDY by writing it with 1.
0 No receive data ready
1 Receive data ready

TXRDY Transmit Data Ready. The LIN FSM can accept another write to ESCIx_LTR. This bit is set when the ESCIx_LTR
register becomes free. Clear TXRDY by writing it with 1.
0 ESCIx_LTR register is not free
1 ESCIx_LTR register is free

Table 24-5. ESCIx_SR Field Descriptions (continued)

Field Description

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

24-10 Freescale Semiconductor
 Preliminary

24.3.2.5 LIN Control Register (ESCIx_LCR)

ESCIx_LCR can be written when there are no ongoing transmissions only.

LWAKE Received LIN Wakeup Signal. A LIN slave has sent a wakeup signal on the bus. When this signal is detected,
the LIN FSM will reset. If the setup of a frame had already started, it must be repeated.
LWAKE will also be set if ESCI receives a LIN 2.0 wakeup signal (in which the baud rate is lower than 32K baud).
See the WU bit.
0 LIN2.0 wakeup signal not received
1 LIN2.0 wakeup signal received

STO Slave Time Out. Represents a NO_RESPONSE_ERROR. This is set if a slave does not complete a frame within
the specified maximum frame length. For LIN 1.3 the following formula is used:

0 No time out detected
1 A slave did not complete a frame within the specified maximum frame length

PBERR Physical Bus Error. No valid message can be generated on the bus. This is set if, after the start of a byte
transmission, the input remains unchanged for 31 cycles. This will reset the LIN FSM.
0 No error
1 Physical bus error

CERR CRC Error. The CRC pattern received with an extended frame was not correct.
0 No error
1 CRC error

CKERR Checksum Error. Checksum error on a received frame.
0 No error
1 Checksum error

FRC Frame Complete. LIN frame completely transmitted. All LIN data bytes received.
0 Frame not complete
1 Frame complete

bits 24–29 Reserved.

UREQ Unrequested Data on LIN Bus. The UREQ bit indicates whether unrequested activity has been detected on the
LIN bus. Since the eSCI is used as a master node, this is normally an error condition. The UREQ flag is not set
if the activity is identified as a wakeup character. In addition, the RXRDY flag will also be set and the ESCIx_LRR
register must be read before normal operations can proceed. Set when the condition is detected and cleared by
writing 1 to it.
0 No unrequested data detected
1 Unrequested data detected

OVFL ESCIx_LRR Overflow. The LIN receive register has not been read before a new data byte, CRC, or checksum
byte has been received from the LIN bus. Set when the condition is detected and cleared by writing 1 to it.
0 No overflow
1 Overflow detected

Table 24-5. ESCIx_SR Field Descriptions (continued)

Field Description

TFRAME_MAX 10 NDATA 44+×() 1.4×=

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 24-11
 Preliminary

Offset: Base + 0x000C Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
LRES

0 WUD
0

WUD
1

LDBG DSF PRTY LIN RXIE TXIE WUIE STIE PBIE CIE CKIE FCIE
W WU

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0
UQIE OFIE

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-6. LIN Control Register (ESCIx_LCR)

Table 24-6. ESCIx_LCR Field Descriptions

Field Description

LRES LIN Resynchronize. Causes the LIN protocol engine to return to start state. This happens automatically after bit
errors, but software may force a return to start state manually via this bit. The bit first must be set then cleared,
so that the protocol engine is operational again.

WU LIN Bus Wakeup. Generates a wakeup signal on the LIN bus. This must be set before a transmission if the bus
is in sleep mode. This bit will auto-clear, so a read from this bit will always return 0.
According to LIN 2.0, generating a valid wakeup character requires programming the SCI baud rate to a range
of 32K baud down to 1.6K baud. Refer to ESCIx_CR1[SBR] field description (Table 24-2).

WUD Wakeup Delimiter Time. Determines how long the LIN engine waits after generating a wakeup signal, before
starting a new frame. The eSCI will not set ESCIx_SR[TXRDY] before this time expires. In addition to this
delimiter time, the CPU and the eSCI will require some setup time to start a new transmission and typically there
is an additional bit time delay. The table below shows how the values for WUD0 and WUD1 affect the delimiter
time.

LDBG LIN Debug Mode. Prevents the LIN FSM from automatically resetting, after an exception (bit error, physical bus
error, wakeup flag) has been received. This is for debug purposes only.

DSF Double Stop Flags. When a bit error has been detected, this will add an additional stop flag to the byte in which
the error occurred.

PRTY Activating Parity Generation. Generate the two parity bits in the LIN header.

LIN LIN Mode. Switch device into LIN mode.
0 LIN disabled
1 LIN enabled

RXIE LIN RXREG Ready Interrupt Enable. Generates an interrupt when new data is available in the LIN RXREG.

TXIE LIN TXREG Ready Interrupt Enable. Generates an interrupt when new data can be written to the LIN TXREG.

WUD Bit Times

00 4

01 8

10 32

11 64

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

24-12 Freescale Semiconductor
 Preliminary

24.3.2.6 LIN Transmit Register (ESCIx_LTR)

ESCIx_LTR can be written to only when TXRDY is set. The first byte written to the register selects the
transmit address, the second byte determines the frame length, the third and fourth byte set various frame
options and determine the timeout counter. Header parity will be automatically generated if the
ESCIx_LCR[PRTY] bit is set. For TX frames, the fourth byte (bits T7–T0) is skipped, because the timeout
function does not apply. All following bytes are data bytes for the frame. CRC and checksum bytes will
be automatically appended when the appropriate options are selected.

When a bit error is detected, an interrupt is set and the transmission aborted. The register can be written
again only after the interrupt is cleared. Afterward a new frame starts and the first byte needs to contain a
header again.

It is also possible to flush the ESCIx_LTR by setting the ESCIx_LCR[LRES] bit.

NOTE
Not all values written to the ESCIx_LTR will generate valid LIN frames.
The values are determined according to the LIN specification.

WUIE RX Wakeup Interrupt Enable. Generates an interrupt when a wakeup flag from a LIN slave has been received.

STIE Slave Timeout Error Interrupt Enable. Generates an interrupt when the slave response is too slow.

PBIE Physical Bus Error Interrupt Enable. Generates an interrupt when no valid message can be generated on the bus.

CIE CRC Error Interrupt Enable. Generates an interrupt when a CRC error on a received extended frame is detected.

CKIE Checksum Error Interrupt Enable. Generates an interrupt on a detected checksum error.

FCIE Frame Complete Interrupt Enable. Generates an interrupt after complete transmission of a TX frame, or after the
last byte of an RX frame is received. (The complete frame includes all header, data, CRC, and checksum bytes
as applicable.)

bits 16–21 Reserved.

UQIE Unrequested Data Interrupt Enable. Generates an interrupt when a data byte in the ESCIx_LRR register has not
been read before the next data byte is received.

OFIE Overflow Interrupt Enable. Generates an interrupt when a data byte in the ESCIx_LRR has not been read before
the next data byte is received.

bits 24–31 Reserved.

Table 24-6. ESCIx_LCR Field Descriptions (continued)

Field Description

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 24-13
 Preliminary

Offset: Base + 0x0010 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0

W P1/
L7/

HDCHK/
T7/
D7

P0/
L6/

CSUM/
T6/
D6

ID5/
L5/

CRC/
T5/
D5

ID4/
L4/
TX/
T4/
D4

ID3/
L3/

T11/
T3/
D3

ID2/
L2/

T10/
T2/
D2

ID1/
L1/
T9/
T1/
D1

ID0/
L0/
T8/
T0/
D0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-7. LIN Transmit Register (ESCIx_LTR)

Offset: eSCI x Base + 0x0010 Access: Write

0 1 2 3 4 5 6 7

R

1st Write (Table 24-7) W P[1:0] ID[5:0]

2nd Write (Table 24-8) W L[7:0]

3rd Write (Table 24-9) W HDCHK CSUM CRC TX (RX) T[11:8]

4th Write (Table 24-10) W T[7:0]

5th Write (Table 24-11) W D[7:0]

Reset 0 0 0 0 0 0 0 0

Figure 24-8. LIN Transmit Register (ESCIx_LTR) Alternate Diagram

Table 24-7. ESCIx_LTR First Byte Field Description

Field Description

Pn Parity Bit n. When parity generation is enabled (ESCIx_LCR[PRTY] = 1), the parity bits are generated automatically.
Otherwise they must be provided in this field.

IDn1

1 The values 3C, 3D, 3E, and 3F of the ID-field (ID0-5) indicate command and extended frames. Refer to LIN specification
revision 2.0.

Header Bit n. The LIN address, for LIN 1.x standard frames the length bits must be set appropriately (see the table
below), extended frames are recognized by their specific patterns.

bits 8–31 Reserved.

ID5 ID4 data bytes

0 0 2

0 1 2

1 0 4

1 1 8

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

24-14 Freescale Semiconductor
 Preliminary

Table 24-8. ESCIx_LTR Second Byte Field Descriptions

Field Description

Ln Length Bit n. Defines the length of the frame (0 to 255 data bytes). This information is needed by the LIN state
machine to insert the checksum or CRC pattern as required. LIN 1.x slaves will accept frames with 2, 4, or 8 data
bytes only.

bits 8–31 Reserved.

Table 24-9. ESCIx_LTR Third Byte Field Descriptions

Field Description

HDCHK Header Checksum Enable. Include the header fields into the mod 256 checksum of the standard frames.

CSUM Checksum Enable. Append a checksum byte to the end of a TX frame. Verify the checksum byte of an RX frame.

CRC CRC Enable. Append two CRC bytes to the end of a TX frame. Verify the two CRC bytes of an RX frame are correct.
If both CSUM and CRC bits are set, the LIN FSM will first append the CRC bytes, then the checksum byte, and will
expect them in this order, as well. If HDCHK is set, the CRC calculation will include header and data bytes, otherwise
the data bytes only. CRC bytes are not part of the LIN standard; they are normal data bytes and belong to a
higher-level protocol.

TX Transmit Direction. Indicates a TX frame; that is, the eSCI will transmit data to a slave. Otherwise, an RX frame is
assumed, and the eSCI only transmits the header. The data bytes are received from the slave.
0 RX frame
1 TX frame

Tn Timeout Bit n. Sets the counter to determine a NO_RESPONSE_ERROR, if the frame is a read access to a LIN
slave. Following LIN standard rev. 1.3, the value (10 × NDATA + 45) × 1.4 is recommended. For transmissions, this
counter has to be set to 0. The timeout bits 7–0 will not be written on a TX frame. For TX frames, the fourth byte
written to the LIN transmit register (ESCIx_LTR) is the first data byte, for RX frames it contains timeout bits 7–0.
The time is specified in multiples of bit times. The timeout period starts with the transmission of the LIN break
character.

bits 8–31 Reserved.

Table 24-10. ESCIx_LTR Rx Frame Fourth Byte Field Descriptions

Field Description

Tn Timeout Bit n. Sets the counter to determine a NO_RESPONSE_ERROR, if the frame is a read access to a LIN
slave. Following LIN standard rev. 1.3, the value (10 × NDATA + 45) × 1.4 is recommended. For transmissions, this
counter has to be set to 0. The timeout bits 7–0 will not be written on a TX frame. For TX frames, the fourth byte
written to the LIN transmit register (ESCIx_LTR) is the first data byte. For RX frames, it contains timeout bits 7–0.
The time is specified in multiples of bit times. The timeout period starts with the transmission of the LIN break
character.

bits 8–31 Reserved.

Table 24-11. ESCIx_LTR Tx Frame Fourth+ Byte/
Rx Frame Fifth+ Byte Field Description

Field Description

Dn Data bits for transmission.

bits 8–31 Reserved.

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 24-15
 Preliminary

24.3.2.7 LIN Receive Register (ESCIx_LRR)

ESCIx_LRR can be read only when ESCIx_SR[RXRDY] is set.

NOTE
Application software must ensure that ESCIx_LRR be read before new data
or checksum bytes or CRCs are received from the LIN bus.

24.3.2.8 LIN CRC Polynomial Register (ESCIx_LPR)

ESCIx_LPRn can be written when there are no ongoing transmissions.

Offset: Base + 0x0014 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-9. LIN Receive Register (ESCIx_LRR)

Table 24-12. ESCIx_LRR Field Descriptions

Field Description

Dn Data Bit n. Provides received data bytes from RX frames. Data is valid only when the ESCIx_SR[RXRDY] flag is set.
CRC and checksum information will not be available in the ESCIx_LRR unless they are treated as data. It is possible
to treat CRC and checksum bytes as data by deactivating the CSUM respectively CRC control bits in the ESCIx_LTR;
however, then CRC and CSUM checking has to be performed by software.

Data bytes must be read from the ESCIx_LRR (by CPU or DMA) before any new bytes (including CRC or checksum)
are received from the LIN bus otherwise the data byte is lost and OVFL is set.
Note: The data must be collected and the LIN frame finished (including CRC and checksum if applicable) before a

wakeup character can be sent.

bits 8–31 Reserved.

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

24-16 Freescale Semiconductor
 Preliminary

24.4 Functional Description
This section provides a complete functional description of the eSCI module, detailing the operation of the
design from the end-user perspective in a number of subsections.

Figure 24-11 shows the structure of the eSCI module. The eSCI allows full duplex, asynchronous, NRZ
serial communication between the CPU and remote devices, including other CPUs. The eSCI transmitter
and receiver operate independently, although they use the same baud rate generator. The CPU monitors the
status of the eSCI, writes the data to be transmitted, and processes received data.

Offset: Base + 0x0018 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

W

Reset 1 1 0 0 0 1 0 1 1 0 0 1 1 0 0 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-10. LIN CRC Polynomial Register (ESCIx_LPR)

Table 24-13. ESCIx_LPR Field Description

Field Description

Pn Polynomial Bit xn. Bits P15–P0 are used to define the LIN polynomial—standard is
x15 + x14 + x10 + x8 + x7 + x4 + x3 + 1 (the polynomial used for the CAN protocol).

bits 16–31 Reserved.

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 24-17
 Preliminary

Figure 24-11. eSCI Operation Block Diagram

24.4.1 Data Format

The eSCI uses the standard NRZ mark/space data format. Each data character is contained in a frame that
includes a start bit, eight or nine data bits, and a stop bit. Clearing the M bit in eSCI control register 1
configures the eSCI for 8-bit data characters. A frame with eight data bits has a total of 10 bits. Setting the
M bit configures the eSCI for 9-bit data characters. A frame with nine data bits has a total of 11 bits.

When the eSCI is configured for 9-bit data characters, the ninth data bit is the T8 bit in the eSCI data
register (ESCIx_DR). It remains unchanged after transmission and can be used repeatedly without
rewriting it. A frame with nine data bits has a total of 11 bits.

The two different data formats are illustrated in Figure 24-12. Table 24-14 and Table 24-15 show the
number of each type of bit in 8-bit data format and 9-bit data format, respectively.

Figure 24-12. eSCI Data Formats

eSCI data

RE

register

Receive and
wakeup control

RWU

LOOPS

RSRC

M

WAKE

ILT

PE

PT

TE

LOOPS

SBK

RSRC

Data format
control

Transmit
control

Transmit
shift register

NF

FE

PF

RAF

R8

IDLE

RDRF

OR

ILIE

RIE

BAUD rate
generator

Bus
clock

IRQ to
CPU

TDRE

TC

TIE

TCIE
TXD

÷16

T8

SBR0–SBR12

RXD

SCI data
register

Receive
shift register

IDLE
IRQ

TC
IRQ

TDRE
IRQ

RDRF/
OR IRQ

Parity or

STOP
bit

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Next
START

bit
START

bit

data bit
8-bit data format

Bit M in ESCIx_CR1 clear

STOP
bit

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Next
START

bit
START

bit

9-bit data format
Bit M in ESCIx_CR1 set

Parity or

Bit 8

data bit

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

24-18 Freescale Semiconductor
 Preliminary

24.4.2 Baud Rate Generation

A 13-bit modulus counter in the baud rate generator derives the baud rate for both the receiver and the
transmitter. The value, 1 to 8191, written to the SBR bits determines the system clock divider. The SBR
bits are in the eSCI control register 1 (ESCIx_CR1). The baud rate clock is synchronized with the system
clock and drives the receiver. The baud rate clock divided by 16 drives the transmitter. The receiver has an
acquisition rate of 16 samples per bit time.

Baud rate generation is subject to one source of error:

• Integer division of the system clock may not give the exact target frequency.

Table 24-16 lists some examples of achieving target baud rates with a system clock frequency of 66 MHz.

Table 24-14. Example of 8-bit Data Formats

Start
Bit

Data
Bits

Address
Bits

Parity
Bits

Stop
Bit

1 8 0 0 1

1 7 0 1 1

1 7 11

1The address bit identifies the frame as an address char-
acter. See Section 24.4.4.6, “Receiver Wakeup.”

0 1

Table 24-15. Example of 9-Bit Data Formats

Start
Bit

Data
Bits

Address
Bits

Parity
Bits

Stop
Bit

1 9 0 0 1

1 8 0 1 1

1 8 11

1The address bit identifies the frame as an address char-
acter. See Section 24.4.4.6, “Receiver Wakeup.”

0 1

Table 24-16. Baud Rates (Example: System Clock = 66 MHz)

Value in
SBR

Receiver
clock (Hz)

Transmitter
clock (Hz)

Target baud
rate

Error
(%)

0x0012 3,666,667 229,167 230,400 –0.54

0x0024 1,833,333 114,583 115,200 –0.54

0x0048 916,667 57,292 57,600 –0.54

0x006B 616,822 38,551 38,400 +0.39

0x00D7 306,977 19,186 19,200 –0.07

SCI baud rate System clock
16 ESCIx_CR1[SBR]×
---=

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 24-19
 Preliminary

24.4.3 Transmitter

Figure 24-13 illustrates the features of the eSCI transmitter.

Figure 24-13. eSCI Transmitter Block Diagram

24.4.3.1 Transmitter Character Length

The eSCI transmitter can accommodate either 8-bit or 9-bit data characters. The state of the M bit in eSCI
control register 1 (ESCIx_CR1) determines the length of data characters. When transmitting 9-bit data, bit
T8 in the eSCI data register (ESCIx_DR) is the ninth bit (bit 8).

0x011E 230,769 14,423 14,400 +0.16

0x01AE 153,488 9,593 9,600 –0.07

0x035B 76,834 4,802 4,800 +0.04

0x06B7 38,394 2399.7 2,400 –0.01

0x0D6E 19,197 1,199.8 1,200 –0.01

Table 24-16. Baud Rates (Example: System Clock = 66 MHz)

Value in
SBR

Receiver
clock (Hz)

Transmitter
clock (Hz)

Target baud
rate

Error
(%)

M TXD

÷16

H 8 7 6 5 4 3 2 1 0 L

11-bit transmit shift register
STOP START

MSB

BAUD dividerBus
clock

SBR0–SBR12

SBK

Parity
generation

PE

PT

Load from
ESCIx_DR

Shift
enable

Preamble
(all 1s)

Break
(All 0s)

Transmitter control

T8

TE

TIE

TDRE

LOOP control

TDRE
interrupt
request

TCIE

TC TC
interrupt
request

RSRC

LOOPS

To

Internal bus

eSCI data registers

RXD

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

24-20 Freescale Semiconductor
 Preliminary

24.4.3.2 Character Transmission

To transmit data, the MCU writes the data bits to the eSCI data register (ESCIx_DR), which in turn are
transferred to the transmit shift register. The transmit shift register then shifts a frame out through the TXD
signal, after it has prefaced them with a start bit and appended them with a stop bit. The eSCI data register
(ESCIx_DR) is the buffer (write-only during transmit) between the internal data bus and the transmit shift
register.

The eSCI also sets a flag, the transmit data register empty flag (TDRE), every time it transfers data from
the buffer (ESCIx_DR) to the transmit shift register. The transmit driver routine may respond to this flag
by writing another byte to the transmitter buffer (ESCIx_DR), while the shift register remains shifting out
the first byte.

To initiate an eSCI transmission:

1. Clear ESCIx_CR2[MDIS] bit, if this bit is set, to enable the eSCI_x module.

2. Configure the eSCI with single 32-bit write to ESCIx_CR1:

c) Write to ESCIx_CR1[SBR] to start the baud generator with a target baud rate.

d) Write to ESCIx_CR1 to configure word length, parity, and other configuration bits (LOOPS,
RSRC, M, WAKE, ILT, PE, PT).

e) Write to ESCIx_CR1 to enable the transmitter, receiver, interrupts, and wakeup as required
(TIE, TCIE, RIE, ILIE, TE, RE, RWU, SBK). A preamble or idle character will now be shifted
out of the transmitter shift register.

3. Transmit procedure for each byte:

a) Poll the TDRE flag by reading the ESCIx_SR or responding to the TDRE interrupt. Remember
that the TDRE bit resets to 1.

b) If the TDRE flag is set, write the data to be transmitted to ESCIx_DR, where the ninth bit is
written to the T8 bit in ESCIx_DR if the eSCI is in 9-bit data format. A new transmission will
not result until the TDRE flag has been cleared.

4. Repeat step 3 for each subsequent transmission.

NOTE
The TDRE flag is set when the shift register is loaded with the next data to
be transmitted from ESCIx_DR, which occurs approximately halfway
through the stop bit of the previous frame. Specifically, this transfer occurs
9/16ths of a bit time AFTER the start of the stop bit of the previous frame.

Toggling the TE bit from 0 to 1 automatically loads the transmit shift register with a preamble of 10 logic
1s (if M = 0) or 11 logic 1s (if M = 1). After the preamble shifts out, control logic transfers the data from
the eSCI data register into the transmit shift register. A logic 0 start bit automatically goes into the least
significant bit position of the transmit shift register. A logic 1 stop bit goes into the most significant bit
position.

The eSCI hardware supports odd or even parity. When parity is enabled, the most significant bit (msb) of
the data character is the parity bit.

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 24-21
 Preliminary

The transmit data register empty flag, TDRE, in the eSCI status register (ESCIx_SR) becomes set when
the eSCI data register transfers a byte to the transmit shift register. The TDRE flag indicates that the eSCI
data register can accept new data from the internal data bus. If the transmit interrupt enable bit, TIE, in
eSCI control register 1 (ESCIx_CR1) is also set, the TDRE flag generates a transmitter interrupt request.

When the transmit shift register is not transmitting a frame, the TXD output goes to the idle condition,
logic 1. If at any time software clears the TE bit in eSCI control register 1 (ESCIx_CR1), the transmitter
enable signal goes low and the TXD output goes idle.

If software clears TE while a transmission is in progress (ESCIx_CR1[TC] = 0), the frame in the transmit
shift register continues to shift out. To avoid accidentally cutting off the last frame in a message, always
wait for TDRE to go high after the last frame before clearing TE.

To separate messages with preambles with minimum idle line time, use the following sequence between
messages:

1. Write the last byte of the first message to ESCIx_DR.

2. Wait for the TDRE flag to go high, indicating the transfer of the last frame to the transmit shift
register.

3. Queue a preamble by clearing and then setting the TE bit.

4. Write the first byte of the second message to ESCIx_DR.

24.4.3.3 Break Characters

Setting the break bit, SBK, in eSCI control register 1 (ESCIx_CR1) loads the transmit shift register with a
break character. A break character contains all logic 0s and has no start, stop, or parity bit. Break character
length depends on the M bit in the eSCI control register 1 (ESCIx_CR1) and on the BRK13 bit in the eSCI
control register 2 (ESCIx_CR2). As long as SBK is set, the transmitter logic continuously loads break
characters into the transmit shift register. After software clears the SBK bit, the shift register finishes
transmitting the last break character and then transmits at least one logic 1. The automatic logic 1 at the
end of a break character guarantees the recognition of the start bit of the next frame.

NOTE
LIN 2.0 now requires that a break character is always 13 bits long, so the
BRK13 bit should always be set to 1. The eSCI will work with BRK13=0,
but it will violate LIN 2.0.

The eSCI recognizes a break character when a start bit is followed by eight or nine logic 0 data bits and a
logic 0 where the stop bit should be. Receiving a break character has the following effects on eSCI
registers:

• Sets the framing error flag, FE.

• Sets the receive data register full flag, RDRF.

• Clears the eSCI data register (ESCIx_DR).

• May set the overrun flag, OR, noise flag, NF, parity error flag, PF, or the receiver active flag, RAF.
For more detail, see Section 24.3.2.4, “eSCI Status Register (ESCIx_SR).”

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

24-22 Freescale Semiconductor
 Preliminary

24.4.3.4 Idle Characters

An idle character contains all logic 1s and has no start, stop, or parity bit. Idle character length depends on
the M bit in eSCI control register 1 (ESCIx_CR1). The preamble is a synchronizing idle character that
begins the first transmission initiated after toggling the TE bit from 0 to 1.

If the TE bit is cleared during a transmission, the TXD output becomes idle after completion of the
transmission in progress. Clearing and then setting the TE bit during a transmission queues an idle
character to be sent after the frame currently being transmitted.

NOTE
When queueing an idle character, return the TE bit to logic 1 before the stop
bit of the current frame shifts out through the TXD output. Setting the TE
bit after the stop bit shifts out through the TXD output causes data
previously written to the eSCI data register to be lost. Toggle the TE bit for
a queued idle character while the TDRE flag is set and immediately before
writing the next byte to the eSCI data register.

24.4.3.5 Fast Bit Error Detection in LIN Mode

Fast bit error detection has been designed to allow flagging of LIN bit errors while they occur, rather than
flagging them after a byte transmission has completed. To use this feature, it is assumed a physical
interface connects to the LIN bus as shown in Figure 24-14.

Figure 24-14. Fast Bit Error Detection on a LIN Bus

If fast bit error detection is enabled (FBR = 1), the eSCI will compare the transmitted and the received data
stream when the transmitter is active (not idle). After a mismatch between the transmitted data and the
received data is detected the following actions are performed:

• The LIN frame is aborted (provided LDBG=0).

• The bit error flag BERR will be set.

• If SBSTP is 0, the remainder of the byte will be transmitted normally.

• If SBSTP is 1, the remaining bits in the byte after the error bit are transmitted as 1s (idle).

Bus clock

Compare

Bit error

Receive shift
register

Transmit shift
register

Sample point

LIN bus

RxD pin

TxD pin

Synchronizer stage
LIN physical interface

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 24-23
 Preliminary

To adjust to different bus loads, the sample point at which the incoming bit is compared to the one which
was transmitted can be selected with the BESM13 bit (see Figure 24-15). If set, the comparison will be
performed at RT clock 13, otherwise at RT clock 9 (also see Section 24.4.4.3, “Data Sampling”).

Figure 24-15. Fast Bit Error Detection Timing Diagram

24.4.4 Receiver

Figure 24-16 illustrates the eSCI receiver.

Figure 24-16. eSCI Receiver Block Diagram

Clock

BESM13 = 0 BESM13 = 1

1 3 5 7 9 11 13 152 4 6 8 10 12 14 16RT clock
count

TX output
shift reg

RX Input
shift reg

Compare
sample
points

RXD H 8 7 6 5 4 3 2 1 0 L

11-bit receive shift register
STOP START

MSB

BAUD dividerBus
clock

SBR0–SBR12

ILIE

IDLE

LOOP control

IDLE
interrupt
request

RIE

RDRF/OR
interrupt
request

RSRC

LOOPS

TXD

Internal bus

SCI data registers

Data recovery

RAF

RE

WAKE

M

ILT
Wakeup

Logic

All 1s

Parity
Checking

PE

PT

NF

FE

PE

RDRF

OR

R8

RWU

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

24-24 Freescale Semiconductor
 Preliminary

24.4.4.1 Receiver Character Length

The eSCI receiver can accommodate 8-bit or 9-bit data characters. The state of the M bit in eSCI control
register 1 (ESCIx_CR1) determines the length of data characters. When receiving 9-bit data, bit R8 in the
eSCI data register (ESCIx_DR) is the ninth bit (bit 8).

24.4.4.2 Character Reception

During an eSCI reception, the receive shift register shifts a frame in from the RXD input signal. The eSCI
data register is the buffer (read-only during receive) between the internal data bus and the receive shift
register.

After a complete frame shifts into the receive shift register, the data portion of the frame transfers to the
eSCI data register. The receive data register full flag, RDRF, in eSCI status register (ESCIx_SR) is then
set, indicating that the received byte can be read. If the receive interrupt enable bit, RIE, in eSCI control
register 1 (ESCIx_CR1) is also set, the RDRF flag generates an RDRF interrupt request.

24.4.4.3 Data Sampling

The receiver uses a sampling clock to sample the RXD input signal at the 16 times the baud-rate frequency.
This sampling clock is called the RT clock. To adjust for baud rate mismatch, the RT clock (see
Figure 24-17) is re-synchronized:

• After every start bit.

• After the receiver detects a data bit change from logic 1 to logic 0. This data bit change is detected
when a majority of data samples return a valid logic 1 and a majority of the next data samples return
a valid logic 0. Data samples are taken at RT8, RT9, and RT10, as shown in Figure 24-17.

To locate the start bit, eSCI data recovery logic performs an asynchronous search for a logic 0 preceded
by three logic 1s. When the falling edge of a possible start bit occurs, the RT clock begins to count to 16.

Figure 24-17. Receiver Data Sampling

To verify the start bit and to detect noise, the eSCI data recovery logic takes samples at RT3, RT5, and
RT7. Table 24-17 summarizes the results of the start bit verification samples.

RT clock

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

Start bit
qualification

Start bit
verification

Data
sampling

RT1
RT1

RT1 RT1
RT1

RT1
RT1 RT1

RT1 RT3 RT5 RT7 RT9 RT11 RT13 RT15 RT1 RT3
RT2 RT4 RT6 RT8 RT10 RT12 RT14 RT16 RT2 RT4

Reset
RT clock

RT clock
count

RXD input
signal

samples

Start bit LSB

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 24-25
 Preliminary

If start bit verification is not successful, the RT clock is reset and a new search for a start bit begins.

To determine the value of a data bit and to detect noise, eSCI recovery logic takes samples at RT8, RT9,
and RT10. Table 24-18 summarizes the results of the data bit samples.

NOTE
The RT8, RT9, and RT10 samples do not affect start bit verification. If any
or all of the RT8, RT9, and RT10 start bit samples are logic 1s following a
successful start bit verification, the noise flag (NF) is set.

To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 24-19
summarizes the results of the stop bit samples.

Table 24-17. Start Bit Verification

RT3, RT5, and RT7 Samples Start Bit Verification Noise Flag

000 Yes 0

001 Yes 1

010 Yes 1

011 No 0

100 Yes 1

101 No 0

110 No 0

111 No 0

Table 24-18. Data Bit Recovery

RT8, RT9, and RT10 Samples Data Bit Determination Noise Flag

000 0 0

001 0 1

010 0 1

011 1 1

100 0 1

101 1 1

110 1 1

111 1 0

Table 24-19. Stop Bit Recovery

RT8, RT9, and RT10 samples Framing error flag Noise flag

000 1 0

001 1 1

010 1 1

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

24-26 Freescale Semiconductor
 Preliminary

In Figure 24-18 the verification samples RT3 and RT5 determine that the first low detected was noise and
not the beginning of a start bit. The RT clock is reset and the start bit search begins again. The noise flag
is not set because the noise occurred before the start bit was found.

Figure 24-18. Start Bit Search Example

24.4.4.4 Framing Errors

If the data recovery logic sets the framing error flag, ESCIx_SR[FE], it does not detect a logic 1 where the
stop bit should be in an incoming frame. A break character also sets the FE flag because a break character
has no stop bit. The FE flag is set at the same time that the RDRF flag is set.

24.4.4.5 Baud Rate Tolerance

A transmitting device may be operating at a baud rate below or above the receiver baud rate. Accumulated
bit time misalignment can cause one of the three stop bit data samples (RT8, RT9, and RT10) to fall outside
the actual stop bit. A noise error occurs if the RT8, RT9, and RT10 samples are not all the same logical
values. A framing error occurs if the receiver clock is misaligned in such a way that the majority of the
RT8, RT9, and RT10 stop bit samples are a logic zero.

As the receiver samples an incoming frame and re-synchronizes the RT clock on any valid falling edge
within the frame. Re-synchronization within frames will correct a misalignment between transmitter bit
times and receiver bit times.

011 0 1

100 1 1

101 0 1

110 0 1

111 0 0

Table 24-19. Stop Bit Recovery (continued)

RT8, RT9, and RT10 samples Framing error flag Noise flag

RT clock

1 1 1 0 1 1 1 0 0 0

RT1
RT1

RT1 RT2
RT1

RT4
RT3 RT5

RT1 RT2 RT4 RT6 RT8 RT10 RT12 RT14 RT16 RT2
RT1 RT3 RT5 RT7 RT9 RT11 RT13 RT15 RT1 RT3

Reset
RT clock

RT clock
count

RXD input
signal

samples

Start bit LSB

0 0 0 0

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 24-27
 Preliminary

24.4.4.5.1 Slow Data Tolerance

Figure 24-19 shows how much a slow received frame can be misaligned without causing a noise error or
a framing error. The slow stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit data
samples at RT8, RT9, and RT10.

Figure 24-19. Slow Data

For an 8-bit data character, data sampling of the stop bit takes the receiver RT clock 151 clock cycles, as
is shown below:

With the misaligned character shown in Figure 24-19, the receiver counts 151 RT cycles at the point when
the count of the transmitting device is 9 bits multiplied by 16 RT cycles = 147 RT cycles.

The maximum percent difference between the receiver count and the transmitter count of a slow 8-bit data
character with no errors is 4.63%, as is shown below:

For a 9-bit data character, data sampling of the stop bit takes the receiver 167 RT cycles, as is shown below:

With the misaligned character shown in Figure 24-19, the receiver counts 167 RT cycles at the point when
the count of the transmitting device is 10 bit multiplied by 16 RT cycles = 160 RT cycles.

The maximum percent difference between the receiver count and the transmitter count of a slow 9-bit
character with no errors is 4.19%, as is shown below:

24.4.4.5.2 Fast Data Tolerance

Figure 24-20 shows how much a fast received frame can be misaligned. The fast stop bit ends at RT10
instead of RT16 but remains sampled at RT8, RT9, and RT10.

RT1

Receiver
RT clock

RT2 RT3 RT4 RT5 RT6 RT7 RT8 RT9 RT10 RT11 RT12 RT13 RT14 RT15 RT16

MSB STOP

Data samples

9 bit times 16 RT cycles 7 RT cycles+× 151 RT cycles=

151 – 144
151

-------------------------- 100× 4.63%=

10 bit times 16 RT cycles 7 RT cycles+× 167 RT cycles =

167 – 160
167

-------------------------- 100× 4.19%=

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

24-28 Freescale Semiconductor
 Preliminary

Figure 24-20. Fast Data

For an 8-bit data character, data sampling of the stop bit takes the receiver 154 RT cycles, as is shown
below:

With the misaligned character shown in Figure 24-20, the receiver counts 154 RT cycles at the point when
the count of the transmitting device is 10 bit multiplied by 16 RT cycles = 160 RT cycles.

The maximum percent difference between the receiver count and the transmitter count of a fast 8-bit
character with no errors is 3.40%, as is shown below:

For a 9-bit data character, data sampling of the stop bit takes the receiver 170 RT cycles, as shown below:

With the misaligned character shown in Figure 24-20, the receiver counts 170 RT cycles at the point when
the count of the transmitting device is 11 bit multiplied by 16 RT cycles = 176 RT cycles.

The maximum percent difference between the receiver count and the transmitter count of a fast 9-bit
character with no errors is 3.40%, as is shown below:

24.4.4.6 Receiver Wakeup

The receiver can be put into a standby state, which enables the eSCI to ignore transmissions intended only
for other receivers in multiple-receiver systems. Setting the receiver wakeup bit, ESCIx_CR1[RWU], in
eSCI control register 1 (ESCIx_CR1) puts the receiver into standby state during which receiver interrupts
are disabled. The eSCI will load the received data into the ESCIx_DR, but it will not set the receive data
register full (RDRF) flag.

The transmitting device can address messages to selected receivers by including addressing information
(address bits) in the initial frame or frames of each message. See section Section 24.4.1, “Data Format,”
for an example of address bits.

RT1

Receiver
RT clock

RT2 RT3 RT4 RT5 RT6 RT7 RT8 RT9 RT10 RT11 RT12 RT13 RT14 RT15 RT16

STOP IDLE or Next Frame

Data Samples

9 bit times 16 RT cycles 10 RT cycles+× 154 RT cycles=

160 – 154
160

-------------------------- 100× 3.40%=

10 bit times 16 RT cycles 10 RT cycles+× 170 RT cycles=

176 – 170
176

-------------------------- 100× 3.40%=

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 24-29
 Preliminary

The WAKE bit in eSCI control register 1 (ESCIx_CR1) determines how the eSCI is brought out of the
standby state to process an incoming message. The WAKE bit enables either idle line wakeup or address
mark wakeup.

24.4.4.6.1 Idle Input Line Wakeup (WAKE = 0)

Using the receiver idle input line wakeup method allows an idle condition on the RXD signal clears the
ESCIx_CR1[RWU] bit and wakes up the eSCI. The initial frame or frames of every message contain
addressing information. All receivers evaluate the addressing information, and receivers for which the
message is addressed process the frames that follow. Any receiver for which a message is not addressed
can set its RWU bit and return to the standby state. The RWU bit remains set and the receiver remains on
standby until another idle character appears on the RXD signal.

Idle line wakeup requires that messages be separated by at least one idle character and that no message
contains idle characters.

The idle character that wakes a receiver does not set the receiver idle bit, ESCIx_SR[IDLE], or the receive
data register full flag, RDRF.

The idle line type bit, ESCIx_CR1[ILT], determines whether the receiver begins counting logic 1s as idle
character bits after the start bit or after the stop bit.

24.4.4.6.2 Address Mark Wakeup (WAKE = 1)

Using the address mark wakeup method allows a logic 1 in the most significant bit (msb) position of a
frame to clear the RWU bit and wakeup the eSCI. The logic 1 in the msb position marks a frame as an
address frame that contains addressing information. All receivers evaluate the addressing information, and
the receivers for which the message is addressed process the frames that follow. Any receiver for which a
message is not addressed can set its RWU bit and return to the standby state. The RWU bit remains set and
the receiver remains on standby until another address frame appears on the RXD signal.

The logic 1 msb of an address frame clears the receiver’s RWU bit before the stop bit is received and sets
the RDRF flag.

Address mark wakeup allows messages to contain idle characters but requires that the msb be reserved for
use in address frames.

NOTE
With the WAKE bit clear, setting the RWU bit after the RXD signal has been
idle can cause the receiver to wakeup immediately.

24.4.5 Single-Wire Operation

Normally, the eSCI uses two pins for transmitting and receiving. In single-wire operation, the RXD pin is
disconnected from the eSCI. The eSCI uses the TXD pin for both receiving and transmitting.

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

24-30 Freescale Semiconductor
 Preliminary

Figure 24-21. Single-Wire Operation (LOOPS = 1, RSRC = 1)

Enable single-wire operation by setting the LOOPS bit and the receiver source bit, RSRC, in eSCI control
register 1 (ESCIx_CR1). Setting the LOOPS bit disables the path from the RXD signal to the receiver.
Setting the RSRC bit connects the receiver input to the output of the TXD pin driver. The TXDIR bit
determines whether the TXD pin is going to be used as an input (TXDIR=0) or an output (TXDIR=1) in
the single-wire mode of operation.

During reception, both the transmitter and receiver must be enabled (TE = 1 and RE = 1). The
SIU_PCR89[PA] and SIU_PCR91[PA] bits must be set to select the TXD function for the relevant eSCI
module, and the TXD pin should be set for open drain operation (SIU_PCRnn[ODE] = 1). Weak pullup
may optionally be enabled if the external transmitting device is also open drain. See Section 6.3.2.13, “Pad
Configuration Registers (SIU_PCR)”.

During transmission, the transmitter must be enabled (TE=1); the receiver may be enabled or disabled. If
the receiver is enabled (RE=1), transmissions will be echoed back on the receiver. Set or clear open drain
output enable depending on desired operation.

24.4.6 Loop Operation

In loop operation, the transmitter output goes to the receiver input. The RXD signal is disconnected from
the eSCI.

Figure 24-22. Loop Operation (LOOPS = 1, RSRC = 0)

Enable loop operation by setting the LOOPS bit and clearing the RSRC bit in eSCI control register 1
(ESCIx_CR1). Setting the LOOPS bit disables the path from the RXD signal to the receiver. Clearing the
RSRC bit connects the transmitter output to the receiver input. Both the transmitter and receiver must be
enabled (TE = 1 and RE = 1).

24.4.7 Disabling the eSCI

Each of the eSCI modules can be independently disabled by setting ESCIx_CR2[MDIS] = 1. Disabling the
module turns off the clock to the module, although some of the module registers may be accessed by the

Transmitter

Receiver

TXDTXD input signal

TXD output signal

RXD

Transmitter

Receiver

TXD
TXD output signal

RXD

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 24-31
 Preliminary

core via the slave bus. The MDIS bit is intended to be used when the module is not required in the
application.

The module disable bit (ESCIx_CR2[MDIS]) in the eSCI control register 2 can be used to turn off the
eSCI. This saves power by stopping the eSCI core from being clocked.

By default the eSCI is disabled (ESCIx_CR2[MDIS]=1).

24.4.7.1 Stop Mode

The eSCI is inactive during stop mode (SIU_HLT[ESCI_x] = 1)for reduced power consumption.To avoid
corrupting data, the eSCI will prevent the system from entering Stop mode before the current operation is
completed. In SCI mode the eSCI will wait until the current byte has been received or transmitted. It is
possible that a received byte will nevertheless be corrupted, so the first byte in the eSCI after waking up
from Stop mode could be invalid. To help prevent byte corruption, first enter doze mode, then go into stop
mode.

In LIN mode the eSCI will wait at least until the current byte has been received or transmitted before
entering stop mode. If the LIN FSM has some more data to receive or transmit which does not require
processor access (CRC and checksum bytes or last transmit byte of a frame) the eSCI will delay stop mode
until these operations are complete, too.

If a LIN frame was aborted, the DMA controller will be out of sync, and the channel needs to be restarted
after leaving stop mode.

24.4.8 Interrupt Operation

24.4.8.1 Interrupt Sources

There are several interrupt sources that can generate an eSCI interrupt to the CPU. They are listed with
details and descriptions in Chapter 8, “Interrupts” (specifically Table 8-2).

The eSCI originates interrupt requests only. The following sections describe how the eSCI generates a
request and how the MCU acknowledges that request. The eSCI has a single interrupt line (eSCI interrupt
signal, active high operation) only and all the following interrupts, when generated, are ORed together and
issued through that port.

24.4.8.2 Interrupt Flags

24.4.8.2.1 TDRE Description

The transmit data register empty (TDRE) interrupt is set high by the eSCI when the transmit shift register
receives data, 8 or 9 bits, from the eSCI data register, ESCIx_DR. A TDRE interrupt indicates that the
transmit data register (ESCIx_DR) is empty and that a new data can be written to the ESCIx_DR for
transmission. The TDRE bit is cleared by writing a 1 to the TDRE bit location in the ESCIx_SR.

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

24-32 Freescale Semiconductor
 Preliminary

24.4.8.2.2 TC Description

The transmit complete (TC) interrupt is set by the eSCI when a transmission has completed. A TC interrupt
indicates that there is no transmission in progress. TC is set high when the TDRE flag is set and no data,
preamble, or break character is transmitted. When TC is set, the TXD pin becomes idle (logic 1). The TC
bit is cleared by writing a 1 to the TC bit location in the ESCIx_SR.

24.4.8.2.3 RDRF Description

The receive data register full (RDRF) interrupt is set when the data in the receive shift register transfers to
the eSCI data register. An RDRF interrupt indicates that the received data has been transferred to the eSCI
data register and that the received data can now be read by the MCU. The RDRF bit is cleared by writing
a one to the RDRF bit location in the ESCIx_SR.

24.4.8.2.4 OR Description

The overrun (OR) interrupt is set when software fails to read the eSCI data register before the receive shift
register receives the next frame. The newly acquired data in the shift register is lost in this case, but the
data already in the eSCI data registers is not affected. The OR bit is cleared by writing a 1 to the OR bit
location in the ESCIx_SR.

24.4.8.2.5 IDLE Description

The idle line (IDLE) interrupt is set when 10 consecutive logic 1s (if M = 0) or 11 consecutive logic 1s (if
M = 1) appear on the receiver input. After the IDLE is cleared, a valid frame must again set the RDRF flag
before an idle condition can set the IDLE flag. The IDLE bit is cleared by writing a 1 to the IDLE bit
location in the ESCIx_SR.

24.4.8.2.6 PF Description

The interrupt is set when the parity of the received data is not correct. Writing a 1 clears the PF.

24.4.8.2.7 FE Description

The interrupt is set when the stop bit is read as a 0, which violates the SCI protocol. Writing a 1 clears the
FE.

24.4.8.2.8 NF Description

The NF interrupt is set when the eSCI detects noise on the receiver input.

24.4.8.2.9 BERR Description

While the eSCI is in LIN mode, the bit error (BERR) flag is set when one or more bits in the last
transmitted byte is not read back with the same value. The BERR flag is cleared by writing a 1 to the bit.
A bit error will cause the LIN FSM to reset. Writing a 1 to the bit clears the BERR flag.

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 24-33
 Preliminary

24.4.8.2.10 RXRDY Description

While in LIN mode, the receiver ready (RXRDY) flag is set when the eSCI receives a valid data byte in
an RX frame. RXRDY will not be set for bytes that the receiver obtains by reading back the data which
the LIN finite state machine (FSM) has sent out. Writing a 1 to the bit clears the RXRDY flag.

24.4.8.2.11 TXRDY Description

While in LIN mode, the transmitter ready (TXRDY) flag is set when the eSCI can accept a control or data
byte. Writing a 1 to the bit clears the TXRDY flag.

24.4.8.2.12 LWAKE Description

The LIN wakeup (LWAKE) flag is set when the LIN hardware receives a wakeup character sent by one of
the LIN slaves. This occurs only when the LIN bus is in sleep mode. Writing a 1 to the bit clears the
LWAKE flag.

24.4.8.2.13 STO Description

The slave timeout (STO) flag is set during an RX frame when the LIN slave has not transmitted all
requested data bytes before the specified timeout period. Writing a 1 to the bit clears the STO flag.

24.4.8.2.14 PBERR Description

If the RXD input remains stuck at a fixed value for 15 cycles after a transmission has started, the LIN
hardware sets the physical bus error (PBERR) flag. Writing a 1 to the bit clears the PBERR flag.

24.4.8.2.15 CERR Description

If an RX frame has the CRC checking flag set and the two CRC bytes do not match the calculated CRC
pattern, the CRC error (CERR) flag is set. Writing a 1 to the bit clears the CERR flag.

24.4.8.2.16 CKERR Description

If an RX frame has the checksum checking flag set and the last byte does not match the calculated
checksum, the checksum error (CKERR) flag is set. Writing a 1 to the bit clears the CKERR flag.

24.4.8.2.17 FRC Description

The frame complete (FRC) flag is set after the last byte of a TX frame is sent out, or after the last byte of
an RX frame is received. Writing a 1 to the bit clears the FRC flag.

NOTE
The last byte of a TX frame being sent or an RX frame being received
indicates that the checksum comparison has taken place.

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

24-34 Freescale Semiconductor
 Preliminary

NOTE
The FRC flag is used to indicate to the CPU that the next frame can be set
up. However, it might be set before the DMA controller has transferred the
last byte from the eSCI to system memory. The FRC flag should not be used
if the intention is to process data. Instead, the appropriate interrupt of the
DMA controller should be used.

24.4.8.2.18 OVFL Description

The overflow (OVFL) flag is set when a byte is received in the ESCIx_LRR before the previous byte is
read. Because the system is responsible for reading the register before the next byte arrives, this condition
indicates a problem with CPU load. The OVFL flag is cleared by writing a 1 to the bit.

24.4.9 Using the LIN Hardware

The eSCI provides special support for the LIN protocol. It can be used to automate most tasks of a LIN
master. In conjunction with the DMA interface it is possible to transmit entire frames (or sequences of
frames) and receive data from LIN slaves without any CPU intervention. There is no special support for
LIN slave mode. If required, LIN slave mode may be implemented in software.

A LIN frame consists of a break character (10 or 13 bits), a sync field, an ID field, n data fields (n could
be 0) and a checksum field. The data and checksum bytes are either provided by the LIN master (TX frame)
or by the LIN slave (RX frame). The header fields will always be generated by the LIN master.

Figure 24-23. Typical LIN frame

The LIN hardware is highly configurable. This configurability allows the eSCI’s LIN hardware to generate
frames for LIN slaves from all revisions of the LIN standard. The settings are adjusted according to the
capabilities of the slave device.

To activate the LIN hardware, the LIN mode bit in the ESCIx_LCR needs to be set. Other settings, such
as double stop flags after bit errors and automatic parity bit generation, are also available for use in LIN
mode.

The eSCI settings must be made according to the LIN specification. The eSCI must be configured for
2-wire operation (2 wires connected to the LIN transceiver) with 8 data bytes and no parity. Normally a
13-bit break is used, but the eSCI can also be configured for 10-bit breaks as required by the application.

24.4.9.1 Features of the LIN Hardware

The eSCI’s LIN hardware has several features to support different revisions of the LIN slaves. The
ESCIx_LTR can be configured to include or not include header bits in the checksum on a frame by frame
basis. This feature supports LIN slaves with different LIN revisions. The LIN control register allows the
user to decide whether the parity bits in the ID field should be calculated automatically and whether double

Break Sync ID Data Data CSum...

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 24-35
 Preliminary

stop flags should be inserted after a bit error. The BRK13 bit in ESCIx_CR2 decides whether to generate
10 or 13 bit break characters.

NOTE
LIN 2.0 now requires that a break character is always 13 bits long, so the
BRK13 bit should always be set to 1. The eSCI will work with BRK13=0,
but it will violate LIN 2.0.

The application software can decide to turn off the checksum generation/verification on a per frame basis
and manage that function on its own. The application software can also decide to let the LIN hardware
append two CRC bytes (Figure 24-24). The CRC bytes are not part of the LIN standard, but could be part
of the application layer, that is they would be treated as data bytes by the LIN protocol. This can be useful
when very long frames are transmitted. By default the CRC polynomial used is the same polynomial as for
the CAN protocol.

Figure 24-24. LIN Frame with CRC bytes

It is possible to force a resync of the LIN FSM, with the LRES bit in the LIN control register. However,
under normal circumstances, the LIN hardware will automatically abort a frame after detecting a bit error.

24.4.9.2 Generating a TX Frame

The following procedure describes how a basic TX frame is generated.

The frame is controlled via the LIN transmit register (ESCIx_LTR). Initially, the application software will
need to check the TXRDY bit (either using an interrupt, the TX DMA interface, or by polling the LIN
status register). If TXRDY is set, the register is writable. Before each write, TXRDY must be checked
(though this step is performed automatically in DMA mode). The first write to the ESCIx_LTR must
contain the LIN ID field. The next write to ESCIx_LTR specifies the length of the frame (0 to 255 Bytes).
The third write to ESCIx_LTR contains the control byte (frame direction, checksum/CRC settings).
Timeout bits are not included in TX frames because they refer to LIN slaves only. The three previously
mentioned writes to the ESCIx_LTR specify the LIN frame data. After the LIN frame data is specified, the
eSCI LIN hardware starts to generate a LIN frame.

First, the eSCI transmits a break field. The sync field is transmitted next. The third field is the ID field.
After these three fields have been broadcast, the ESCIx_LTR accepts data bytes; the LIN hardware
transmits these data bytes as soon as they are available and can be sent out. After the last step, the LIN
hardware automatically appends the checksum field.

It is possible to set up a DMA channel to manage all the tasks required to send a TX frame (see
Figure 24-25). For this operation, the TX DMA channel must be activated by setting the
ESCIx_CR2[TXDMA] bit. The control information for the LIN frame (ID, message length, TX/RX type,
timeout, etc.) and the data bytes are stored at an appropriate memory location. The DMA controller is then
set up to transfer this block of memory to a location (the ESCIx_LTR). After transmission is complete,
either the DMA controller or the LIN hardware can generate an interrupt to the CPU.

Break Sync ID Data Data CRC1 CRC2 CSum• • •

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

24-36 Freescale Semiconductor
 Preliminary

NOTE
In contrast to the standard software implementation where each byte
transmission requires several interrupts, the DMA controller and eSCI
manage communication, bit error and physical bus error checking,
checksum, and CRC generation (checking on the RX side).

Figure 24-25. DMA Transfer of a TX Frame

24.4.9.3 Generating an RX Frame

For RX frames, the header information is provided by the LIN master. The data, CRC, and checksum bytes
(as enabled) are provided by the LIN slave. The LIN master verifies CRC and checksum bytes transmitted
by the slave.

For an RX frame, control information must be written to the ESCIx_LTR in the same manner as for the
TX frames. Additionally the timeout bits, which define the time to complete the entire frame, must be
written. Then the ESCIx_SR[RXRDY] bit must be checked (either with an interrupt, RX DMA interface,
or by polling) to detect incoming data bytes. The checksum byte normally does not appear in the
ESCIx_LRR, instead the LIN hardware will verify the checksum and issue an interrupt, if the checksum
value is not correct.

Two DMA channels can be used when executing an RX frame: one to transfer the header/control
information from a memory location to the ESCIx_LTR, and one to transfer the incoming data bytes from
the ESCIx_LRR to a table in memory. See Figure 24-26 for more information. After the last byte from the
RX frame has been stored, the DMA controller can indicate completion to the CPU.

NOTE
It is also possible to set up a whole sequence of RX and TX frames, and
generate a single event at the end of that sequence.

Break Sync ID Data Data CSum• • •

LIN frame

eSCI_x

ESCIx_LTR

DMA
controller

Data n

Data 1
Control/Timeout

Length
ID

•
•
• TX DMA

channel

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 24-37
 Preliminary

Figure 24-26. DMA Transfer of an RX Frame

24.4.9.4 LIN Error Handling

The LIN hardware can detect several error conditions of the LIN protocol. LIN hardware will receive every
byte that was transmitted and compare it with the intended values. If there is a mismatch, a bit error is
issued, and the LIN FSM will return to its start state.

For an RX frame the LIN hardware can detect a slave timeout error. The exact slave timeout error value
can be set via the timeout bits in the ESCIx_LTR. If the frame is not complete within the number of clock
cycles specified in the register, the LIN FSM will return to its start state, and the STO interrupt is issued.

The LIN protocol supports a sleep mode. After 25,000 bus cycles of inactivity, the bus is assumed to be in
sleep mode. Normally entering sleep mode can be avoided if the LIN master is regularly creating some bus
activity. Otherwise the timeout state needs to be detected by the application software; for example, by
setting a timer.

Both LIN masters and LIN slaves can cause the bus to exit sleep mode by sending a break signal. The LIN
hardware will generate such a break, when WU bit in the LIN control register is written. After transmitting
this break the LIN hardware will not send out data (that is, not raise the TXRDY flag) before the wakeup
delimiter period has expired. This period can be selected by setting the WUD bits in the LIN control
register.

Break signals sent by a LIN slave are received by the LIN hardware, and so indicated by setting the WAKE
flag in the LIN status register.

A physical bus error (LIN bus is permanently stuck at a fixed value) will set several error flags. If the input
is permanently low, the eSCI will set the framing error (FE) flag in the eSCI status register. If the RXD
input remains stuck at a fixed value for 15 cycles, after a transmission has started, the LIN hardware will
set the PBERR flag in the LIN status register. In addition a bit error may be generated.

Break Sync ID Data Data CSum• • •

LIN Frame

Transmit

DMA
controller

Data n

Data 1

Timeout
Control/Timeout

Length
ID

•••
TX DMA
channel

eSCI_x

Receive

From master From slave

RX DMA
channel

Register

Register

Enhanced Serial Communication Interface (eSCI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

24-38 Freescale Semiconductor
 Preliminary

24.4.9.5 LIN Setup

Because the eSCI is for general-purpose use, some of the settings are not applicable for LIN operation. The
following setup applies for most applications, regardless of which kind of LIN slave is addressed:

• The module is enabled by writing the ESCIx_CR2[MDIS] bit to 0.

• Both transmitter and receiver are enabled (ESCIx_CR1[TE] = 1, ESCIx_CR1[RE] = 1).

• The data format bit ESCIx_CR1[M], is set to 0 (8 data bits), and the parity is disabled (PE = 0).

• ESCIx_CR1[TIE], ESCIx_CR1[TCIE], ESCIx_CR1[RIE] interrupt enable bits should be inactive.
Instead, the LIN interrupts should be used.

• Switch eSCI to LIN mode (ESCIx_LCR[LIN] = 1).

• The LIN standard requires that the break character always be 13 bits long
(ESCIx_CR2[BRK13] = 1). The eSCI will work with BRK13=0, but it will violate LIN 2.0.

• Normally, bit errors should cause the LIN FSM to reset, stop driving the bus immediately, and stop
further DMA requests until the BERR flag has been cleared. Set ESCIx_LCR[LDBG] = 0,
ESCIx_CR2[SBSTP] = 1, and ESCIx_CR2[BSTP] = 1 to accomplish these functions.

• Fast bit error detection provides superior error checking, so ESCIx_CR2[FBR] should be set;
normally it will be used with ESCIx_CR2[BESM13] = 1.

• If available, a pulldown should be enabled on the RX input. (If the transceiver fails, the RX pin will
not float).

• The error indicators NF, FE, BERR, STO, PBERR, CERR, CKERR, and OVFL should be enabled.

• Initially a wakeup character may need to be transmitted on the LIN bus, so that the LIN slaves
activate.

Other settings such as baud rate, length of break character etc., depend on the LIN slaves to which the eSCI
is connected.

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 25-1
 Preliminary

Chapter 25
Controller Area Network (FlexCAN)

25.1 Introduction
The MPC5510 contains six controller area network (FlexCAN) blocks. Each FlexCAN module is a
communication controller implementing the CAN protocol according to Bosch Specification version 2.0B
and ISO Standard 11898. The CAN protocol was primarily, but not only, designed to be used as a vehicle
serial data bus, meeting the specific requirements of this field: real-time processing, reliable operation in
the EMI environment of a vehicle, cost-effectiveness and required bandwidth.

The CAN protocol interface (CPI) submodule manages the serial communication on the CAN bus,
requesting RAM access for receiving and transmitting message frames, validating received messages and
performing error handling. The message buffer management (MBM) submodule handles message buffer
selection for reception and transmission, taking care of arbitration and ID matching algorithms. The bus
interface unit (BIU) submodule controls the access to and from the internal interface bus, to establish
connection to the CPU and other blocks. Clocks, address and data buses, interrupt outputs, and test signals
are accessed through the bus interface unit.

25.1.1 Block Diagram

A simplified block diagram of the FlexCAN illustrates the functionality and interdependence of major
sub-blocks (see Figure 25-1).

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

25-2 Freescale Semiconductor
 Preliminary

Figure 25-1. FlexCAN Block Diagram

25.1.2 Features

The FlexCAN has these major features:

• Full implementation of the CAN protocol specification, Version 2.0A/B

— Standard data and remote frames

— Extended data and remote frames

— Zero to eight bytes data length

— Programmable bit rate up to 1 Mbit/sec

— Content-related addressing

• 64 flexible message buffers (MBs) of zero to eight bytes data length

• Each message buffer configurable as Rx or Tx, all supporting standard and extended messages

MB3

RAM

Bus Interface Unit

max MB #

(0–63)

Slave Interface

CAN Message

CNTXx

CNRXx

MB2

MB1

MB0

MB60

MB61

MB62

MB63

Clocks, Address and Data Buses,
Interrupt and Test Signals

Buffer

Management

Protocol

Interface

1 Kbyte

RXIMR63

RXIMR62

RXIMR1

RXIMR0

ID Mask
Storage
256 bytes
RAM

FlexCAN

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 25-3
 Preliminary

• Individual Rx mask registers per message buffer

• Includes 1056 bytes of RAM used for message buffer storage

• Includes 256 bytes of RAM used for individual Rx mask registers

• Full featured Rx FIFO with storage capacity for six frames and internal pointer handling

• Powerful Rx FIFO ID filtering, capable of matching incoming IDs against either eight extended,
16 standard, or 32 partial (8 bits) IDs, with individual masking capability

• Selectable backwards compatibility with previous FlexCAN version

• Programmable clock source to the CAN protocol interface, either bus clock or crystal oscillator

• Unused message buffer and Rx mask register space can be used as general-purpose RAM space

• Listen-only mode capability

• Programmable loop-back mode supporting self-test operation

• Programmable transmission priority scheme: lowest ID, lowest buffer number or local priority on
individual Tx message buffers.

• Hardware cancellation on Tx message buffers.

• Time stamp based on 16-bit free-running timer

• Global network time, synchronized by a specific message

• Maskable interrupts

• Independent of the transmission medium (an external transceiver is assumed)

• Short latency time due to an arbitration scheme for high-priority messages

• Low-power modes

25.1.3 Modes of Operation

There are four main operating modes of FlexCAN: normal, freeze, listen-only, and loop-back. Two
low-power modes are supported: module disable and stop. For more details, refer to Section 25.4.8,
“Modes of Operation Details.”

25.1.3.1 Normal Mode

In normal mode the module operates receiving and/or transmitting message frames, errors are handled
normally and all the CAN protocol functions are enabled. In the MCU, there is no distinction between user
and supervisor modes.

25.1.3.2 Freeze Mode

Freeze mode is entered when the FRZ bit in the module configuration register (CANx_MCR) is asserted,
while the HALT bit in CANx_MCR is set, or if debug mode is requested by either core. In freeze mode no
transmission or reception of frames is done, and synchronicity to the CAN bus is lost.

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

25-4 Freescale Semiconductor
 Preliminary

25.1.3.3 Listen-Only Mode

In this mode, transmission is disabled, all error counters are frozen and the module operates in a CAN error
passive mode. Only messages acknowledged by another CAN station will be received. If FlexCAN detects
a message that has not been acknowledged, it will flag a BIT0 error (without changing the REC), as if it
was trying to acknowledge the message.

25.1.3.4 Loop-Back Mode

The module enters this mode when the LPB bit in the control register is asserted. In this mode, FlexCAN
performs an internal loop back that can be used for self test operation. The bit stream output of the
transmitter is internally fed back to the receiver input. The Rx CAN input pin is ignored and the Tx CAN
output goes to the recessive state (logic 1). FlexCAN behaves as it normally does when transmitting, and
treats its own transmitted message as a message received from a remote node. In this mode, FlexCAN
ignores the bit sent during the ACK slot in the CAN frame acknowledge field to ensure proper reception
of its own message. Transmit and receive interrupts are generated.

25.1.3.5 Module-Disabled Mode

This low-power mode is entered when the MDIS bit in the CANx_MCR register is asserted. When
disabled, the clocks to the CAN protocol interface and message buffer management submodules are shut
down. Exit from this mode is done by negating the MDIS bit in the CANx_MCR register.

25.1.3.6 Stop Mode

This low-power mode is entered when stop mode is requested at MCU level. When in stop mode, the
module puts itself in an inactive state and then informs the CPU that the clocks can be shut down globally.
Exit from this mode happens when the stop mode request is removed or when activity is detected on the
CAN bus and the self wake up mechanism is enabled.

25.2 External Signal Description
Please refer to Table 2-1 and Chapter 2, “Signal Descriptions,” for a complete description of the FlexCAN
signals.

25.3 Memory Map and Registers
This section provides a detailed description of all FlexCAN registers.

25.3.1 Module Memory Map

The complete memory map for an individual FlexCAN module is shown in Table 25-1. Except for the base
addresses, all FlexCAN modules have identical memory maps.

The Rx global mask (CANx_RXGMASK), Rx buffer 14 mask (CANx_RX14MASK) and the Rx buffer
15 mask (CANx_RX15MASK) registers are provided for backwards compatibility, and are not used when
the BCC bit in CANx_MCR is asserted.

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 25-5
 Preliminary

The offset address ranges 0x0060–0x047F and 0x0880–0x097F are occupied by two separate embedded
memories. These two ranges are completely occupied by RAM (1 KB and 256 bytes, respectively) when
FlexCAN is configured with 64 MBs. Furthermore, if the BCC bit in CANx_MCR is negated, then the
whole Rx individual mask registers address range (0x0880–0x097F) is considered reserved space.

Table 25-1. FlexCAN Memory Map

Offset from
FlexCAN_BASE

(FlexCAN_A = 0xFFFC_0000
FlexCAN_B = 0xFFFC_4000
FlexCAN_C = 0xFFFC_8000
FlexCAN_D = 0xFFFC_C000
FlexCAN_E = 0xFFFD_0000
FlexCAN_F = 0xFFFD_4000)

Register Access Reset Value1 Section/Page

0x0000 CANx_MCR — Module Configuration R/W Note1 25.3.4.1/25-11

0x0004 CANx_CTRL — Control Register R/W Note1 25.3.4.2/25-15

0x0008 CANx_TIMER — Free-running Timer R/W Note1 25.3.4.3/25-18

0x000C Reserved

0x0010 CANx_RXGMASK — Rx Global Mask R/W Note1 25.3.4.4.1/25-
19

0x0014 CANx_RX14MASK — Rx Buffer 14 Mask R/W Note1 25.3.4.4.2/25-
20

0x0018 CANx_RX15MASK — Rx Buffer 15 Mask R/W Note1 25.3.4.4.3/25-
20

0x001C CANx_ECR — Error Counter Register R/W Note1 25.3.4.5/25-21

0x0020 CANx_ESR — Error and Status Register R/W Note1 25.3.4.6/25-22

0x0024 CANx_IMASK2 — Interrupt Masks 2 R/W Note1 25.3.4.7/25-24

0x0028 CANx_IMASK1 — Interrupt Masks 1 R/W Note1 25.3.4.8/25-25

0x002C CANx_IFLAG2 — Interrupt Flags 2 R/W Note1 25.3.4.9/25-25

0x0030 CANx_IFLAG1 — Interrupt Flags 1 R/W Note1 25.3.4.10/25-2
6

0x0034–0x007F Reserved

0x0080–0x017F MB0–MB15 — Message Buffers R/W Note1 25.3.2/25-6

0x0180–0x027F MB16–MB31 — Message Buffers R/W Note1

0x0280–0x047F MB32–MB63 — Message Buffers R/W Note1

0x0480-087F Reserved

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

25-6 Freescale Semiconductor
 Preliminary

The FlexCAN module stores CAN messages for transmission and reception using a message buffer
structure. Each MB is formed by 16 bytes mapped in memory as described in Table 25-2. The FlexCAN
module can manage up to 64 message buffers. Table 25-2 shows a standard/extended message buffer
(MB0) memory map, using 16 bytes (0x80–0x8F) total space.

NOTE
Reading the C/S word of a message buffer (the first word of each MB) will
lock it, preventing it from receiving further messages until it is unlocked
either by reading another MB or by reading the timer.

25.3.2 Message Buffer Structure

The message buffer structure used by the FlexCAN module is represented in Figure 25-2. Both extended
and standard frames (29-bit identifier and 11-bit identifier, respectively) used in the CAN specification
(version 2.0 Part B) are represented.

0x0880-0x08BF CANx_RXIMR0–CANx_RXIMR15 — Rx Individual
Mask Registers

R/W Note1 25.3.4.11/25-2
7

0x08C0-0x08FF CANx_RXIMR16–CANx_RXIMR31 — Rx Individual
Mask Registers

R/W Note1

0x0900-0x097F CANx_RXIMR32–CANx_RXIMR63 — Rx Individual
Mask Registers

R/W Note1

1 Please refer to the register definition.

Table 25-2. Message Buffer MB0 Memory Mapping

Address
Offset

MB Field

0x80 Control and status (C/S)

0x84 Identifier field

0x88–0x8F Data fields 0–7 (1 byte each)

Table 25-1. FlexCAN Memory Map (continued)

Offset from
FlexCAN_BASE

(FlexCAN_A = 0xFFFC_0000
FlexCAN_B = 0xFFFC_4000
FlexCAN_C = 0xFFFC_8000
FlexCAN_D = 0xFFFC_C000
FlexCAN_E = 0xFFFD_0000
FlexCAN_F = 0xFFFD_4000)

Register Access Reset Value1 Section/Page

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 25-7
 Preliminary

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0 CODE

S
R

R

ID
E

R
T

R LENGTH TIME STAMP

0x4 PRIO ID (Extended/Standard) ID (Extended)

0x8 Data Byte 0 Data Byte 1 Data Byte 2 Data Byte 3

0xC Data Byte 4 Data Byte 5 Data Byte 6 Data Byte 7

Figure 25-2. Message Buffer Structure

Table 25-3. Message Buffer Field Descriptions

Name Description

CODE Message Buffer Code. This 4-bit field can be accessed (read or write) by the CPU and by the
FlexCAN module itself, as part of the message buffer matching and arbitration process. The
encoding is shown in Table 25-4 and Table 25-5. See Section 25.4, “Functional Description,” for
additional information.

SRR Substitute Remote Request. Fixed recessive bit, used only in extended format. It must be set to ‘1’
by the user for transmission (Tx Buffers) and will be stored with the value received on the CAN bus
for Rx receiving buffers. It can be received as either recessive or dominant. If FlexCAN receives this
bit as dominant, then it is interpreted as arbitration loss.
0 Dominant is not a valid value for transmission in extended format frames
1 Recessive value is compulsory for transmission in extended format frames

IDE ID Extended Bit. This bit identifies whether the frame format is standard or extended.
0 Frame format is standard
1 Frame format is extended

RTR Remote Transmission Request. This bit is used for requesting transmissions of a data frame. If
FlexCAN transmits this bit as ‘1’ (recessive) and receives it as ‘0’ (dominant), it is interpreted as
arbitration loss. If this bit is transmitted as ‘0’ (dominant), then if it is received as ‘1’ (recessive), the
FlexCAN module treats it as bit error. If the value received matches the value transmitted, it is
considered as a successful bit transmission.
0 Indicates the current MB has a data frame to be transmitted
1 Indicates the current MB has a remote frame to be transmitted

LENGTH Length of Data in Bytes. This 4-bit field is the length (in bytes) of the Rx or Tx data, which is located
in offset 0x8 through 0xF of the MB space (see Figure 25-2). In reception, this field is written by the
FlexCAN module, copied from the DLC (data length code) field of the received frame. In
transmission, this field is written by the CPU and corresponds to the DLC field value of the frame
to be transmitted. When RTR = 1, the Frame to be transmitted is a remote frame and does not
include the data field, regardless of the length field.

TIME STAMP Free-Running Counter Time Stamp. This 16-bit field is a copy of the free-running timer, captured
for Tx and Rx frames at the time when the beginning of the Identifier field appears on the CAN bus.

PRIO Local Priority. This 3-bit field is only used when LPRIO_EN bit is set in CANx_MCR and it only
makes sense for Tx buffers. These bits are not transmitted. They are appended to the regular ID to
define the transmission priority. See Section 25.4.2, “Arbitration Process.”

ID Frame Identifier. In standard frame format, only the 11 most significant bits (3 to 13) are used for
frame identification in both receive and transmit cases. The 18 least significant bits are ignored. In
extended frame format, all bits are used for frame identification in both receive and transmit cases.

DATA Data Field. Up to eight bytes can be used for a data frame. For Rx frames, the data is stored as it
is received from the CAN bus. For Tx frames, the CPU prepares the data field to be transmitted
within the frame.

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

25-8 Freescale Semiconductor
 Preliminary

c

Table 25-4. Message Buffer Code for Rx Buffers

Rx Code before
Rx New Frame

Description
Rx Code after
Rx New Frame

Comment

0000 NOT ACTIVE: MB is not active. — MB does not participate in the matching process.

0100 EMPTY: MB is active and empty. 0010 MB participates in the matching process. When a
frame is received successfully, the code is
automatically updated to FULL.

0010 FULL: MB is full. 0010 The act of reading the C/S word followed by unlocking
the MB does not make the code return to EMPTY. It
remains FULL. If a new frame is written to the MB after
the C/S word was read and the MB was unlocked, the
code still remains FULL.

0110 If the MB is FULL and a new frame is overwritten to
this MB before the CPU had time to read it, the code
is automatically updated to OVERRUN. Refer to
Section 25.4.4, “Matching Process for details about
overrun behavior.

0110 OVERRUN: A frame was
overwritten into a full buffer.

0010 If the code indicates OVERRUN but the CPU reads the
C/S word and then unlocks the MB, when a new frame
is written to the MB the code returns to FULL.

0110 If the code already indicates OVERRUN, and yet
another new frame must be written, the MB will be
overwritten again, and the code will remain
OVERRUN. Refer to Section 25.4.4, “Matching
Process for details about overrun behavior.

0XY11

1 Note that for Tx MBs (see Table 25-5), the BUSY bit should be ignored upon read, except when AEN bit is set in the CANx_MCR.

BUSY: FlexCAN is updating the
contents of the MB. The CPU
must not access the MB.

0010 An EMPTY buffer was written with a new frame (XY
was 01).

0110 A FULL/OVERRUN buffer was overwritten (XY was
11).

Table 25-5. Message Buffer Code for Tx Buffers

RTR
Initial Tx

Code

Code after
Successful

Transmission
Description

X 1000 — INACTIVE: MB does not participate in the arbitration process.

X 1001 —
ABORT: MB was configured as Tx and CPU aborted the transmission. This code
is only valid when AEN bit in CANx_MCR is asserted. MB does not participate in
the arbitration process.

0 1100 1000 Transmit data frame unconditionally once. After transmission, the MB
automatically returns to the INACTIVE state.

1 1100 0100 Transmit remote frame unconditionally once. After transmission, the MB
automatically becomes and Rx MB with the same ID.

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 25-9
 Preliminary

25.3.3 Rx FIFO Structure

When the FEN bit is set in the CANx_MCR, the memory area from 0x80 to 0xFF (which is normally
occupied by MBs 0 to 7) is used by the reception FIFO engine. Figure 25-3 shows the Rx FIFO data
structure. The region 0x0–0xC contains an MB structure which is the port through which the CPU reads
data from the FIFO (the oldest frame received and not read yet). The region 0x10–0xDF is reserved for
internal use of the FIFO engine. The region 0xE0–0xFF contains an eight-entry ID table that specifies
filtering criteria for accepting frames into the FIFO. Figure 25-4 shows the three different formats that the
elements of the ID table can assume, depending on the IDAM field of the CANx_MCR. Note that all
elements of the table must have the same format. See Section 25.4.6, “Rx FIFO,” for more information.

0 1010 1010 Transmit a data frame whenever a remote request frame with the same ID is
received. This MB participates simultaneously in both the matching and arbitration
processes. The matching process compares the ID of the incoming remote request
frame with the ID of the MB. If a match occurs this MB is allowed to participate in
the current arbitration process and the CODE field is automatically updated to
‘1110’ to allow the MB to participate in future arbitration runs. When the frame is
eventually transmitted successfully, the Code automatically returns to ‘1010’ to
restart the process again.

0 1110 1010 the MBM as a result of match to a remote request frame. The data frame will be
transmitted unconditionally once and then the code will automatically return to
‘1010’. The CPU can also write this code with the same effect.

Table 25-5. Message Buffer Code for Tx Buffers (continued)

RTR
Initial Tx

Code

Code after
Successful

Transmission
Description

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

25-10 Freescale Semiconductor
 Preliminary

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0 CODE

S
R

R

ID
E

R
T

R LENGTH TIME STAMP

0x4 ID (Extended/Standard) ID (Extended)

0x8 Data Byte 0 Data Byte 1 Data Byte 2 Data Byte 3

0xC Data Byte 4 Data Byte 5 Data Byte 6 Data Byte 7

0x10

Reservedto

0xDF

0xE0 ID Table 0

0xE4 ID Table 1

0xE8 ID Table 2

0xEC ID Table 3

0xF0 ID Table 4

0xF4 ID Table 5

0xF8 ID Table 6

0xFC ID Table 7

Figure 25-3. Rx FIFO Structure

A
R
E
M

E
X
T

RXIDA
(Standard = 29-19, Extended = 29-1)

B
R
E
M

E
X
T

RXIDB_0
(Standard = 29-19, Extended = 29-16)

R
E
M

E
X
T

RXIDB_1
(Standard = 13-3, Extended = 13-0)

C
RXIDC_0

(Std/Ext = 31-24)
RXIDC_1

(Std/Ext = 23-16)
RXIDC_2

(Std/Ext = 15-8)
RXIDC_3

(Std/Ext = 7-0)

Figure 25-4. ID Table 0–7

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 25-11
 Preliminary

25.3.4 Register Descriptions

This section lists the FlexCAN registers in address order and describes the registers and their bit fields.

25.3.4.1 Module Configuration Register (CANx_MCR)

This register defines global system configurations, such as the module operation mode (e.g., low power)
and maximum message buffer configuration. Most of the fields in this register can be accessed at any time,
except the MAXMB field, which should only be changed while the module is in freeze mode.

Table 25-6. ID Table 0–7 Field Descriptions

Name Description

REM Remote Frame. This bit specifies if Remote Frames are accepted into the FIFO if they match the
target ID.
0 Remote frames are rejected and data frames can be accepted.
1 Remote frames can be accepted and data frames are rejected.

EXT Extended Frame. Specifies whether extended or standard frames are accepted into the FIFO if they
match the target ID.
0 Extended frames are rejected and standard frames can be accepted.
1 Extended frames can be accepted and standard frames are rejected.

RXIDA Rx Frame Identifier (foRmat A). Specifies an ID to be used as acceptance criteria for the FIFO. In
the standard frame format, only the 11 most significant bits (3 to 13) are used for frame
identification. In the extended frame format, all bits are used.

RXIDB_0,
RXIDB_1

Rx Frame Identifier (Format B). Specifies an ID to be used as acceptance criteria for the FIFO. In
the standard frame format, the 11 most significant bits (a full standard ID) (3 to 13) are used for
frame identification. In the extended frame format, all 14 bits of the field are compared to the 14
most significant bits of the received ID.

RXIDC_0,
RXIDC_1,
RXIDC_2,
RXIDC_3

Rx Frame Identifier (Format C). Specifies an ID to be used as acceptance criteria for the FIFO. In
both standard and extended frame formats, all 8 bits of the field are compared to the 8 most
significant bits of the received ID.

Offset: Base + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MDIS FRZ FEN HALT

NOT_
RDY

0 SOFT
_RST

FRZ_
ACK

1 0 WRN
_EN

LPM_
ACK

0 0 SRX_
DIS

BCC
W

Reset 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 LPRIO
_EN

AEN
0 0

IDAM
0 0

MAXMB
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Figure 25-5. Module Configuration Register (CANx_MCR)

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

25-12 Freescale Semiconductor
 Preliminary

Table 25-7. CANx_MCR Field Descriptions

Field Description

MDIS Module Disable. Controls whether FlexCAN is enabled or not. When disabled, FlexCAN shuts down the clock
to the CAN protocol interface and message buffer management submodules. This is the only bit in
CANx_MCR not affected by soft reset. See Section 25.4.8.2, “Module Disabled Mode,” for more information.
0 Enable the FlexCAN module.
1 Disable the FlexCAN module.

FRZ Freeze Enable. Specifies the FlexCAN behavior when the HALT bit in the CANx_MCR is set or when debug
mode is requested at MCU level. When FRZ is asserted, FlexCAN is enabled to enter freeze mode. Negation
of this bit field causes FlexCAN to exit from freeze mode.
0 Not enabled to enter freeze mode.
1 Enabled to enter freeze mode.

FEN FIFO Enable. controls whether the FIFO feature is enabled or not. When FEN is set, MBs 0 to 7 cannot be
used for normal reception and transmission because the corresponding memory region (0x80–0xFF) is used
by the FIFO engine. See Section 25.3.3, “Rx FIFO Structure,” and Section 25.4.6, “Rx FIFO,” for more
information.
0 FIFO not enabled.
1 FIFO enabled.

HALT Halt FlexCAN. Assertion of this bit puts the FlexCAN module into freeze mode if FRZ is asserted. The CPU
will clear it after initializing the message buffers and CANx_CTRL. If FRZ is set, no reception or transmission
is performed by FlexCAN before this bit is cleared. While in freeze mode, the CPU has write access to the
CANx_ECR, that is otherwise read-only. Freeze mode cannot be entered while FlexCAN is disabled. See
Section 25.4.8.1, “Freeze Mode,” for more information.
0 No freeze mode request.
1 Enters freeze mode if the FRZ bit is asserted.

NOTRDY FlexCAN Not Ready. Indicates that FlexCAN is either disabled or in freeze mode. It is negated once FlexCAN
has exited these modes.
0 FlexCAN module is either in normal mode, listen-only mode or loop-back mode.
1 FlexCAN module is either disabled or freeze mode.

bit 5 Reserved.

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 25-13
 Preliminary

SOFTRST Soft Reset. When asserted, FlexCAN resets its internal state machines and some of the memory-mapped
registers. The following registers are affected by soft reset:
 • CANx_MCR (except the MDIS bit)
 • CANx_TIMER
 • CANx_ECR
 • CANx_ESR
 • CANx_IMASK1
 • CANx_IMASK2
 • CANx_IFLAG1
 • CANx_IFLAG2
Configuration registers that control the interface to the CAN bus are not affected by soft reset. The following
registers are unaffected:
 • CANx_CTRL
 • CANx_RXGMASK
 • CANx_RX14MASK
 • CANx_RX15MASK
 • all message buffers
The SOFTRST bit can be asserted directly by the CPU when it writes to the CANx_MCR, but it is also
asserted when global soft reset is requested at MCU level. Because soft reset is synchronous and has to
follow a request/acknowledge procedure across clock domains, it may take some time to fully propagate its
effect. The SOFTRST bit remains asserted while reset is pending, and is automatically negated when reset
completes. Therefore, software can poll this bit to know when the soft reset has completed.
0 No reset request.
1 Resets values in registers indicated above.

FRZACK Freeze Mode Acknowledge. Indicates that FlexCAN is in freeze mode and its prescaler is stopped. The freeze
mode request cannot be granted until current transmission and reception processes have finished. Therefore
the software can poll the FRZACK bit to know when FlexCAN has actually entered freeze mode. If freeze
mode request is negated, then this bit is negated once the FlexCAN prescaler is running again. If freeze
mode is requested while FlexCAN is disabled, then the FRZACK bit will only be set when the low-power mode
is exited. See Section 25.4.8.1, “Freeze Mode,” for more information.
0 FlexCAN not in freeze mode, prescaler running.
1 FlexCAN in freeze mode, prescaler stopped.

bits 8–9 Reserved.

WRNEN Warning Interrupt Enable. When asserted, this bit enables the generation of the TWRNINT and RWRNINT
flags in the error and status register. If WRNEN is negated, the TWRNINT and RWRNINT flags will always
be 0, independent of the values of the error counters, and no warning interrupt will ever be generated.
1 = TWRNINT and RWRNINT bits are set when the respective error counter transition from <96
to ≥ 96.
0 = TWRNINT and RWRNINT bits are zero, independent of the values in the error counters.

LPM_SACK Low-Power Mode Acknowledge. Indicates whether FlexCAN is disabled. This cannot be performed until all
current transmission and reception processes have finished, so the CPU can poll the MDISACK bit to know
when FlexCAN has actually been disabled. See Section 25.4.8.2, “Module Disabled Mode,” for more
information.
0 FlexCAN not disabled.
1 FlexCAN is disabled.

bits 12–13 Reserved.

Table 25-7. CANx_MCR Field Descriptions (continued)

Field Description

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

25-14 Freescale Semiconductor
 Preliminary

SRXDIS This bit defines whether FlexCAN is allowed to receive frames transmitted by itself. If this bit is asserted,
frames transmitted by the module will not be stored in any MB, regardless if the MB is programmed with an
ID that matches the transmitted frame, and no interrupt flag or interrupt signal
will be generated due to the frame reception.
0 Self reception enabled.
1 Self reception disabled.

BCC Backwards Compatibility Configuration. Provided to support backwards compatibility with previous FlexCAN
versions. When this bit is negated, the following configuration is applied:
 • For MCUs supporting individual Rx ID masking, this feature is disabled. Instead of individual ID masking

per MB, FlexCAN uses its previous masking scheme with CANx_RXGMASK, CANx_RX14MASK and
CANx_RX15MASK.

 • The reception queue feature is disabled. Upon receiving a message, if the first MB with a matching ID that
is found is still occupied by a previous unread message, FlexCAN will not look for another matching MB.
It will override this MB with the new message and set the CODE field to 0b0110 (overrun).

Upon reset this bit is negated, allowing legacy software to work without modification.
0 Individual Rx masking and queue feature are disabled.
1 Individual Rx masking and queue feature are enabled.

bits 16–17 Reserved.

LPRIO_EN Local Priority Enable. Provided for backwards compatibility reasons. It controls whether the local priority
feature is enabled or not. It is used to extend the ID used during the arbitration process. With this extended
ID concept, the arbitration process is done based on the full 32-bit word, but the actual transmitted ID still has
11 bits for standard frames and 29 bits for extended frames.
0 Local priority disabled.
1 Local priority enabled.

AEN Abort Enable. Provided for backwards compatibility reasons. When asserted, it enables the Tx abort feature.
This feature guarantees a safe procedure for aborting a pending transmission, so that no frame is sent in the
CAN bus without notification.
0 Abort disabled.
1 Abort enabled.

bits 20–21 Reserved.

IDAM ID Acceptance Mode. Identifies the format of the elements of the Rx FIFO filter table. All elements of the table
are configured at the same time by this field (they are all the same format).

Table 25-7. CANx_MCR Field Descriptions (continued)

Field Description

IDAM Format Explanation

00 A One full ID (standard or extended) per filter element.

01 B Two full standard IDs or two partial 14-bit extended IDs per filter element.

10 C Four partial 8-bit IDs (standard or extended) per filter element.

11 D All frames rejected.

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 25-15
 Preliminary

25.3.4.2 Control Register (CANx_CTRL)

This register is defined for specific FlexCAN control features related to the CAN bus, such as bit-rate,
programmable sampling point within an Rx bit, loop back mode, listen only mode, bus off recovery
behavior and interrupt enabling (bus-off, error, warning). It also determines the division factor for the
clock prescaler. Most of the fields in this register should only be changed while the module is in disable
mode or in freeze mode. Exceptions are the BOFF_MSK, ERR_MSK, TWRN_MSK, RWRN_MSK and
BOFF_REC bits, that can be accessed at any time.

24–25 Reserved.

MAXMB Maximum Number Of Message Buffers. This 6-bit field defines the maximum number of message buffers of
the FlexCAN module. The reset value (0x0F) is equivalent to a 16 MB configuration. This field should be
changed only while the module is in freeze mode.

Note: MAXMB has to be programmed with a value smaller or equal to the number of available message
buffers, otherwise FlexCAN will not transmit or receive frames.

Offset: Base + 0x0004 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PRESDIV RJW PSEG1 PSEG2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BOFF
_MSK

ERR_
MSK

CLK_
SRC

LPB
TWRN
_ MSK

RWRN
_MSK

0 0
SMP

BOFF
_REC

TSY
N

LBUF LOM PROPSEG
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-6. Control Register (CANx_CTRL)

Table 25-7. CANx_MCR Field Descriptions (continued)

Field Description

Maximum MBs in use MAXMB 1+=

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

25-16 Freescale Semiconductor
 Preliminary

Table 25-8. CANx_CTRL Field Descriptions

Bits Description

PRESDIV Prescaler Division Factor. Defines the ratio between the CPI clock frequency and the serial clock (SCK)
frequency. The SCK period defines the time quantum of the CAN protocol. For the reset value, the SCK
frequency is equal to the CPI clock frequency. The maximum value of this register is 0xFF, that gives a
minimum SCK frequency equal to the CPI clock frequency divided by 256. For more information, refer to
Section 25.4.7.4, “Protocol Timing.”

RJW Resync Jump Width. Defines the maximum number of time quanta1 that a bit time can be changed by one
re-synchronization. The valid programmable values are 0–3.

PSEG1 Phase Segment 1. Defines the length of phase buffer segment 1 in the bit time. The valid programmable
values are 0–7.

PSEG2 Phase Segment 2. Defines the length of phase buffer segment 2 in the bit time. The valid programmable
values are 1–7.

BOFFMSK Bus Off Mask. Provides a mask for the bus off interrupt.
0 Bus off interrupt disabled
1 Bus off interrupt enabled

ERRMSK Error Mask. Provides a mask for the error interrupt.
0 Error interrupt disabled
1 Error interrupt enabled

CLK_SRC CAN Engine Clock Source. Selects the clock source to the CAN Protocol Interface (CPI) to be either the
system clock (driven by the PLL) or the crystal oscillator clock. The selected clock is the one fed to the
prescaler to generate the serial clock (SCK). In order to guarantee reliable operation, this bit should only
be changed while the module is disabled.
0 = The CAN engine clock source is the oscillator clock
1 = The CAN engine clock source is the system clock

LPB Loop Back. Configures FlexCAN to operate in loop-back mode. See Section 25.4.8, “Modes of Operation
Details” for information about this operating mode.
0 Loop back disabled
1 Loop back enabled

TWRNMSK This bit provides a mask for the Tx Warning Interrupt associated with the TWRNINT flag in the Error
and Status Register. This bit has no effect if the WRNEN bit in CANx_MCR is negated and it is read as zero
when WRNEN is negated.
1 = Tx Warning Interrupt enabled
0 = Tx Warning Interrupt disabled

S-clock frequency CPI clock frequency
PRESDIV 1+

---=

Resync Jump Width RJW + 1=

Phase Buffer Segment 1 PSEG1 + 1() Time Quanta×=

Phase Buffer Segment 2 PSEG2 + 1() Time Quanta×=

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 25-17
 Preliminary

RWRNMSK This bit provides a mask for the Rx Warning Interrupt associated with the RWRNINT flag in the Error
and Status Register. This bit has no effect if the WRNEN bit in CANx_MCR is negated and it is read as zero
when WRNEN is negated.
1 = Rx Warning Interrupt enabled
0 = Rx Warning Interrupt disabled

bits 22–23 Reserved.

SMP Sampling Mode. Defines the sampling mode of each bit in the receiving messages (Rx).
0 Just one sample is used to determine the Rx bit value
1 Three samples are used to determine the value of the received bit: the regular one (sample point) and

2 preceding samples, a majority rule is used

BOFFREC Bus Off Recovery Mode. Defines how FlexCAN recovers from bus off state. If this bit is negated, automatic
recovering from bus off state occurs according to the CAN Specification 2.0B. If the bit is asserted,
automatic recovering from bus off is disabled and the module remains in bus off state until the bit is negated
by the user. If the negation occurs before 128 sequences of 11 recessive bits are detected on the CAN bus,
then bus off recovery happens as if the BOFFREC bit had never been asserted. If the negation occurs after
128 sequences of 11 recessive bits occurred, then FlexCAN will re-synchronize to the bus by waiting for 11
recessive bits before joining the bus. After negation, the BOFFREC bit can be re-asserted again during bus
off, but it will only be effective the next time the module enters bus off. If BOFFREC was negated when the
module entered bus off, asserting it during bus off will not be effective for the current bus off recovery.
0 Automatic recovering from bus off state enabled, according to CAN Spec 2.0 part B
1 Automatic recovering from bus off state disabled

TSYN Timer Sync Mode. Enables a mechanism that resets the free-running timer each time a message is
received in message buffer 0. This feature provides means to synchronize multiple FlexCAN stations with
a special SYNC message (that is, global network time). If the FEN bit in CANx_MCR is set (FIFO enabled),
MB8 is used for timer synchronization instead of MB0.
0 Timer sync feature disabled
1 Timer sync feature enabled
Note: There is a possibility of 4–5 ticks count skew between the different FlexCAN stations that would

operate in this mode.

LBUF Lowest Buffer Transmitted First. This bit defines the ordering mechanism for message buffer
transmission.When asserted, the LPRIO_EN bit does not affect the priority arbitration.
0 Buffer with highest priority is transmitted first
1 Lowest number buffer is transmitted first

LOM Listen-Only Mode. Configures FlexCAN to operate in listen-only mode. In this mode, the FlexCAN module
receives messages without giving any acknowledge. It is not possible to transmit any message in this mode.
0 FlexCAN module is in normal active operation, listen only mode is deactivated
1 FlexCAN module is in listen only mode operation

PROPSEG Propagation Segment. Defines the length of the propagation segment in the bit time. The valid
programmable values are 0–7.

1 One time quantum is equal to the S clock period.

Table 25-8. CANx_CTRL Field Descriptions

Bits Description

Propagation Segment Time (PROPSEG + 1) Time Quanta×=

Time Quantum = one S clock period

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

25-18 Freescale Semiconductor
 Preliminary

25.3.4.3 Free-Running Timer (CANx_TIMER)

This register represents a 16-bit free-running counter that can be read and written by the CPU. The timer
starts from 0x0000 after Reset, counts linearly to 0xFFFF, and wraps around.

The timer is clocked by the FlexCAN bit-clock (which defines the baud rate on the CAN bus). During a
message transmission/reception, it increments by one for each bit that is received or transmitted. When
there is no message on the bus, it counts using the previously programmed baud rate. During Freeze Mode,
the timer is not incremented.

The timer value is captured at the beginning of the identifier field of any frame on the CAN bus. This
captured value is written into the Time Stamp entry in a message buffer after a successful reception or
transmission of a message.

Writing to the timer is an indirect operation. The data is first written to an auxiliary register and then an
internal request/acknowledge procedure across clock domains is executed. All this is transparent to the
user, except for the fact that the data will take some time to be actually written to the register. If desired,
software can poll the register to discover when the data was actually written.

25.3.4.4 Rx Mask Registers

By negating the CANx_MCR[BCC] bit, the CANx_RXGMASK, CANx_RX14MASK, and
CANx_RX15MASK registers are used as acceptance masks for received frame IDs. Three masks are
defined: a global mask, used for Rx buffers 0–13 and 16–63, and two extra masks dedicated for buffers 14
and 15. The meaning of each mask bit is the following:

• Mask bit = 0: the corresponding incoming ID bit is “don’t care.”

• Mask bit = 1: the corresponding ID bit is checked against the incoming ID bit, to see if a match
exists.

Note that these masks are used both for standard and extended ID formats. The value of mask registers
should not be changed while in normal operation. Locked frames which had matched a MB through a mask
may be transferred into the MB (upon release) but may no longer match. Table 25-9 shows some examples
of ID masking for standard and extended message buffers.

Offset: Base + 0x0008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
TIMER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-7. Free-Running Timer (CANx_TIMER)

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 25-19
 Preliminary

25.3.4.4.1 Rx Global Mask (CANx_RXGMASK)

This register is provided for legacy support. On MPC5510, setting the BCC bit in CANx_MCR causes the
CANx_RXGMASK Register to have no effect on the module operation.

CANx_RXGMASK is used as acceptance mask for all Rx MBs, excluding MBs 14–15, which have
individual mask registers. When the FEN bit in CANx_MCR is set (FIFO enabled), the
CANx_RXGMASK also applies to all elements of the ID filter table, except elements 6-7, which have
individual masks.

The contents of this register must be programmed while the module is in Freeze Mode, and must not be
modified when the module is transmitting or receiving frames.

Table 25-9. Mask Examples for Standard/Extended Message Buffers

Base ID
ID28.................ID18

IDE
Extended ID

ID17......................................ID0
Match

MB2 ID 1 1 1 1 1 1 1 1 0 0 0 0

MB3 ID 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

MB4 ID 0 0 0 0 0 0 1 1 1 1 1 0

MB5 ID 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

MB14 ID 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Rx Global Mask 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1

Rx Msg in1

1 Match for Extended Format (MB3).

1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 3

Rx Msg in2

2 Match for Standard Format. (MB2).

1 1 1 1 1 1 1 1 0 0 1 0 2

Rx Msg in3

3 Mismatch for MB3 because of ID0.

1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0

Rx Msg in4

4 Mismatch for MB2 because of ID28.

0 1 1 1 1 1 1 1 0 0 0 0

Rx Msg in5

5 Mismatch for MB3 because of ID28, Match for MB14 (uses CANx_RX14MASK).

0 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 14

Rx 14 Mask 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

Rx Msg in6

6 Mismatch for MB14 because of ID27 (uses CANx_RX14MASK).

1 0 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Rx Msg in7

7 Match for MB14 (uses CANx_RX14MASK).

0 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 14

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

25-20 Freescale Semiconductor
 Preliminary

25.3.4.4.2 Rx 14 Mask (CANx_RX14MASK)

This register is provided for legacy support. On MPC5510, setting the BCC bit in CANx_MCR causes the
CANx_RX14MASK Register to have no effect on the module operation.

CANx_RX14MASK is used as acceptance mask for the Identifier in Message Buffer 14. When the FEN
bit in CANx_MCR is set (FIFO enabled), the CANx_RX14MASK also applies to element 6 of the ID filter
table. This register has the same structure as the Rx Global Mask Register. It must be programmed while
the module is in Freeze Mode, and must not be modified when the module is transmitting or receiving
frames.

• Address Offset: 0x14

• Reset Value: 0xFFFF_FFFF

25.3.4.4.3 Rx 15 Mask (CANx_RX15MASK)

This register is provided for legacy support. On MPC5510, setting the BCC bit in CANx_MCR causes the
CANx_RX15MASK Register to have no effect on the module operation.

When the BCC bit is negated, CANx_RX15MASK is used as acceptance mask for the Identifier in
Message Buffer 15. When the FEN bit in CANx_MCR is set (FIFO enabled), the CANx_RX14MASK also
applies to element 7 of the ID filter table. This register has the same structure as the Rx Global Mask
Register. It must be programmed while the module is in Freeze Mode, and must not be modified when the
module is transmitting or receiving frames.

• Address Offset: 0x18

• Reset Value: 0xFFFF_FFFF

Offset: Base + 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MI31 MI30 MI29 MI28 MI27 MI26 MI25 MI24 MI23 MI22 MI21 MI20 MI19 MI18 MI17 MI16

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MI15 MI14 MI13 MI12 MI11 MI10 MI9 MI8 MI7 MI6 MI5 MI4 MI3 MI2 MI1 MI0

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 25-8. Rx Mask Register (CANx_RXGMASK)

Table 25-10. CANx_RXGMASK Field Descriptions

Field Description

MIn Mask Bits. For normal Rx MBs, the mask bits affect the ID filter programmed on the MB. For the Rx FIFO,
the mask bits affect all bits programmed in the filter table (ID, IDE, RTR).
0 the corresponding bit in the filter is “don’t care”
1 The corresponding bit in the filter is checked against the one received

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 25-21
 Preliminary

25.3.4.5 Error Counter Register (CANx_ECR)

CANx_ECR has two 8-bit fields reflecting the value of two FlexCAN error counters: the transmit error
counter (TXECTR field) and receive error counter (RXECTR field). The rules for increasing and
decreasing these counters are described in the CAN protocol and are completely implemented in the
FlexCAN module. Both counters are read only except in freeze mode, where they can be written by the
CPU.

Writing to the CANx_ECR while in freeze mode is an indirect operation. The data is first written to an
auxiliary register and then an internal request/acknowledge procedure across clock domains is executed.
All this is transparent to the user, except for the fact that the data will take some time to be actually written
to the register. If desired, software can poll the register to discover when the data was actually written.

FlexCAN responds to any bus state as described in the protocol: transmitting, for example, an ‘error active’
or ‘error passive’ flag, delaying its transmission start time (‘error passive’), and avoiding any influence on
the bus when in the bus off state. The following are the basic rules for FlexCAN bus state transitions:

• If the value of TXECTR or RXECTR increases to be greater than or equal to 128, the FLTCONF
field in the CANx_ESR is updated to reflect the ‘error passive’ state.

• If the FlexCAN state is ‘error passive,’ and either TXECTR or RXECTR decrements to a value
less than or equal to 127 while the other already satisfies this condition, the FLTCONF field in the
CANx_ESR is updated to reflect the ‘error active’ state.

• If the value of TXECTR increases to be greater than 255, the FLTCONF field in the CANx_ESR
is updated to reflect the bus off state, and an interrupt may be issued. The value of TXECTR is then
reset to zero.

• If FlexCAN is in the bus off state, then TXECTR is cascaded together with another internal counter
to count the 128th occurrences of 11 consecutive recessive bits on the bus. Hence, TXECTR is reset
to zero and counts in a manner where the internal counter counts 11 such bits and then wraps
around while incrementing the TXECTR. When TXECTR reaches the value of 128, the FLTCONF
field in CANx_ESR is updated to be ‘error active’ and both error counters are reset to zero. At any
instance of dominant bit following a stream of less than 11 consecutive recessive bits, the internal
counter resets itself to zero without affecting the TXECTR value.

• If during system start-up, only one node is operating, then its TXECTR increases in each message
it is trying to transmit, as a result of acknowledge errors (indicated by the ACKERR bit in
CANx_ESR). After the transition to the ‘error passive’ state, the TXECTR does not increment
anymore by acknowledge errors. Therefore the device never goes to the bus off state.

If the RXECTR increases to a value greater than 127, it is not incremented further, even if more errors are
detected while being a receiver. At the next successful message reception, the counter is set to a value
between 119 and 127 to resume to ‘error active’ state.

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

25-22 Freescale Semiconductor
 Preliminary

25.3.4.6 Error and Status Register (CANx_ESR)

This register reflects various error conditions, some general status of the device, and it is the source of four
interrupts to the CPU. The reported error conditions (bits 16-21) are those that occurred since the last time
the CPU read this register. The CPU read action clears bits 16-21. Bits 22-28 are status bits.

Most bits in this register are read only, except TWRN_INT, RWRN_INT, BOFF_INT, and ERR_INT,
which are interrupt flags that can be cleared by writing 1 to them (writing 0 has no effect).

NOTE
A read clears BIT1ERR, BIT0ERR, ACKERR, CRCERR, FRMERR, and
STFERR, therefore these bits must not be read speculatively.

Offset: Base + 0x001C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
Rx_Err_Counter Tx_Err_Counter

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-9. Error Counter Register (CANx_ECR)

Offset: Base + 0x0020 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TWRN_
INT

RWRN_
INTW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BIT1_
ERR

BIT0_
ERR

ACK_
ERR

CRC_
ERR

FRM_
ERR

STF_
ERR

TX_
WRN

RX_
WRN

IDLE TXRX FLT_CONF 0 BOFF_
INT

ERR_
INT

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-10. Error and Status Register (CANx_ESR)

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 25-23
 Preliminary

Table 25-11. CANx_ESR Field Descriptions

Field Description

bits 0–13 Reserved.

TWRNINT If the WRNEN bit in CANx_MCR is asserted, the TWRNINT bit is set when the TXWRN flag transitions
from 0 to 1, meaning that the Tx error counter reached 96. If the corresponding mask bit in the
Control Register (TWRNMSK) is set, an interrupt is generated to the CPU. This bit is cleared by
writing to 1. Writing 0 has no effect.
0 No such occurrence
1 TXECTR ≥ 96

RWRNINT If the WRNEN bit in CANx_MCR is asserted, the RWRNINT bit is set when the RXWRN flag transitions
from 0 to 1, meaning that the Rx error counter reached 96. If the corresponding mask bit in the
Control Register (RWRNMSK) is set, an interrupt is generated to the CPU. This bit is cleared by
writing to 1. Writing 0 has no effect.
0 No such occurrence
1 RXECTR ≥ 96

BIT1ERR Bit 1 Error. Indicates when an inconsistency occurs between the transmitted and the received message in
a bit. A read clears BIT1ERR.
0 No such occurrence
1 At least one bit sent as recessive is received as dominant
Note: This bit is not set by a transmitter in case of arbitration field or ACK slot, or in case of a node sending

a passive error flag that detects dominant bits.

BIT0ERR Bit 0 Error. Indicates when an inconsistency occurs between the transmitted and the received message in
a bit. A read clears BIT0ERR.
0 No such occurrence
1 At least one bit sent as dominant is received as recessive

ACKERR Acknowledge Error. Indicates that an acknowledge error has been detected by the transmitter node; that
is, a dominant bit has not been detected during the ACK SLOT. A read clears ACKERR.
0 No such occurrence
1 An ACK error occurred since last read of this register

CRCERR Cyclic Redundancy Code Error. Indicates that a CRC error has been detected by the receiver node; that
is, the calculated CRC is different from the received. A read clears CRCERR.
0 No such occurrence
1 A CRC error occurred since last read of this register.

FRMERR Form Error. Indicates that a form error has been detected by the receiver node; that is, a fixed-form bit field
contains at least one illegal bit. A read clears FRMERR.
0 No such occurrence
1 A form error occurred since last read of this register

STFERR Stuffing Error. Indicates that a stuffing error has been detected. A read clears STFERR.
0 No such occurrence.
1 A stuffing error occurred since last read of this register.

TXWRN Tx Error Counter. This status bit indicates that repetitive errors are occurring during message transmission.
0 No such occurrence
1 TXECTR ≥ 96

RXWRN Rx Error Counter. This status bit indicates when repetitive errors are occurring during messages reception.
0 No such occurrence
1 RXECTR ≥ 96

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

25-24 Freescale Semiconductor
 Preliminary

25.3.4.7 Interrupt Masks 2 Register (CANx_IMASK2)

This register allows any number of a range of 32 Message Buffer Interrupts to be enabled or disabled. It
contains one interrupt mask bit per buffer, enabling the CPU to determine which buffer generates an
interrupt after a successful transmission or reception (that is, when the corresponding CANx_IFLAG2 bit
is set).

IDLE CAN Bus IDLE State. This status bit indicates when CAN bus is in IDLE state.
0 No such occurrence
1 CAN bus is now IDLE

TXRX Current FlexCAN Status (Transmitting/Receiving). This status bit indicates if FlexCAN is transmitting or
receiving a message when the CAN bus is not in IDLE state. This bit has no meaning when IDLE is
asserted.
0 FlexCAN is receiving a message (IDLE = 0)
1 FlexCAN is transmitting a message (IDLE = 0)

FLTCONF Fault Confinement State. This status bit indicates the confinement state of the FlexCAN module. If the LOM
bit in the CANx_CTRL is asserted, the FLTCONF field will indicate “Error Passive”. Since the CANx_CTRL
is not affected by soft reset, the FLTCONF field will not be affected by soft reset if the LOM bit is asserted.
00 Error active
01 Error passive
1X Bus off

bit 28 Reserved.

BOFFINT Bus Off Interrupt. This status bit is set when FlexCAN is in the bus off state. If CANx_CTRL[BOFFMSK] is
set, an interrupt is generated to the CPU. This bit is cleared by writing it to 1. Writing 0 has no effect.
0 No such occurrence
1 FlexCAN module is in ‘Bus Off’ state

ERRINT Error Interrupt. This status bit indicates that at least one of the error bits (bits 16-21) is set. If
CANx_CTRL[ERRMSK] is set, an interrupt is generated to the CPU. This bit is cleared by writing it to 1.
Writing 0 has no effect.
0 No such occurrence
1 Indicates setting of any error bit in the CANx_CANx_ESR

bit 31 Reserved.

Offset: Base + 0x0024 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BUF
63M

BUF
62M

BUF
61M

BUF
60M

BUF
59M

BUF
58M

BUF
57M

BUF
56M

BUF
55M

BUF
54M

BUF
53M

BUF
52M

BUF
51M

BUF
50M

BUF
49M

BUF
48MW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BUF
47M

BUF
46M

BUF
45M

BUF
44M

BUF
43M

BUF
42M

BUF
41M

BUF
40M

BUF
39M

BUF
38M

BUF
37M

BUF
36M

BUF
35M

BUF
34M

BUF
33M

BUF
32MW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-11. Interrupt Masks 2 Register (CANx_IMASK2)

Table 25-11. CANx_ESR Field Descriptions (continued)

Field Description

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 25-25
 Preliminary

25.3.4.8 Interrupt Masks 1 Register (CANx_IMASK1)

This register allows to enable or disable any number of a range of 32 Message Buffer Interrupts. It contains
one interrupt mask bit per buffer, enabling the CPU to determine which buffer generates an interrupt after
a successful transmission or reception (i.e., when the corresponding CANx_IFLAG1 bit is set).

25.3.4.9 Interrupt Flags 2 Register (CANx_IFLAG2)

This register defines the flags for 32 Message Buffer interrupts. It contains one interrupt flag bit per buffer.
Each successful transmission or reception sets the corresponding CANx_IFLAG2 bit. If the corresponding

Table 25-12. CANx_IMASK2 Field Descriptions

Field Description

BUFnM Message Buffer n Mask. Enables or disables the respective FlexCAN message buffer (MB63 to MB32)
Interrupt.
0 The corresponding buffer Interrupt is disabled
1 The corresponding buffer Interrupt is enabled
Note: Setting or clearing a bit in the CANx_IMASK2 register can assert or negate an interrupt request,

respectively.

Offset: Base + 0x0028 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BUF
31M

BUF
30M

BUF
29M

BUF
28M

BUF
27M

BUF
26M

BUF
25M

BUF
24M

BUF
23M

BUF
22M

BUF
21M

BUF
20M

BUF
19M

BUF
18M

BUF
17M

BUF
16MW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BUF
15M

BUF
14M

BUF
13M

BUF
12M

BUF
11M

BUF
10M

BUF
9M

BUF
8M

BUF
7M

BUF
6M

BUF
5M

BUF
4M

BUF
3M

BUF
2M

BUF
1M

BUF
0MW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-12. Interrupt Masks 1 Register (CANx_IMASK1)

Table 25-13. CANx_IMASK1 Field Descriptions

Field Description

BUFnM Message Buffer n Mask. Enables or disables the respective FlexCAN message buffer (MB31 to MB0)
Interrupt.
0 The corresponding buffer Interrupt is disabled
1 The corresponding buffer Interrupt is enabled
Note: Setting or clearing a bit in the CANx_IMASK1 register can assert or negate an interrupt request,

respectively.

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

25-26 Freescale Semiconductor
 Preliminary

CANx_IMASK2 bit is set, an interrupt will be generated. The interrupt flag must be cleared by writing it
to ‘1’. Writing ‘0’ has no effect.

When the AEN bit in the CANx_MCR is set (abort enabled), while the CANx_IFLAG2 bit is set for a MB
configured as Tx, the writing access done by CPU into the corresponding MB will be blocked.

25.3.4.10 Interrupt Flags 1 Register (CANx_IFLAG1)

This register defines the flags for 32 message buffer interrupts and FIFO interrupts. It contains one
interrupt flag bit per buffer. Each successful transmission or reception sets the corresponding
CANx_IFLAG1 bit. If the corresponding CANx_IMASK1 bit is set, an interrupt will be generated. The
interrupt flag must be cleared by writing it to ‘1’. Writing ‘0’ has no effect.

When the AEN bit in theCANx_MCR is set (Abort enabled), while the CANx_IFLAG1 bit is set for a MB
configured as Tx, the writing access done by CPU into the corresponding MB will be blocked.

When the FEN bit in the CANx_MCR is set (FIFO enabled), the function of the eight least significant
interrupt flags (BUF7I - BUF0I) is changed to support the FIFO operation. BUF7I, BUF6I and BUF5I
indicate operating conditions of the FIFO, while BUF4I to BUF0I are not used.

Offset: Base + 0x002C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BUF
63I

BUF
62I

BUF
61I

BUF
60I

BUF
59I

BUF
58I

BUF
57I

BUF
56I

BUF
55I

BUF
54I

BUF
53I

BUF
52I

BUF
51I

BUF
50I

BUF
49I

BUF
48IW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BUF
47I

BUF
46I

BUF
45I

BUF
44I

BUF
43I

BUF
42I

BUF
41I

BUF
40I

BUF
39I

BUF
38I

BUF
37I

BUF
36I

BUF
35I

BUF
34I

BUF
33I

BUF
32IW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-13. Interrupt Flag 2 Register (CANx_IFLAG2)

Table 25-14. CANx_IFLAG2 Field Descriptions

Field Description

BUFnI Message Buffer n Interrupt. Each bit represents the respective FlexCAN message buffer (MB63–MB32)
interrupt. Write 1 to clear.
0 No such occurrence
1 The corresponding buffer has successfully completed transmission or reception.

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 25-27
 Preliminary

25.3.4.11 Rx Individual Mask Registers (CANx_RXIMR0–CANx_RXIMR63)

These registers are used as acceptance masks for ID filtering in Rx MBs and the FIFO. If the FIFO is not
enabled, one mask register is provided for each available message buffer, providing ID masking capability

Offset: Base + 0x0030 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BUF
31I

BUF
30I

BUF
29I

BUF
28I

BUF
27I

BUF
26I

BUF
25I

BUF
24I

BUF
23I

BUF
22I

BUF
21I

BUF
20I

BUF
19I

BUF
18I

BUF
17I

BUF
16IW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BUF
15I

BUF
14I

BUF
13I

BUF
12I

BUF
11I

BUF
10I

BUF
9I

BUF
8I

BUF
7I

BUF
6I

BUF
5I

BUF
4I

BUF
3I

BUF
2I

BUF
1I

BUF
0IW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-14. Interrupt Flag 1 Register (CANx_IFLAG1)

Table 25-15. CANx_IFLAG1 Field Descriptions

Field Description

BUF31I–
BUF8I

Message Buffer n Interrupt. Each bit represents the respective FlexCAN message buffer (MB31 to MB8)
interrupt. Write 1 to clear.
0 No such occurrence
1 The corresponding buffer has successfully completed transmission or reception.

BUF7I Buffer MB7 Interrupt or “FIFO Overflow”

If the FIFO is not enabled, this bit flags the interrupt for MB7. If the FIFO is enabled, this flag indicates an
overflow condition in the FIFO (frame lost because FIFO is full).
0 No such occurrence
1 MB7 completed transmission/reception or FIFO overflow

BUF6I Buffer MB6 Interrupt or “FIFO Warning”

If the FIFO is not enabled, this bit flags the interrupt for MB6. If the FIFO is enabled, this flag indicates that 4
out of 6 buffers of the FIFO are already occupied (FIFO almost full).
0 No such occurrence
1 MB6 completed transmission/reception or FIFO almost full

BUF5I Buffer MB5 Interruptor “Frames Available in FIFO”
If the FIFO is not enabled, this bit flags the interrupt for MB5. If the FIFO is enabled, this flag indicates that
at least one frame is available to be read from the FIFO.
0 No such occurrence
1 MB5 completed transmission/reception or frames available in the FIFO

BUF4I–
BUF0I

Buffer MBn Interrupt or “Reserved”

If the FIFO is not enabled, these bits flag the interrupts for MB0 to MB4. If the FIFO is enabled, these flags
are not used and must be considered as reserved locations.
0 No such occurrence
1 Corresponding MB completed transmission/reception

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

25-28 Freescale Semiconductor
 Preliminary

on a per message buffer basis. When the FIFO is enabled (FEN bit in CANx_MCR is set), the first eight
mask registers apply to the eight elements of the FIFO filter table (on a one-to-one correspondence), while
the rest of the registers apply to the regular MBs, starting from MB8.

The individual Rx mask registers are implemented in RAM, so they are not affected by reset and must be
explicitly initialized prior to any reception. Furthermore, they can only be accessed by the CPU while the
module is in freeze mode. Out of freeze mode, write accesses are blocked and read accesses will return
“all zeros”. Furthermore, if the BCC bit in the register is negated, any read or write operation to these
registers results in access error.

25.4 Functional Description
The FlexCAN module is a CAN protocol engine with a very flexible mailbox system for transmitting and
receiving CAN frames. The mailbox system is composed by a set of up to 64 message buffers (MB) that
store configuration and control data, time stamp, message ID and data (see Section 25.3.2, “Message
Buffer Structure”). The memory corresponding to the first eight MBs can be configured to support a FIFO
reception scheme with a powerful ID filtering mechanism, capable of checking incoming frames against
a table of IDs (up to eight extended IDs or 16 standard IDs or 32 8-bit ID slices), each one with its own
individual mask register. Simultaneous reception through FIFO and mailbox is supported. For mailbox
reception, a matching algorithm makes it possible to store received frames only into MBs that have the
same ID programmed on its ID field. A masking scheme makes it possible to match the ID programmed
on the MB with a range of IDs on received CAN frames. For transmission, an arbitration algorithm decides
the prioritization of MBs to be transmitted based on the message ID (optionally augmented by 3 local
priority bits) or the MB ordering.

Offset: Base + 0880 - 0x0975 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MI31 MI30 MI29 MI28 MI27 MI26 MI25 MI24 MI23 MI22 MI21 MI20 MI19 MI18 MI17 MI16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MI15 MI14 MI13 MI12 MI11 MI10 MI9 MI8 MI7 MI6 MI5 MI4 MI3 MI2 MI1 MI0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-15. Rx Individual Mask Registers (CANx_RXIMR0-CANx_RXIMR63)

Table 25-16. CANx_RXIMR0-CANx_RXIMR63 Field Descriptions

Field Description

MI31–M0 Mask Bits

For normal Rx MBs, the mask bits affect the ID filter programmed on the MB. For the Rx FIFO, the mask bits
affect all bits programmed in the filter table (ID, IDE, RTR).
0 The corresponding bit in the filter is “don’t care”
1 The corresponding bit in the filter is checked against the one received

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 25-29
 Preliminary

Before proceeding with the functional description, an important concept must be explained. A message
buffer is said to be “active” at a given time if it can participate in the matching and arbitration algorithms
that are happening at that time. An Rx MB with a ‘0000’ code is inactive (refer to Table 25-4). Similarly,
a Tx MB with a ‘1000’ or ‘1001’ code is also inactive (refer to Table 25-5). An MB not programmed with
‘0000’, ‘1000’ or ‘1001’ will be temporarily deactivated (will not participate in the current arbitration or
matching run) when the CPU writes to the C/S field of that MB (see Section 25.4.5.2, “Message Buffer
Deactivation”).

25.4.1 Transmit Process

If the MB is active (transmission pending), write an ABORT code (‘1001’) to the code field of the control
and status word to request an abortion of the transmission, then read back the code field and the IFLAG1/2
register to check if the transmission was aborted (see Section 25.4.5.1, “Transmission Abort Mechanism”).
If backwards compatibility is desired (AEN in CANx_MCR negated), just write ‘1000’ to the Code field
to inactivate the MB but then the pending frame may be transmitted without notification (see
Section 25.4.5.2, “Message Buffer Deactivation”).

• Write the ID word.

• Write the data bytes.

• Write the length, control and code fields of the control and status word to activate the MB.

Once the MB is activated in the fourth step, it will participate into the arbitration process and eventually
be transmitted according to its priority. At the end of the successful transmission, the value of the
free-running timer is written into the time stamp field, the code field in the control and status word is
updated, a status flag is set in the interrupt flag register and an interrupt is generated if allowed by the
corresponding interrupt mask register bit. The new code field after transmission depends on the code that
was used to activate the MB in step four (see Table 25-4 and Table 25-5 in Section Section 25.3.2,
“Message Buffer Structure”). When the abort feature is enabled (AEN in CANx_MCR is asserted), after
the Interrupt Flag is asserted for a MB configured as transmit buffer, the MB is blocked, therefore the CPU
is not able to update it until the interrupt flag be negated by CPU. It means that the CPU must clear the
corresponding CANx_IFLAG before starting to prepare this MB for a new transmission or reception.

25.4.2 Arbitration Process

This process selects which will be the next MB to be transmitted. All MBs programmed as transmit buffers
will be scanned to find the lowest ID1 or the lowest MB number or the highest priority, depending on the
LBUF and LPRIO_EN bits on the control register. The arbitration process is triggered in the following
events:

• During the CRC field of the CAN frame

• During the error delimiter field of the CAN frame

• During intermission, if the winner MB defined in a previous arbitration was deactivated, or if there
was no MB to transmit, but the CPU wrote to the C/S word of any MB after the previous arbitration
finished

1. If LBUF is negated, the arbitration considers not only the ID, but also the RTR and IDE bits placed inside the ID at the same
positions they are transmitted in the CAN frame.

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

25-30 Freescale Semiconductor
 Preliminary

• When MBM is in idle or bus off state and the CPU writes to the C/S word of any MB

• Upon leaving freeze mode

When LBUF is asserted, the LPRIO_EN bit has no effect and the lowest number buffer is transmitted first.
When LBUF and LPRIO_EN are both negated, the MB with the lowest ID is transmitted first but. If LBUF
is negated and LPRIO_EN is asserted, the PRIO bits augment the ID used during the arbitration process.
With this extended ID concept, arbitration is done based on the full 32-bit ID and the PRIO bits define
which MB should be transmitted first, therefore MBs with PRIO = 000 have higher priority. If two or more
MBs have the same priority, the regular ID will determine the priority of transmission. If two or more MBs
have the same priority (3 extra bits) and the same regular ID, the lowest MB will be transmitted first.

Once the highest priority MB is selected, it is transferred to a temporary storage space called serial
message buffer (SMB), which has the same structure as a normal MB but is not user accessible. This
operation is called “move-out” and after it is done, write access to the corresponding MB is blocked (if the
AEN bit in CANx_MCR is asserted). The write access is released in the following events:

• After the MB is transmitted

• FlexCAN enters in HALT or BUS OFF

• FlexCAN loses the bus arbitration or there is an error during the transmission

At the first opportunity window on the CAN bus, the message on the SMB is transmitted according to the
CAN protocol rules. FlexCAN transmits up to eight data bytes, even if the data length code (DLC) value
is bigger.

25.4.3 Receive Process

The CPU prepares a message buffer for frame reception by executing the following steps:

• If the MB has a pending transmission, write an ABORT code (‘1001’) to the code field of the
control and status word to request an abortion of the transmission, then read back the code field
and the CANx_IFLAG1/2 register to check if the transmission was aborted (see Section 25.4.5.1,
“Transmission Abort Mechanism”). If backwards compatibility is desired (AEN in CANx_MCR
negated), just write ‘1000’ to the code field to inactivate the MB, but then the pending frame may
be transmitted without notification (see Section 25.4.5.2, “Message Buffer Deactivation”). If the
MB already programmed as a receiver, just write ‘0000’ to the code field of the control and status
word to keep the MB inactive.

• Write the ID word.

• Write ‘0100’ to the code field of the control and status word to activate the MB

After the MB is activated in the third step, it will be able to receive frames that match the programmed ID.
At the end of a successful reception, the MB is updated by the MBM as follows:

• The value of the free-running timer is written into the time stamp field

• The received ID, data (8 bytes at most), and length fields are stored

• The code field in the control and status word is updated (see Table 25-4 and Table 25-5 in
Section 25.3.2, “Message Buffer Structure”)

• A status flag is set in the interrupt flag register and an interrupt is generated if allowed by the
corresponding interrupt mask register bit

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 25-31
 Preliminary

Upon receiving the MB interrupt, the CPU should service the received frame using the following
procedure:

• Read the control and status word (mandatory – activates an internal lock for this buffer)

• Read the ID field (optional – needed only if a mask was used)

• Read the data field

• Read the free-running timer (optional – releases the internal lock)

Upon reading the control and status word, if the BUSY bit is set in the code field, then the CPU should
defer the access to the MB until this bit is negated. Reading the free-running timer is not mandatory. If not
executed, the MB remains locked, unless the CPU reads the C/S word of another MB. Only a single MB
is locked at a time. The only mandatory CPU read operation is the one on the control and status word to
assure data coherency (see Section 25.4.5, “Data Coherence”).

The CPU should synchronize to frame reception by the status flag bit for the specific MB in one of the
CANx_IFLAG registers and not by the code field of that MB. Polling the code field does not work because
after a frame was received and the CPU services the MB (by reading the C/S word followed by unlocking
the MB), the code field will not return to EMPTY. It will remain FULL, as explained in Table 25-4. If the
CPU tries to workaround this behavior by writing to the C/S word to force an EMPTY code after reading
the MB, the MB is actually deactivated from any currently ongoing matching process. As a result, a newly
received frame matching the ID of that MB may be lost. In summary: never do polling by reading directly
the C/S word of the MBs. Instead, read the CANx_IFLAG registers.

The received ID field is always stored in the matching MB, thus the contents of the ID field in an MB may
change if the match was due to masking. Note also that FlexCAN does receive frames transmitted by itself
if there exists an Rx matching MB, provided the SRX_DIS bit in the CANx_MCR is not asserted. If
SRX_DIS is asserted, FlexCAN will not store frames transmitted by itself in any MB, even if it contains
a matching MB, and no interrupt flag or interrupt signal will be generated due to the frame reception.

To be able to receive CAN frames through the FIFO, the CPU must enable and configure the FIFO during
freeze mode (see Section 25.4.6, “Rx FIFO”). Upon receiving the frames available interrupt from FIFO,
the CPU should service the received frame using the following procedure:

• Read the control and status word (optional – needed only if a mask was used for IDE and RTR bits)

• Read the ID field (optional – needed only if a mask was used)

• Read the data field

• Clear the frames available interrupt (mandatory – release the buffer and allow the CPU to read the
next FIFO entry)

25.4.4 Matching Process

The matching process is an algorithm executed by the MBM that scans the MB memory looking for Rx
MBs programmed with the same ID as the one received from the CAN bus. If the FIFO is enabled, the
8-entry ID table from FIFO is scanned first and then, if a match is not found within the FIFO table, the
other MBs are scanned. In the event that the FIFO is full, the matching algorithm will always look for a
matching MB outside the FIFO region.

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

25-32 Freescale Semiconductor
 Preliminary

When the frame is received, it is temporarily stored in a hidden auxiliary MB called serial message buffer
(SMB). The matching process takes place during the CRC field of the received frame. If a matching ID is
found in the FIFO table or in one of the regular MBs, the contents of the SMB will be transferred to the
FIFO or to the matched MB during the 6th bit of the end-of-frame field of the CAN protocol. This
operation is called move-in. If any protocol error (CRC, ACK, etc.) is detected, than the move-in operation
does not happen.

For the regular mailbox MBs, an MB is said to be free to receive a new frame if the following conditions
are satisfied:

• The MB is not locked (see Section 25.4.5.3, “Message Buffer Lock Mechanism”)

• The code field is either EMPTY or else it is FULL or OVERRUN but the CPU has already serviced
the MB (read the C/S word and then unlocked the MB)

If the first MB with a matching ID is not free to receive the new frame, then the matching algorithm keeps
looking for another free MB until it finds one. If it can not find one that is free, then it will overwrite the
last matching MB (unless it is locked) and set the code field to OVERRUN (refer to Table 25-4 and
Table 25-5). If the last matching MB is locked, then the new message remains in the SMB, waiting for the
MB to be unlocked (see Section 25.4.5.3, “Message Buffer Lock Mechanism”).

Suppose, for example, that the FIFO is disabled and there are two MBs with the same ID, and FlexCAN
starts receiving messages with that ID. Let us say that these MBs are the second and the fifth in the array.
When the first message arrives, the matching algorithm will find the first match in MB number 2. The code
of this MB is EMPTY, so the message is stored there. When the second message arrives, the matching
algorithm will find MB number 2 again, but it is not free to receive, so it will keep looking and find MB
number 5 and store the message there. If yet another message with the same ID arrives, the matching
algorithm finds out that there are no matching MBs that are free to receive, so it decides to overwrite the
last matched MB, which is number 5. In doing so, it sets the code field of the MB to indicate OVERRUN.

The ability to match the same ID in more than one MB can be exploited to implement a reception queue
(in addition to the full featured FIFO) to allow more time for the CPU to service the MBs. By programming
more than one MB with the same ID, received messages will be queued into the MBs. The CPU can
examine the time stamp field of the MBs to determine the order in which the messages arrived.

The matching algorithm described above can be changed to be the same one used in previous versions of
the FlexCAN module. When the BCC bit in CANx_MCR is negated, the matching algorithm stops at the
first MB with a matching ID that it founds, whether this MB is free or not. As a result, the message
queueing feature does not work if the BCC bit is negated.

Matching to a range of IDs is possible by using ID Acceptance Masks. FlexCAN supports individual
masking per MB. Please refer to Section 25.3.4.11, “Rx Individual Mask Registers
(CANx_RXIMR0–CANx_RXIMR63).” During the matching algorithm, if a mask bit is asserted, then the
corresponding ID bit is compared. If the mask bit is negated, the corresponding ID bit is “don’t care”.
Please note that the individual mask registers are implemented in RAM, so they are not initialized out of
reset. Also, they can only be programmed if the BCC bit is asserted and while the module is in freeze mode.

FlexCAN also supports an alternate masking scheme with only three mask registers (RGXMASK,
CANx_RX14MASK, and CANx_RX15MASK) for backwards compatibility. This alternate masking
scheme is enabled when the BCC bit in the CANx_MCR Register is negated.

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 25-33
 Preliminary

25.4.5 Data Coherence

To maintain data coherency and FlexCAN proper operation, the CPU must obey the rules described in
Section 25.4.1, “Transmit Process,” and Section 25.4.3, “Receive Process.” Any form of CPU accessing
an MB structure within FlexCAN other than those specified may cause FlexCAN to behave in an
unpredictable way.

25.4.5.1 Transmission Abort Mechanism

The abort mechanism provides a safe way to request the abortion of a pending transmission. A feedback
mechanism is provided to inform the CPU if the transmission was aborted or if the frame could not be
aborted and was transmitted instead. To maintain backwards compatibility, the abort mechanism must be
explicitly enabled by asserting the AEN bit in the CANx_MCR.

in order to abort a transmission, the CPU must write a specific abort code (1001) to the code field of the
control and status word. When the abort mechanism is enabled, the active MBs configured as transmission
must be aborted first and then they may be updated. If the abort code is written to an MB that is currently
being transmitted, or to an MB that was already loaded into the SMB for transmission, the write operation
is blocked and the MB is not deactivated, but the abort request is captured and kept pending until one of
the following conditions are satisfied:

• The module loses the bus arbitration

• There is an error during the transmission

• The module is put into freeze mode

If none of conditions above are reached, the MB is transmitted correctly, the interrupt flag is set in the
CANx_IFLAG register and an interrupt to the CPU is generated (if enabled). The abort request is
automatically cleared when the interrupt flag is set. In the other hand, if one of the above conditions is
reached, the frame is not transmitted, therefore the abort code is written into the code field, the interrupt
flag is set in the CANx_IFLAG and an interrupt is (optionally) generated to the CPU.

If the CPU writes the abort code before the transmission begins internally, then the write operation is not
blocked, therefore the MB is updated and no interrupt flag is set. In this way the CPU needs to read the
abort code to make sure the active MB was deactivated. Although the AEN bit is asserted and the CPU
wrote the abort code, in this case the MB is deactivated and not aborted, because the transmission did not
start yet. One MB is only aborted when the abort request is captured and kept pending until one of the
previous conditions are satisfied.

The abort procedure can be summarized as follows:

• CPU writes 1001 into the code field of the C/S word

• CPU reads the CODE field and compares it to the value that was written

• If the CODE field that was read is different from the value that was written, the CPU must read the
corresponding CANx_IFLAG to check if the frame was transmitted or it is being currently
transmitted. If the corresponding CANx_IFLAG is set, the frame was transmitted. If the
corresponding CANx_IFLAG is reset, the CPU must wait for it to be set, and then the CPU must
read the CODE field to check if the MB was aborted (CODE=1001) or it was transmitted
(CODE=1000).

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

25-34 Freescale Semiconductor
 Preliminary

25.4.5.2 Message Buffer Deactivation

Deactivation is mechanism provided to maintain data coherence when the CPU writes to the control and
status word of active MBs out of freeze mode. Any CPU write access to the control and status word of an
MB causes that MB to be excluded from the transmit or receive processes during the current matching or
arbitration round. The deactivation is temporary, affecting only for the current match/arbitration round.

The purpose of deactivation is data coherency. The match/arbitration process scans the MBs to decide
which MB to transmit or receive. If the CPU updates the MB in the middle of a match or arbitration
process, the data of that MB may no longer be coherent, therefore deactivation of that MB is done.

Even with the coherence mechanism described above, writing to the control and status word of active MBs
when not in freeze mode may produce undesirable results. Examples are:

• Matching and arbitration are one-pass processes. If MBs are deactivated after they are scanned, no
re-evaluation is done to determine a new match/winner. If an Rx MB with a matching ID is
deactivated during the matching process after it was scanned, then this MB is marked as invalid to
receive the frame, and FlexCAN will keep looking for another matching MB within the ones it has
not scanned yet. If it can not find one, then the message will be lost. Suppose, for example, that two
MBs have a matching ID to a received frame, and the user deactivated the first matching MB after
FlexCAN has scanned the second. The received frame will be lost even if the second matching MB
was free to receive.

• If a Tx MB containing the lowest ID is deactivated after FlexCAN has scanned it, then FlexCAN
will look for another winner within the MBs that it has not scanned yet. Therefore, it may transmit
an MB with ID that may not be the lowest at the time because a lower ID might be present in one
of the MBs that it had already scanned before the deactivation.

• There is a point in time until which the deactivation of a Tx MB causes it not to be transmitted (end
of move-out). After this point, it is transmitted but no interrupt is issued and the code field is not
updated. In order to avoid this situation, the abort procedures described in Section 25.4.5.1,
“Transmission Abort Mechanism,” should be used.

25.4.5.3 Message Buffer Lock Mechanism

Besides MB deactivation, FlexCAN has another data coherence mechanism for the receive process. When
the CPU reads the Control and Status word of an “active not empty” Rx MB, FlexCAN assumes that the
CPU wants to read the whole MB in an atomic operation, and thus it sets an internal lock flag for that MB.
The lock is released when the CPU reads the free-running timer (global unlock operation), or when it reads
the Control and Status word of another MB. The MB locking is done to prevent a new frame to be written
into the MB while the CPU is reading it.

NOTE
The locking mechanism only applies to Rx MBs which have a code different
than INACTIVE (‘0000’) or EMPTY1 (‘0100’). Also, Tx MBs can not be
locked.

1.In previous FlexCAN versions, reading the C/S word locked the MB even if it was EMPTY. This behavior will be honoured
when the BCC bit is negated.

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 25-35
 Preliminary

Suppose, for example, that the FIFO is disabled and the second and the fifth MBs of the array are
programmed with the same ID, and FlexCAN has already received and stored messages into these two
MBs. Suppose now that the CPU decides to read MB number 5 and at the same time another message with
the same ID is arriving. When the CPU reads the control and status word of MB number 5, this MB is
locked. The new message arrives and the matching algorithm finds out that there are no free to receive
MBs, so it decides to override MB number 5. However, this MB is locked, so the new message can not be
written there. It will remain in the SMB waiting for the MB to be unlocked, and only then will be written
to the MB. If the MB is not unlocked in time and yet another new message with the same ID arrives, then
the new message overwrites the one on the SMB and there will be no indication of lost messages either in
the code field of the MB or in the error and status register.

While the message is being moved-in from the SMB to the MB, the BUSY bit on the code field is asserted.
If the CPU reads the control and status word and finds out that the BUSY bit is set, it should defer accessing
the MB until the BUSY bit is negated.

NOTE
If the BUSY bit is asserted or if the MB is empty, then reading the control
and status word does not lock the MB.

Deactivation takes precedence over locking. If the CPU deactivates a locked Rx MB, then its lock status
is negated and the MB is marked as invalid for the current matching round. Any pending message on the
SMB will not be transferred anymore to the MB.

25.4.6 Rx FIFO

The receive-only FIFO is enabled by asserting the FEN bit in the CANx_MCR. The reset value of this bit
is zero to maintain software backwards compatibility with previous versions of the module that did not
have the FIFO feature. When the FIFO is enabled, the memory region normally occupied by the first 8
MBs (0x80-0xFF) is now reserved for use of the FIFO engine (see Section 25.3.3, “Rx FIFO Structure”).
Management of read and write pointers is done internally by the FIFO engine. The CPU can read the
received frames sequentially, in the order they were received, by repeatedly accessing a Message Buffer
structure at the beginning of the memory.

The FIFO can store up to six frames pending service by the CPU. An interrupt is sent to the CPU when
new frames are available in the FIFO. Upon receiving the interrupt, the CPU must read the frame
(accessing an MB in the 0x80 address) and then clear the interrupt. The act of clearing the interrupt triggers
the FIFO engine to replace the MB in 0x80 with the next frame in the queue, and then issue another
interrupt to the CPU. If the FIFO is full and more frames continue to be received, an OVERFLOW
interrupt is issued to the CPU and subsequent frames are not accepted until the CPU creates space in the
FIFO by reading one or more frames. A warning interrupt is also generated when 4 frames are accumulated
in the FIFO.

A powerful filtering scheme is provided to accept only frames intended for the target application, thus
reducing the interrupt servicing work load. The filtering criteria is specified by programming a table of 8

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

25-36 Freescale Semiconductor
 Preliminary

32-bit registers that can be configured to one of the following formats (see also Section 25.3.3, “Rx FIFO
Structure”):

• Format A: 8 extended or standard IDs (including IDE and RTR)

• Format B: 16 standard IDs or 16 extended 14-bit ID slices (including IDE and RTR)

• Format C: 32 standard or extended 8-bit ID slices

NOTE
A chosen format is applied to all 8 registers of the filter table. It is not
possible to mix formats within the table.

The eight elements of the filter table are individually affected by the first eight individual mask registers
(CANx_RXIMR0 - CANx_RXIMR7), allowing very powerful filtering criteria to be defined. The rest of
the RXIMR, starting from RXIM8, continue to affect the regular MBs, starting from MB8. If the BCC bit
is negated, then the FIFO filter table is affected by the legacy mask registers as follows: element 6 is
affected by CANx_RX14MASK, element 7 is affected by CANx_RX15MASK and the other elements (0
to 5) are affected by CANx_RXGMASK.

25.4.7 CAN Protocol Related Features

25.4.7.1 Remote Frames

A remote frame is a special kind of frame. The user can program a MB to be a request remote frame by
writing the MB as transmit with the RTR bit set to 1. After the remote request frame is transmitted
successfully, the MB becomes a receive message buffer, with the same ID as before.

When a remote request frame is received by FlexCAN, its ID is compared to the IDs of the transmit
message buffers with the CODE field ‘1010’. If there is a matching ID, then this MB frame will be
transmitted. Note that if the matching MB has the RTR bit set, then FlexCAN will transmit a remote frame
as a response.

A received remote request frame is not stored in a receive buffer. It is only used to trigger a transmission
of a frame in response. The mask registers are not used in remote frame matching, and all ID bits (except
RTR) of the incoming received frame should match.

In the case that a remote request frame was received and matched a MB, this message buffer immediately
enters the internal arbitration process, but is considered as normal Tx MB, with no higher priority. The data
length of this frame is independent of the DLC field in the remote frame that initiated its transmission.

If the Rx FIFO is enabled (bit FEN set in CANx_MCR), FlexCAN will not generate an automatic response
for remote request frames that match the FIFO filtering criteria. If the remote frame matches one of the
target IDs, it will be stored in the FIFO and presented to the CPU. Note that for filtering formats A and B,
it is possible to select whether remote frames are accepted or not. For format C, remote frames are always
accepted (if they match the ID).

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 25-37
 Preliminary

25.4.7.2 Overload Frames

FlexCAN will transmit overload frames due to detection of these conditions on CAN bus:

• Detection of a dominant bit in the first/second bit of intermission

• Detection of a dominant bit at the 7th bit (last) of end of frame field (Rx frames)

• Detection of a dominant bit at the 8th bit (last) of error frame delimiter or overload frame delimiter

25.4.7.3 Time Stamp

The value of the free-running timer is sampled at the beginning of the identifier field on the CAN bus, and
is stored at the end of move in the TIME STAMP field, providing network behavior with respect to time.

Note that the free-running timer can be reset upon a specific frame reception, enabling network time
synchronization. Refer to TSYN description in Section 25.3.4.2, “Control Register (CANx_CTRL).”

25.4.7.4 Protocol Timing

The clock source to the CAN protocol interface (CPI) can be either the system clock or a direct feed from
the oscillator pin EXTAL. The clock source is selected by the CLK_SRC bit in the CANx_CTRL. The
clock is fed to the prescaler to generate the serial clock (SCK).

The FlexCAN module supports a variety of means to setup bit timing parameters that are required by the
CAN protocol. The CANx_CTRL has various fields used to control bit timing parameters: PRESDIV,
PROPSEG, PSEG1, PSEG2 and RJW. See Section 25.3.4.2, “Control Register (CANx_CTRL).”

The PRESDIV field controls a prescaler that generates the serial clock (SCK), whose period defines the
‘time quantum’ used to compose the CAN waveform. A time quantum is the atomic unit of time handled
by FlexCAN.

A bit time is subdivided into three segments1 (reference Figure 25-16 and Table 25-17):

• SYNCSEG: This segment has a fixed length of one time quantum. Signal edges are expected to
happen within this section.

• Time segment 1: This segment includes the propagation segment and the phase segment 1 of the
CAN standard. It can be programmed by setting the PROPSEG and the PSEG1 fields of the
CANx_CTRL register so that their sum (plus 2) is in the range of 4 to 16 time quanta.

• Time segment 2: This segment represents the phase segment 2 of the CAN standard. It can be
programmed by setting the PSEG2 field of the CANx_CTRL register (plus 1) to be 2 to 8 time
quanta long.

1. For further explanation of the underlying concepts please refer to ISO/DIS 11519–1, Section 10.3. Reference also the Bosch
CAN 2.0A/B protocol specification dated September 1991 for bit timing.

fTq

fCANCLK
Prescaler Value
--=

Bit Rate
fTq

Number of Time Quanta()
---=

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

25-38 Freescale Semiconductor
 Preliminary

Figure 25-16. Segments within the Bit Time

Table 25-18 gives an overview of the CAN compliant segment settings and the related parameter values.

NOTE
It is the user’s responsibility to ensure the bit time settings are in compliance
with the CAN standard. For bit time calculations, use an information
processing time (IPT) of 2, which is the value implemented in the FlexCAN
module.

Table 25-17. Time Segment Syntax

Syntax Description

SYNCSEG System expects transitions to occur on the bus during this period.

Transmit Point A node in transmit mode transfers a new value to the CAN bus at this
point.

Sample Point A node in receive mode samples the bus at this point. If the three
samples per bit option is selected, then this point marks the position of
the third sample.

Table 25-18. CAN Standard Compliant Bit Time Segment Settings

Time Segment 1 Time Segment 2
 Resynchronization

Jump Width

5 .. 10 2 1 .. 2

4 .. 11 3 1 .. 3

5 .. 12 4 1 .. 4

6 .. 13 5 1 .. 4

7 .. 14 6 1 .. 4

SYNCSEG Time Segment 1 Time Segment 2

1 4 ... 16 2 ... 8

8 ... 25 Time Quanta

= 1 Bit Time

NRZ Signal

Sample Point
(single or triple sampling)

 (PROPSEG + PSEG1 + 2) (PSEG2 + 1)

Transmit Point

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 25-39
 Preliminary

25.4.7.5 Arbitration and Matching Timing

During normal transmission or reception of frames, the arbitration, match, move in and move out processes
are executed during certain time windows inside the CAN frame, as shown in Figure 25-17. When doing
matching and arbitration, FlexCAN needs to scan the whole message buffer memory during the available
time slot. In order to have sufficient time to do that, the following restrictions must be observed:

• A valid CAN bit timing must be programmed, as indicated in Figure 25-17.

• The system clock frequency cannot be smaller than the oscillator clock frequency, i.e. the PLL
cannot be programmed to divide down the oscillator clock.

• There must be a minimum ratio of 16 between the system clock frequency and the CAN bit rate.

Figure 25-17. Arbitration, Match and Move Time Windows

25.4.8 Modes of Operation Details

25.4.8.1 Freeze Mode

This mode is entered by asserting the HALT bit in the CANx_MCR or when the MCU is put into debug
mode. In both cases it is also necessary that the FRZ bit is asserted in the CANx_MCR. When freeze mode
is requested during transmission or reception, FlexCAN does the following:

• Waits to be in either intermission, passive error, bus off or idle state

• Waits for all internal activities like move in or move out to finish

• Ignores the Rx input pin and drives the Tx pin as recessive

• Stops the prescaler, thus halting all CAN protocol activities

• Grants write access to the CANx_ECR, which is read-only in other modes

• Sets the NOTRDY and FRZACK bits in CANx_MCR

8 .. 15 7 1 .. 4

9 .. 16 8 1 .. 4

Table 25-18. CAN Standard Compliant Bit Time Segment Settings (continued)

Time Segment 1 Time Segment 2
 Resynchronization

Jump Width

CRC (15) EOF (7) Intermi1

Start Move

Matching/Arbitration Window (24 bits)
Move

(bit 6)

Window

1 Intermi = Intermission

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

25-40 Freescale Semiconductor
 Preliminary

After requesting freeze mode, the user must wait for the FRZACK bit to be asserted in CANx_MCR before
executing any other action, otherwise FlexCAN can operate in an unpredictable way. In freeze mode, all
memory mapped registers are accessible.

Exiting freeze mode is done in one of these ways:

• CPU negates the FRZ bit in the CANx_MCR
• The MCU exits debug mode and/or the HALT bit is negated

After it is out of freeze mode, FlexCAN tries to resynchronize to the CAN bus by waiting for
11 consecutive recessive bits.

25.4.8.2 Module Disabled Mode

This low-power mode is entered when the CANx_MCR[MDIS] bit is asserted. If the module is disabled
during freeze mode, it shuts down the clocks to the CPI and MBM submodules, sets the
CANx_MCR[MDISACK] bit and negates the CANx_MCR[FRZACK] bit. If the module is disabled
during transmission or reception, FlexCAN does the following:

• Waits to be in either idle or bus off state, or else waits for the third bit of intermission and then
checks it to be recessive

• Waits for all internal activities like move in or move out to finish
• Ignores its Rx input pin and drives its Tx pin as recessive
• Shuts down the clocks to the CPI and MBM submodules
• Sets the NOTRDY and MDISACK bits in CANx_MCR

The bus interface unit continues to operate, enabling the CPU to access memory mapped registers except
the free-running timer, the CANx_ECR and the message buffers, which cannot be accessed when the
module is disabled. Exiting from this mode is done by negating the CANx_MCR[MDIS] bit, which will
resume the clocks and negate the CANx_MCR[MDISACK] bit.

25.4.8.3 Stop Mode

This is a system low-power mode in which all MCU clocks are stopped for maximum power savings. If
FlexCAN receives the global stop mode request during freeze mode, it sets the LPM_ACK bit, negates the
FRZ_ACK bit and then sends a stop acknowledge signal to the CPU, in order to shut down the clocks
globally. If stop mode is requested during transmission or reception, FlexCAN does the following:

• Waits to be in idle or bus off state, or waits for the third bit of intermission and checks it to be
recessive

• Waits for all internal activities like arbitration, matching, move-in, and move-out to finish
• Ignores its Rx input pin and drives its Tx pin as recessive
• Sets the NOT_RDY and LPM_ACK bits in CANx_MCR
• Sends a stop acknowledge signal to the CPU, so that it can shut down the clocks globally

Exiting stop mode is done by the CPU resuming the clocks and removing the stop mode request.

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 25-41
 Preliminary

25.4.9 Interrupts

The FlexCAN module interrupts are ORed together at the chip level as described in Table 8-2 in Chapter 8,
“Interrupts.”

There is an interrupt source for each MB from MB0 to MB15. There is no distinction between Tx and Rx
interrupts for a particular buffer, under the assumption that the buffer is initialized for either transmission
or reception. Each of the buffers has assigned a flag bit in the CANx_IFLAG2 or CANx_IFLAG1
registers. The bit is set when the corresponding buffer completes a successful transmission/reception and
is cleared when the CPU writes it to 1.

A combined interrupt for each of two MB groups, MB16–MB31 and MB32–MB63, is also generated by
an OR of all the interrupt sources from the associated MBs. This interrupt gets generated when any of the
MBs generates an interrupt. In this case the CPU must read the CANx_IFLAG2 and CANx_IFLAG1
registers to determine which MB caused the interrupt.

The other two interrupt sources (bus off/transmit warning/receive warning and error) generate interrupts
like the MB interrupt sources, and can be read from CANx_ESR. The bus off/transmit warning/receive
warning and error interrupt mask bits are located in the CANx_CTRL.

25.4.10 Bus Interface

The CPU access to FlexCAN registers are subject to the following rules:

• Read and write access to unimplemented or reserved address space results in access error. Any
access to unimplemented MB Rx individual mask register locations results in access error. Any
access to the Rx individual mask register space when the BCC bit in CANx_MCR is negated
results in access error.

• For a FlexCAN configuration that uses less than the total number of MBs and MAXMB is set
accordingly, the remaining MB and Rx mask register spaces can be used as general-purpose RAM
space. Note that the Rx individual mask registers can only be accessed in freeze mode, and this is
still true for unused space within this memory. Note also that reserved words within RAM cannot
be used. As an example, suppose FlexCAN is configured with 64 MBs and MAXMB is
programmed with zero. The maximum number of MBs in this case becomes one. The MB memory
starts at 0x0060, but the space from 0x0060 to 0x007F is reserved (for SMB usage), and the space
from 0x0080 to 0x008F is used by the one MB. This leaves us with the available space from
0x0090 to 0x047F. The available memory in the mask registers space would be from 0x0884 to
0x097F. Byte, word, and long word accesses are allowed to the unused MB space.

NOTE
Unused MB space must not be used as general purpose RAM while
FlexCAN is transmitting and receiving CAN frames.

25.5 Initialization and Application Information
This section provides instructions for initializing the FlexCAN module.

Controller Area Network (FlexCAN)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

25-42 Freescale Semiconductor
 Preliminary

25.5.1 FlexCAN Initialization Sequence

The FlexCAN module can be reset in three ways:

• MCU-level hard reset, which resets all memory-mapped registers asynchronously

• MCU-level soft reset, which resets some of the memory-mapped registers synchronously (refer to
Table 25-7 to see what registers are affected by soft reset)

• SOFTRST bit in CANx_MCR, which has the same effect as the MCU level soft reset

Soft reset is synchronous and has to follow an internal request/acknowledge procedure across clock
domains. Therefore, it may take some time to fully propagate its effects. The SOFTRST bit remains
asserted while soft reset is pending, so software can poll this bit to know when the reset has completed.

After the module is enabled (CANx_MCR[MDIS] bit negated), FlexCAN must be put into freeze mode
before doing any configuration. In freeze mode, FlexCAN is un-synchronized to the CAN bus, the HALT
and FRZ bits in CANx_MCR are set, the internal state machines are disabled and the FRZACK and
NOTRDY bits in the CANx_MCR are set. The CNTX pin is in recessive state and FlexCAN does not
initiate frame transmission nor receives any frames from the CAN bus. Note that the message buffer
contents are not affected by reset, so they are not automatically initialized.

For any configuration change/initialization, it is required that FlexCAN is put into freeze mode (see
Section 25.4.8.1, “Freeze Mode). The following is a generic initialization sequence applicable for the
FlexCAN module:

• Initialize the CANx_MCR

— Enable the individual filtering per MB and reception queue features by setting the BCC bit

— Enable the warning interrupts by setting the WRN_EN bit

— If required, disable frame self reception by setting the SRX_DIS bit

— Enable the FIFO by setting the FEN bit

— Enable the abort mechanism by setting the AEN bit

— Enable the local priority feature by setting the LPRIO_EN bit

• Initialize CANx_CTRL.

— Determine bit timing parameters: PROPSEG, PSEG1, PSEG2, RJW.

— Determine the bit rate by programming the PRESDIV field.

— Determine internal arbitration mode (LBUF bit).

• Initialize message buffers.

— The control and status word of all message buffers must be initialized

— If FIFO was enabled, the 8-entry ID table must be initialized

— Other entries in each message buffer should be initialized as required

• Initialize the Rx individual mask registers

• Set required interrupt mask bits in the IMASK registers (for all MB interrupts), in CANx_CTRL
(for bus off and error interrupts) and in CANx_MCR for wake-up interrupt

• Negate the HALT bit in CANx_MCR

Starting with this last event, FlexCAN attempts to synchronize with the CAN bus.

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 26-1
 Preliminary

Chapter 26
Enhanced Modular I/O Subsystem (eMIOS200)

26.1 Introduction
The eMIOS200 provides functionality to generate or measure time events. The eMIOS200 uses timer
channels that are a reduced version of the unified channel (UC) module used on MPC555x devices. Each
channel provides a subset of the functionality available in the unified channel, at a resolution of 16 bits,
and provides a consistent user interface with previous eMIOS implementations.

26.1.1 Block Diagram

Figure 26-1 shows the eMIOS200 block diagram.

Channels 0 through 15 use channel type 1, channels 16 through 22 use channel type 2, and channel 23 uses
channel type 3 (see Section 26.1.4, “Channel Types”).

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

26-2 Freescale Semiconductor
 Preliminary

Figure 26-1. eMIOS200 Block Diagram

26.1.2 Features
• 24 channels implemented using three channel types.

• Channels features:

— 16-bit registers for captured/match values

[D][A]

Counter
Buses
(Time

Bases)

[C][A]

[B][A]

•••
•••

Counter
Buses
(Time

Bases)

Counter
Buses
(Time

Bases)

All
Submodules

Internal
Counter
Clock
Enable

IIB

Output Disable Input[3:0]

Global Time
Base Enable

Global Time Base
Bit (GTBE) Output

System
Clock

BIU
IP

Interface

Clock
Prescaler

Output Disable
Control Bus

••
•

••
•

•••
•••

[D][A]

Channel[23]
Channel
Type 3

EMIOS[23]

Channel[22]
Channel
Type 2

Channel[16]
Channel
Type 2

Channel[15]
Channel
Type 1

Channel[8]
Channel
Type 1

Channel[7]
Channel
Type 1

Channel[0]
Channel
Type 1

[B]

[D]

[C]

Enhanced Modular
I/O System
(eMIOS200)

EMIOS[22]

EMIOS[16]

EMIOS[15]

EMIOS[8]

EMIOS[7]

EMIOS[0]

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 26-3
 Preliminary

— 16-bit internal counter

— Internal prescaler

— Selectable time base

— Can generate its own time base

• Four 16-bit-wide counter buses

— Counter bus A can be driven by unified channel 23

— Counter bus B, C, and D are driven by unified channels 0, 8, and 16, respectively

— Counter bus A can be shared among all unified channels. UCs 0 to 7, 8 to 15, and 16 to 23 can
share counter buses B, C, and D, respectively

• One global prescaler

• The output signal from the module configuration register’s global time base enable bit
(EMIOS_MCR[GTBE]) is wrapped back into the global timebase enable input so that the timebase
of each channel can be started simultaneously.

• Shared time bases through the counter buses

• Shadow FLAG register

• State of eMIOS200 can be frozen for debug purposes

• Debug and stop modes are supported.

26.1.3 Modes of Operation

There are four main operating modes of eMIOS200: run mode, module disable mode, debug mode, and
stop mode. These modes are briefly described in this section.

Run mode is the normal operation mode and is described in Section 26.5, “Functional Description.”

Module disable mode is used for MCU power management. The clock to the non-memory-mapped logic
in the eMIOS200 is stopped while in module disable mode. Module disable mode is entered when
MDIS=1 in the EMIOS_MCR. Individual disabling of the channels is not supported.

Debug mode is individually programmed for each channel. When entering this mode, the unified channel
registers’ contents are frozen, but remain available for read and write access through the IP interface.

Stop mode is also used for MCU power management. In stop mode, eMIOS=1 in SIU_HLT register and
all clocks to the eMIOS200 module are disabled.

26.1.4 Channel Types

The 24 16-bit timer channels available on the MPC5510 are implemented using three different channel
configurations. The available modes of operation for each channel type are listed in Table 26-1.

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

26-4 Freescale Semiconductor
 Preliminary

26.2 External Signal Description
Refer to Table 2-1 and Section 2.7, “Detailed External Signal Descriptions,” for detailed signal
descriptions.

Each channel has one external signal, eMIOS[n]. Through the pad configuration register (SIU_PCR[PA]),
you can choose to have a pin’s function be the eMIOS channel in either or both places as described in
Table 26-5.

The output disable input [3:0] is provided to implement the output disable feature. They are connected to
emios_flag_out signals according to Section 26.2.2, “Output Disable Input — eMIOS200 Output Disable
Input Signal.”

26.2.1 eMIOS[n]

eMIOS[n] are the eMIOS channel pins. When used as input, an eMIOS[n] signal is available to be read by
the MCU through the EMIOS_CSRn[UCIN]. When used as output, eMIOS[n] signal is configured in the
unified channel status and control register (EMIOS_CSRn).

NOTE
All eMIOS channels support both input and output functions. When the
eMIOS function is the primary function of a pin, then both the input and
output functions are supported. When the eMIOS function is not the primary
function of the pin, then only the output functions are supported.

Table 26-1. Unified Channel (UC) Modes

Acronym Mode (Section/Page)

Channels

0–15
Type 1
(PWM)

16–22
Type 2

(Input Capture/
Output Compare)

23
Type 3

(Counter)

GPIO General purpose input/output (26.5.1.1.1/26-18)

SAIC Single action input capture (26.5.1.1.2/26-19)

SAOC Single action output compare (26.5.1.1.3/26-19)

IPWM Input pulse width measurement (26.5.1.1.4/26-20)

IPM Input period measurement (26.5.1.1.5/26-22)

DAOC Double action output compare (26.5.1.1.6/26-24)

MCB Modulus counter buffered (26.5.1.1.7/26-25)

OPWFMB Output pulse width and frequency modulation buffered
(26.5.1.1.8/26-28)

OPWMCB Center aligned output pulse width modulation with dead
time insertion buffered (26.5.1.1.9/26-33)

OPWMB Output pulse width modulation buffered (26.5.1.1.10/26-38)

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 26-5
 Preliminary

26.2.2 Output Disable Input — eMIOS200 Output Disable Input Signal

Output disable inputs are connected as defined in Table 26-2.

26.3 Memory Map and Registers
This section provides a detailed description of all eMIOS200 registers.

26.3.1 Module Memory Map

The eMIOS200 memory map is shown in Table 26-3. The address of each register is given as an offset to
the eMIOS200 base address. Registers are listed in address order, identified by complete name and
mnemonic, and lists the type of accesses allowed.

Table 26-2. ODIS Input Signals

eMIOS200 channel Output Disable Input Signal

emios_flag_out[17] Output disable input[3]

emios_flag_out[16] Output disable input[2]

emios_flag_out[9] Output disable input[1]

emios_flag_out[8] Output disable input[0]

Table 26-3. eMIOS200 Memory Map

Offset from
EMIOS_BASE
(0xFFFE_4000)

Register Access1 Reset Value Section/Page

Global Registers

0x0000 EMIOS_MCR — Module Configuration Register R/W 0x0000_0000 26.4.1/26-6

0x0004 EMIOS_GFR — Global FLAG Register R 0x0000_0000 26.4.2/26-8

0x0008 EMIOS_OUDR — Output Update Disable Register R/W 0x0000_0000 26.4.3/26-8

0x000C EMIOSUCDIS — Stop (Disable) Channel Register R/W 0x0000_0000 26.4.4/26-9

0x0010–0x001F Reserved

Unified Channel 0 Registers

0x0020 EMIOS_CADR[0] — Channel A Data Register R/W 0x0000_0000 26.4.5/26-9

0x0024 EMIOS_CBDR[0] — Channel B Data Register R/W 0x0000_0000 26.4.6/26-10

0x0028 EMIOS_CCNTR[0] — Channel Counter Register R 0x0000_0000 26.4.7/26-11

0x002C EMIOS_CCR[0] — Channel Control Register R/W 0x0000_0000 26.4.8/26-11

0x0030 EMIOS_CSR[0] — Channel Status Register R 0x0000_0000 26.4.9/26-16

0x0038–0x003F Reserved

Unified Channel 1 Registers

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

26-6 Freescale Semiconductor
 Preliminary

26.4 Register Descriptions
This section lists the eMIOS200 registers in address order and describes the registers and their bit fields.

26.4.1 eMIOS200 Module Configuration Register (EMIOS_MCR)

The EMIOS_MCR contains global control bits for the eMIOS200 block.

0x0040 EMIOS_CADR[1] — A Register R/W 0x0000_0000 26.4.5/26-9

0x0044 EMIOS_CBDR[1] — B Register R/W 0x0000_0000 26.4.6/26-10

0x0048 EMIOS_CCNTR[1] — Counter Register R 0x0000_0000 26.4.7/26-11

0x004C EMIOS_CCR[1] — Control Register R/W 0x0000_0000 26.4.8/26-11

0x0050 EMIOS_CSR[1] — Status Register R 0x0000_0000 26.4.9/26-16

0x0058–0x005F Reserved

Unified Channel 2–23 Registers

0x0060–0x0031F Same as Channel 0 and Channel 1 Registers (e.g.
EMIOS_CADR[2], EMIOS_CBDR[2], etc)

— — —

1 Note that R/W registers may contain some read-only or write-only bits.

Offset: EMIOS_BASE + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MDIS FRZ GTBE

0
GPREN

0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
GPRE[0:7]

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-2. eMIOS200 Module Configuration Register (EMIOS_MCR)

Table 26-3. eMIOS200 Memory Map (continued)

Offset from
EMIOS_BASE
(0xFFFE_4000)

Register Access1 Reset Value Section/Page

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 26-7
 Preliminary

Table 26-4. EMIOS_MCR Field Descriptions

Field Description

bit 0 Reserved.

Note: Writing to this bit will update the register value, and reading it will return the last value written, but the
bit has no other effect.

MDIS Module Disable Bit. Puts the eMIOS200 in low-power mode. The MDIS bit is used to stop the clock of the
block, except the access to registers EMIOS_MCR, EMIOS_OUDR, and EMIOSUCDIS.
0 Clock is running
1 Enter low-power mode

FRZ Freeze Bit. Enable the eMIOS200 to freeze the registers of the unified channels when debug mode is
requested at MCU level. Each unified channel must have FREN bit set in order to enter freeze mode. While
in freeze mode, the eMIOS200 continues to operate to allow the MCU access to the unified channel registers.
The unified channel will remain frozen until the FRZ bit is written to 0 or the MCU exits debug mode or the
unified channel FREN bit is cleared.
0 Exit freeze mode
1 Stops unified channel operation when in debug mode and the FREN bit is set in the EMIOS_CCR[n]

register

GTBE Global Time Base Enable Bit. The GTBE bit is used to export a global time base enable from the module and
provide a method to start time bases of several blocks simultaneously.
0 Global time base enable out signal negated
1 Global time base enable out signal asserted
Note: The global time base enable input pin controls the internal counters. When asserted, internal counters

are enabled. When negated, internal counters are disabled.

bit 4 Reserved.

GPREN Global Prescaler Enable Bit. The GPREN bit enables the prescaler counter.
0 Prescaler disabled (no clock) and prescaler counter is cleared
1 Prescaler enabled

bits 6–15 Reserved.

GPRE Global Prescaler Bits. The GPRE bits select the clock divider value for the global prescaler.

GPRE Divide Ratio

00000000 1

00000001 2

00000010 3

00000011 4

.

.

.

.

.

.

11111110 255

11111111 256

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

26-8 Freescale Semiconductor
 Preliminary

26.4.2 eMIOS200 Global FLAG Register (EMIOS_GFR)

26.4.3 eMIOS200 Output Update Disable (EMIOS_OUDR)

Offset: EMIOS_BASE + 0x0004 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 F23 F22 F21 F20 F19 F18 F17 F16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R F15 F14 F13 F12 F11 F10 F9 F8 F7 F6 F5 F4 F3 F2 F1 F0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-3. eMIOS200 Global FLAG Register (EMIOS_GFR)

Table 26-5. EMIOS_GFR Field Descriptions

Field Description

8–31
F[23:0]

FLAG Bits 23–0. The EMIOS_GFR is a read-only register that groups the FLAG bits from all channels. This
organization improves interrupt handling on simpler devices. These bits are mirrors of the FLAG bits of each
channel register (EMIOS_CSR).

Offset: EMIOS_BASE + 0x0008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
OU23 OU22 OU21 OU20 OU19 OU18 OU17 OU16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
OU15 OU14 OU13 OU12 OU11 OU10 OU9 OU8 OU7 OU6 OU5 OU4 OU3 OU2 OU1 OU0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-4. eMIOS200 Output Update Disable Register (EMIOS_OUDR)

Table 26-6. EMIOS_OUDR Field Descriptions

Field Description

OU[23:0] Channel [n] Output Update Disable Bits. When running MCB mode or an output mode, values are written to
registers A2 and B2. OU[n] bits are used to disable transfers from registers A2 to A1 and B2 to B1. Each bit
controls one channel.
0 Transfer enabled. Depending on the operation mode, transfer may occur immediately or in the next period.

Unless stated otherwise, transfer occurs immediately.
1 Transfers disabled

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 26-9
 Preliminary

26.4.4 eMIOS200 Disable Channel (EMIOSUCDIS)

26.4.5 eMIOS200 A Register (EMIOS_CADR[n])

Depending on the mode of operation, internal registers A1 or A2, used for matches and captures, can be
assigned to address EMIOS_CADR[n]. A1 and A2 are cleared by reset. Table 26-8 summarizes the
EMIOS_CADR[n] writing and reading accesses for all operation modes. For more information see
Section 26.5.1.1, “Unified Channel Modes of Operation.”

Offset: EMIOS_BASE + 0x000C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
UCDIS[23:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
UCDIS[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-5. eMIOS200 Enable Channel Register (EMIOSUCDIS)

Table 26-7. EMIOSUCDIS Field Descriptions

Field Description

UCDIS[23:0] Enable Channel [n] Bit. The UCDIS[n] bit is used to disable each of the unified channels by stopping its
respective clock.
0 UC [n] enabled
1 UC [n] disabled

Offset: UC[n] base address + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
A

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-6. eMIOS200 A Register (EMIOS_CADR[n])

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

26-10 Freescale Semiconductor
 Preliminary

26.4.6 eMIOS200 B Register (EMIOS_CBDR[n])

Depending on the mode of operation, internal registers B1 or B2 can be assigned to address
EMIOS_CBDR[n]. Both B1 and B2 are cleared by reset. Table 26-8 summarizes the EMIOS_CBDR[n]
writing and reading accesses for all operation modes. For more information see section Section 26.5.1.1,
“Unified Channel Modes of Operation.”

Depending on the channel configuration, it may have EMIOS_CBDR register or not. This means that if at
least one mode that requires the register is implemented, then the register is present, otherwise it is absent.

Offset: UC[n] base address + 0x0004 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
B

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-7. eMIOS200 B Register (EMIOS_CBDR[n])

Table 26-8. EMIOS_CADR[n] and EMIOS_CBDR[n] Values Assignment

Operation Mode

Register Access

Write Read Write Read
Alternate

Read

GPIO A1, A2 A1 B1, B2 B1 —

SAIC1 — A2 B2 B2 —

SAOC1

1 In these modes, the register EMIOS_CBDR[n] is not used, but B2 can be accessed.

A2 A1 B2 B2 —

IPWM — A2 — B1 —

IPM — A2 — B1 —

DAOC A2 A1 B2 B1 —

MCB1 A2 A1 B2 B2 —

OPWFMB A2 A1 B2 B1 —

OPWMCB A2 A1 B2 B1 —

OPWMB A2 A1 B2 B1 —

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 26-11
 Preliminary

26.4.7 eMIOS200 Counter Register (EMIOS_CCNTR[n])

The EMIOS_CCNTR[n] register contains the value of the internal counter. When GPIO mode is selected
or the channel is frozen, the EMIOS_CCNTR[n] register is read/write. For all other modes, the
EMIOS_CCNTR[n] is a read-only register. When entering some operation modes, this register is
automatically cleared (refer to Section 26.5.1.1, “Unified Channel Modes of Operation,” for details).

Depending on the channel configuration it may have an internal counter or not. It means that if at least one
mode that requires the counter is implemented, then the counter is present, otherwise it is absent.

26.4.8 eMIOS200 Control Register (EMIOS_CCR[n])

The control register gathers bits reflecting the status of the unified channel input/output signals and the
overflow condition of the internal counter, as well as several read/write control bits.

Offset: UC[n] base address + 0x0008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R C

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 In GPIO mode or freeze action, this register is writable.

Figure 26-8. eMIOS200 Counter Register (EMIOS_CCNTR[n])

Offset: UC[n] base address + 0x000C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

F
R

E
N

O
D

IS ODISSL UCPRE

U
C

P
R

E
N

D
M

A

0

IF FCK FEN

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0

BSL

E
D

S
E

L

E
D

P
O

L

MODE[0:6]
W

F
O

R
C

M
A

F
O

R
C

M
B

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-9. eMIOS200 Control Register (EMIOS_CCR[n])

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

26-12 Freescale Semiconductor
 Preliminary

Table 26-9. EMIOS_CCR[n] Field Descriptions

Field Description

FREN Freeze Enable Bit. The FREN bit, if set and validated by FRZ bit in EMIOS_MCR register, freezes all registers’
values when in debug mode, allowing the MCU to perform debug functions.
0 Normal operation
1 Freeze unified channel registers’ values

ODIS Output Disable Bit. The ODIS bit allows disabling the output pin when running any of the output modes with
the exception of GPIO mode.
0 The output pin operates normally
1 If the selected output disable input signal is asserted, the output pin goes to EDPOL for OPWFMB and

OPWMB modes and to the complement of EDPOL for other modes, but the unified channel continues to
operate normally, i.e., it continues to produce FLAG and matches. When the selected output disable input
signal is negated, the output pin operates normally

ODISSL Output Disable Select Bits. The ODISSL bits select one of the four output disable input signals.

UCPRE Prescaler Bits. The UCPRE bits select the clock divider value for the internal prescaler of unified channel.

UCPREN Prescaler Enable Bit. The UCPREN bit enables the prescaler counter.
0 Prescaler disabled (no clock) and prescaler counter is loaded with UCPRE value
1 Prescaler enabled

DMA Direct Memory Access Bit. The DMA bit selects if the FLAG generation will be used as an interrupt or as a
DMA request.
0 FLAG assigned to interrupt request
1 FLAG assigned to DMA request

ODISSL Input Signal

00 Output disable input 0

01 Output disable input 1

10 Output disable input 2

11 Output disable input 3

UCPRE Divide Ratio

00 1

01 2

10 3

11 4

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 26-13
 Preliminary

IF Input Filter Bits. The IF bits control the programmable input filter, selecting the minimum input pulse width that
can pass through the filter. For output modes, these bits have no meaning.

FCK Filter Clock Select Bit. The FCK bit selects the clock source for the programmable input filter.
0 Prescaled clock
1 Main clock

FEN FLAG Enable Bit. The FEN bit allows the unified channel FLAG bit to generate an interrupt signal or a DMA
request signal (the type of signal to be generated is defined by the DMA bit).
0 Disable (FLAG does not generate an interrupt or DMA request)
1 Enable (FLAG will generate an interrupt or DMA request)

FORCMA Force Match A Bit. For output modes, the FORCMA bit is equivalent to a successful comparison on
comparator A (except that the FLAG bit is not set). This bit is cleared by reset and is always read as 0. This
bit is valid for every output operation mode which uses comparator A, otherwise it has no effect.
0 Has no effect
1 Force a match at comparator A
For input modes, the FORCMA bit is not used and writing to it has no effect.

FORCMB Force Match B Bit. For output modes, the FORCMB bit is equivalent to a successful comparison on
comparator B (except that the FLAG bit is not set). This bit is cleared by reset and is always read as 0. This
bit is valid for every output operation mode which uses comparator B, otherwise it has no effect.
0 Has no effect
1 Force a match at comparator B
For input modes, the FORCMB bit is not used and writing to it has no effect.

Table 26-9. EMIOS_CCR[n] Field Descriptions (continued)

Field Description

IF1

1 Filter latency is three clock edges.

Minimum Input Pulse Width
[FLT_CLK Periods]

0000 Bypassed2

0001 02

0010 04

0100 08

1000 16

All others Reserved

2 The input signal is synchronized before arriving to the digital filter.

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

26-14 Freescale Semiconductor
 Preliminary

BSL Bus Select Bits. The BSL bits are used to select either one of the counter buses or the internal counter to be
used by the unified channel.

EDSEL Edge Selection Bit. For input modes, the EDSEL bit selects if the internal counter is triggered by both edges
of a pulse or by a single edge only as defined by the EDPOL bit. When not shown in the mode of operation
description, this bit has no effect.
0 Single edge triggering defined by the EDPOL bit
1 Both edges triggering
For GPIO in mode, the EDSEL bit selects if a FLAG can be generated.
0 A FLAG is generated as defined by the EDPOL bit
1 No FLAG is generated
For SAOC mode, the EDSEL bit selects the behavior of the output flip-flop at each match.
0 The EDPOL value is transferred to the output flip-flop
1 The output flip-flop is toggled

EDPOL Edge Polarity Bit. For input modes, the EDPOL bit asserts which edge triggers either the internal counter or
an input capture or a FLAG. When not shown in the mode of operation description, this bit has no effect.
0 Trigger on a falling edge
1 Trigger on a rising edge

For output modes, the EDPOL bit is used to select the logic level on the output pin.
0 A match on comparator A clears the output flip-flop, while a match on comparator B sets it
1 A match on comparator A sets the output flip-flop, while a match on comparator B clears it

MODE Mode Selection Bits. The MODE bits select the mode of operation of the unified channel, as shown in
Table 26-10. Refer to Table 26-1 for more information on the different modes.
Note: If a reserved value is written to MODE the results are unpredictable.

Table 26-10. MODE Bits

MODE Mode of Operation

000_0000 GPIO (input)

000_0001 GPIO (output)

000_0010 SAIC

000_0011 SAOC

000_0100 IPWM

000_0101 IPM

Table 26-9. EMIOS_CCR[n] Field Descriptions (continued)

Field Description

BSL Selected Bus

00 All channels: counter bus[A]

01 Channels 0 to 7: counter bus[B]
Channels 8 to 15: counter bus[C]

Channels 16 to 23: counter bus[D]

10 Reserved

11 All channels: internal counter

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 26-15
 Preliminary

000_0110 DAOC (flag set on the second match)

000_0111 DAOC (flag set on both match)

000_1000–
100_1111

Reserved

101_0000 MCB (up counter, internal clock)

101_0001 MCB (up counter, external clock)

101_0010 Reserved

101_0011 Reserved

101_0100 MCB (up/down counter, flag on A1 match, internal clock)

101_0101 MCB (up/down counter, flag on A1 match, external clock)

101_0110 MCB (up/down counter, flag on A1 match or cycle boundary, internal clock)

101_0111 MCB (up/down counter, flag on A1 match or cycle boundary, external clock)

101_1000 OPWFMB (flag on B1 match)

101_1001 Reserved

101_1010 OPWFMB (flag on A1or B1 matches)

101_1011 Reserved

101_1100 OPWMCB (flag in trailing edge, trail edge dead-time)

101_1101 OPWMCB (flag in trailing edge, lead edge dead-time)

101_1110 OPWMCB (flag in both edges, trail edge dead-time)

101_1111 OPWMCB (flag in both edges, lead edge dead-time)

110_0000 OPWMB (flag on B1 match)

110_0001 Reserved

110_0010 OPWMB (flag on A1or B1 matches)

110_0011–
111_1111

Reserved

Table 26-10. MODE Bits (continued)

MODE Mode of Operation

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

26-16 Freescale Semiconductor
 Preliminary

26.4.9 eMIOS200 Status Register (EMIOS_CSR[n])

26.5 Functional Description
The three types of channels of the eMIOS200 can operate in the modes as listed in Table 26-1.

The eMIOS200 provides independently operating unified channels (UC) that can be configured and
accessed by a host MCU. Up to four time bases can be shared by the channels through four counter buses
and each unified channel can generate its own time base.

The eMIOS200 block is reset at positive edge of the clock (synchronous reset). All registers are cleared
on reset.

26.5.1 Unified Channel (UC)

Figure 26-11 shows the unified channel block diagram. Each unified channel consists of:

Offset: UC[n] base address + 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R OVR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R OVFL 0 0 0 0 0 0 0 0 0 0 0 0 UCIN UCOUT FLAG

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-10. eMIOS200 Status Register (EMIOS_CSR[n])

Table 26-11. EMIOS_CSR[n] Field Descriptions

Field Description

OVR
Overrun Bit. The OVR bit indicates that FLAG generation occurred when the FLAG bit was already set. This
bit can be cleared by clearing the FLAG bit or by software writing a 1.
0 Overrun has not occurred
1 Overrun has occurred

OVFL
Overflow Bit. The OVFL bit indicates that an overflow has occurred in the internal counter. This bit must be
cleared by software writing a 1.
0 An overflow has not occurred
1 An overflow has occurred

UCIN Unified Channel Input Pin Bit. The UCIN bit reflects the input pin state after being filtered and synchronized.

UCOUT Unified Channel Output. The UCOUT bit reflects the output pin state.

FLAG
FLAG Bit. The FLAG bit is set when an input capture or a match event in the comparators occurred. This bit
must be cleared by software writing a 1.
0 FLAG cleared
1 FLAG set event has occurred
Note: emios_flag_out reflects the FLAG bit value. When DMA bit is set, the FLAG bit can be cleared by the

DMA controller.

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 26-17
 Preliminary

• Counter bus selector, which selects the time base to be used by the channel for all timing functions

• A programmable clock prescaler

• Two double buffered data registers, A and B, that allow up to two input capture and/or output
compare events to occur before software intervention is needed

• Two comparators (equal only), A and B, which compare the selected counter bus with the value in
the data registers

• Internal counter, which can be used as a local time base or to count input events

• Programmable input filter, which ensures that only valid pin transitions are received by channel

• Programmable input edge detector, which detects the rising, falling or either edges

• An output flip-flop, which holds the logic level to be applied to the output pin

• eMIOS200 status and control register

• An output disable input selector, which selects the output disable input signal that will be used as
output disable

Figure 26-11. Unified Channel Block Diagram

channel_controller

ipd_done

ipd_req

uc_int_flag

biu_channel_en[n]

biu_a_en

biu_b_en

biu_cnt_en

Clock
Prescaler

biu_control_en

biu_status_en

ips_byte[7:0]

ips_byte[15:8]

ips_byte[23:16]

ips_byte[31:24]

ips_rwb

Programmable
Filter

channel_datapath

Comparator A

Comparator B

uc_cnt_rd_data[n]

uc_cnt_rd_data[n]

emios_counter_bus[0]

emios_counter_bus[1]

Match Logic

Mode Logic

RWCB

RCB

IIB

Counter Bus

Unified Channel

Control Signals

uc_rd_data[31:0]

ips_wdata[31:0]

ips_addr[29:27]

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

26-18 Freescale Semiconductor
 Preliminary

The Figure 26-12 shows the unified channel control block diagram.

Figure 26-12. Unified Channel Control Block Diagram

26.5.1.1 Unified Channel Modes of Operation

The mode of operation of the unified channel is determined by the mode select bits MODE in the
EMIOS_CCR[n] register (see Table 26-10 for details).

When entering an output mode (except for GPIO mode), the output flip-flop is set to the complement of
the EDPOL bit in the EMIOS_CCR[n] register.

As the internal counter EMIOS_CCNTR[n] continues to run in all modes (except for GPIO mode), it is
possible to use this as a time base if the resource is not used in the current mode.

26.5.1.1.1 General-Purpose Input/Output (GPIO) Mode

In GPIO mode, all input capture and output compare functions of the unified channel are disabled, the
internal counter (EMIOS_CCNTR[n] register) is cleared and disabled. All control bits remain accessible.
In order to prepare the unified channel for a new operation mode, writing to registers EMIOS_CADR[n]
or EMIOS_CBDR[n] stores the same value in registers A1/A2 or B1/B2, respectively.

The MODE[6] bit selects between input (MODE[6] = 0) and output (MODE[6] = 1) modes.

When changing MODE, the application software must go to GPIO mode first to reset the unified channel’s
internal functions properly. Failure to do this could lead to invalid and unexpected output compare or input
capture results or the FLAGs being set incorrectly.

MODEn_en

Mode 0
Logic

Mode 1
Logic

Mode n
Logic

•
•
•

• • •

•
•
•

MODE1_en
MODE0_en

EMIOS_CCR/Mode

Shared
Logic

Channel
Datapath

Channel Controller

••

Control
Signals

Control Signals

Control Signals

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 26-19
 Preliminary

In GPIO input mode, the FLAG generation is determined according to EDPOL and EDSEL bits and the
input pin status can be determined by reading the UCIN bit.

In GPIO output mode, the unified channel is used as a single output port pin and the value of the EDPOL
bit is permanently transferred to the output flip-flop.

26.5.1.1.2 Single Action Input Capture (SAIC) Mode

In SAIC mode, when a triggering event occurs on the input pin, the value on the selected time base is
captured into register A2. At the same time, the FLAG bit is set to indicate that an input capture has
occurred. Register EMIOS_CADR[n] returns the value of register A2

The input capture is triggered by a rising, falling or either edges in the input pin, as configured by EDPOL
and EDSEL bits in EMIOS_CCR[n] register.

Figure 26-13 shows how the unified channel can be used for input capture.

Figure 26-13. Single Action Input Capture Example

26.5.1.1.3 Single Action Output Compare (SAOC) Mode

In SAOC mode, a match value is loaded in register A2 and then transferred to register A1 to be compared
with the selected time base. When a match occurs, the EDSEL bit selects if the output flip-flop is toggled
or if the value in EDPOL is transferred to it. At the same time, the FLAG bit is set to indicate that the output
compare match has occurred. Writing to register EMIOS_CADR[n] stores the value in register A2 and
reading to register EMIOS_CADR[n] returns the value of register A1.

An output compare match can be simulated in software by setting the FORCMA bit in EMIOS_CCR[n]
register. In this case, the FLAG bit is not set.

Figure 26-14 and Figure 26-15 show how the unified channel can be used to perform a single output
compare with EDPOL value being transferred to the output flip-flop and toggling the output flip-flop at
each match, respectively.

Selected
Counter Bus

FLAG
Set Event

Edge Detect Edge Detect Edge Detect

A2 (Captured)
Value2

0xxxxxxx 0x001000 0x001250 0x0016A0

Notes: 1
2

Input Signal1

0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0

After input filter
EMIOS_CADR[n] ≤ A2

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

26-20 Freescale Semiconductor
 Preliminary

Figure 26-14. SAOC Example — EDPOL value being transferred to the output flip-flop

Figure 26-15. SAOC Example —Toggling the Output Flip-Flop

26.5.1.1.4 Input Pulse-Width Measurement (IPWM) Mode

The IPWM mode allows the measurement of the width of a positive or negative pulse by capturing the
leading edge on register B1 and the trailing edge on register A2. Successive captures are done on
consecutive edges of opposite polarity. The leading edge sensitivity (i.e., pulse polarity) is selected by
EDPOL bit in the EMIOS_CCR[n] register. Registers EMIOS_CADR[n] and EMIOS_CBDR[n] return
the values in register A2 and B1, respectively.

The capture function of register A2 remains disabled until the first leading edge triggers the first input
capture on register B2. When this leading edge is detected, the count value of the selected time base is
latched into register B2; the FLAG bit is not set. When the trailing edge is detected, the count value of the
selected time base is latched into register A2 and, at the same time, the FLAG bit is set and the content of
register B2 is transferred to register B1 and to register A1.

If subsequent input capture events occur while the corresponding FLAG bit is set, registers A2, B1, and
A1 will be updated with the latest captured values and the FLAG will remain set. Registers
EMIOS_CADR[n] and EMIOS_CBDR[n] return the value in registers A2 and B1, respectively.

In order to guarantee coherent access, reading EMIOS_CADR[n] forces B1 to be updated with the content
of register A1. At the same time transfers between B2 and B1 are disabled until the next read of

Selected
Counter Bus

FLAG
Set Event

A1 Match A1 Match A1 Match

0xxxxxxx 0x001000 0x001000 0x001000

Notes: 1

0x000500 0x001000 0x001100 0x001000 0x001100 0x001000

EMIOS_CADR[n] = A2
A2 = A1 according to OU[n] bit

Update to
A1

EDSEL = 0

Output
Flip-Flop

EDPOL = 1

A1 Value1 0x001000

Selected
Counter Bus

FLAG
Set Event

A1 Match A1 Match A1 Match

0xxxxxxx 0x001000 0x001000 0x001000

Note: 1

0x000500 0x001000 0x001100 0x001000 0x001100 0x001000

EMIOS_CADR[n] = A2

Update to
A1

EDSEL = 1

Output
Flip-Flop

EDPOL = x

A1 Value1 0x001000

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 26-21
 Preliminary

EMIOS_CBDR[n] register. Reading EMIOS_CBDR[n] register forces B1 be updated with A1 register
content and re-enables transfers from B2 to B1, to take effect at the next trailing edge capture. Transfers
from B2 to A1 are not blocked at any time.

The input pulse width is calculated by subtracting the value in B1 from A2.

Figure 26-16 shows how the unified channel can be used for input pulse-width measurement.

Figure 26-16. Input Pulse-Width Measurement Example

Figure 26-17 shows the A1 and B1 updates when EMIOS_CADR[n] and EMIOS_CBDR[n] register reads
occur. The A1 register has always coherent data related to A2 register. When EMIOS_CADR[n] read is
performed, the B1 register is loaded with the A1 register content. This guarantees that the data in register
B1 always has the coherent data related to the last EMIOS_CADR[n] read. The B1 register updates remain
locked until EMIOS_CBDR[n] read occurs. If EMIOS_CADR[n] read is performed, B1 is updated with
A1 register content even if the B1 update is locked by a previous EMIOS_CADR[n] read operation.

0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0Selected
Counter Bus

FLAG
Set Event

B B B

A2 (Captured)
Value2 0xxxxxxx 0xxxxxxx 0x001100 0x001525

Notes: 1 After input filter
2 EMIOS_CADR[n] = A2

Input Signal1

EDPOL = 1 A A

B1 Value3

0x0015250x001100

0xxxxxxx 0xxxxxxx 0x001000 0x0012500x0012500x001000

0xxxxxxx 0x001000 0x001250 0x0016A00x0012500x001000B2 (Captured)
Value

3 EMIOS_CBDR[n] = B1

0xxxxxxx 0xxxxxxx 0x001000 0x0012500x0012500x001000A1 Value3

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

26-22 Freescale Semiconductor
 Preliminary

Figure 26-17. B1 and A1 Updates at EMIOS_CADR[n] and EMIOS_CBDR[n] Reads

Reading EMIOS_CADR[n] followed by EMIOS_CBDR[n] always provides coherent data. If no coherent
data is required, the sequence of reads should be inverted, therefore EMIOS_CBDR[n] should be read
prior to EMIOS_CADR[n] register. Even in this case B1 register updates will be blocked after
EMIOS_CADR[n] read, therefore a second EMIOS_CBDR[n] is required to release the B1 register
updates.

26.5.1.1.5 Input Period Measurement (IPM) Mode

The IPM mode allows the measurement of the period of an input signal by capturing two consecutive rising
edges or two consecutive falling edges. Successive input captures are done on consecutive edges of the
same polarity. The edge polarity is defined by the EDPOL bit in the EMIOS_CCR[n] register.

When the first edge of selected polarity is detected, the selected time base is latched into the registers A2
and B2, and the data previously held in register B2 is transferred to register B1. On this first capture the
FLAG line is not set and the values in registers B1 are meaningless. On the second and subsequent
captures, the FLAG line is set and data in register B2 is transferred to register B1.

When the second edge of the same polarity is detected, the counter bus value is latched into registers A2
and B2, and the data previously held in register B2 is transferred to data register B1 and to register A1.
The FLAG bit is set to indicate that the start and end points of a complete period have been captured. This
sequence of events is repeated for each subsequent capture. Registers EMIOS_CADR[n] and
EMIOS_CBDR[n] return the values in register A2 and B1, respectively.

To allow coherent data, reading EMIOS_CADR[n] forces A1 content be transferred to B1 register and
disables transfers between B2 and B1. These transfers are disabled until the next read of the
EMIOS_CBDR[n] register. Reading EMIOS_CBDR[n] register forces A1 content to be transferred to B1
and re-enables transfers from B2 to B1, to take effect at the next edge capture.

0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0Selected
Counter Bus

FLAG
Set Event

B B B

A2 (Captured)
Value2 0xxxxxxx

Notes: 1 After input filter
2 EMIOS_CADR[n] = A2

Input Signal1

EDPOL = 1 A A

B1 Value3

0x0015250x001100

0xxxxxxx

0xxxxxxx

0x001000 0x001250 0x0016A0

0x0012500x001000

B2 (Captured)
Value

3 EMIOS_CBDR[n] = B1

0xxxxxxx 0x0012500x001000

A1 Value3

0x001000

Read EMIOS_CADR[n] Read EMIOS_CBDR[n

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 26-23
 Preliminary

The input pulse period is calculated by subtracting the value in B1 from A2.

Figure 26-18 shows how the unified channel can be used for input period measurement.

Figure 26-18. Input Period Measurement Example

Figure 26-19 describes the A1 and B1 register updates when EMIOS_CADR[n] and EMIOS_CBDR[n]
read operations are performed. When EMIOS_CADR[n] read occurs the content of A1 is transferred to B1
thus providing coherent data in A2 and B1 registers. Transfers from B2 to B1 are then blocked until
EMIOS_CBDR[n] is read. After EMIOS_CBDR[n] is read, register A1 content is transferred to register
B1 and the transfers from B2 to B1 are re-enabled to occur at the transfer edges, which is the leading edge
in the Figure 26-19 example.

0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0Selected
Counter Bus

FLAG
Set Event

A

A2 (Captured)
Value2 0xxxxxxx 0x001000 0x001250 0x0016A0

Notes: 1 After input filter
2 EMIOS_CADR[n] = A2

Input Signal1

EDPOL = 1 A A

B1 Value3 0xxxxxxx 0xxxxxxx 0x001000 0x001250

0xxxxxxx 0x001000 0x001250 0x0016A0B2 (Captured)
Value

3 EMIOS_CBDR[n] = B1

0xxxxxxx 0xxxxxxx 0x001000 0x001250A1 Value

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

26-24 Freescale Semiconductor
 Preliminary

Figure 26-19. A1 and B1 Updates at EMIOS_CADR[n] and EMIOS_CBDR[n] Reads

26.5.1.1.6 Double Action Output Compare (DAOC) Mode

In the DAOC mode the leading and trailing edges of the variable pulse-width output are generated by
matches occurring on comparators A and B, respectively.

When the DAOC mode is first selected (coming from GPIO mode) both comparators are disabled.
Comparators A and B are enabled by updating registers A1 and B1 respectively and remain enabled until
a match occurs on that comparator, when it is disabled again. In order to update registers A1 and B1, a
write to A2 and B2 must occur and the OUDIS[n] bit must be cleared.

The output flip-flop is set to the value of EDPOL when a match occurs on comparator A and to the
complement of EDPOL when a match occurs on comparator B.

MODE[6] controls if the FLAG is set on both matches or on the second match only (see Table 26-10 for
details).

If subsequent enabled output compares occur on registers A1 and B1, pulses will continue to be generated,
regardless of the state of the FLAG bit.

At any time, the FORCMA and FORCMB bits allow the software to force the output flip-flop to the level
corresponding to a comparison event in comparator A or B, respectively. The FLAG bit is not affected by
these forced operations.

NOTE
If registers A1 and B1 are loaded with the same value, the unified channel
behaves as if a single match on comparator B had occurred, i.e., the output
pin will be set to the complement of EDPOL bit and the FLAG bit is set.

0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0Selected
Counter Bus

FLAG
Set Event

A A A

A2 (Captured)
Value2 0xxxxxxx

Notes: 1 After input filter
2 EMIOS_CADR[n] = A2

Input Signal1

EDPOL = 1

B1 Value3

0x001525

0xxxxxxx

0xxxxxxx

0x001000 0x001250 0x0016A0B2 (Captured)
Value

3 EMIOS_CBDR[n] = B1

0xxxxxxx 0x001250

A1 Value

0x001000

Read EMIOS_CADR[n] Read EMIOS_CBDR[n

0x001100 0x001250

0x001000

0x001000 0x001250

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 26-25
 Preliminary

Figure 26-20 and Figure 26-21 show how the unified channel can be used to generate a single output pulse
with FLAG bit being set on the second match or on both matches, respectively.

Figure 26-20. Double Action Output Compare with FLAG Set on the Second Match

Figure 26-21. Double Action Output Compare with FLAG Set on Both Matches

26.5.1.1.7 Modulus Counter Buffered (MCB) Mode

The MCB mode provides a time base that can be shared with other channels through the internal counter
buses. Register A1 is double buffered thus allowing smooth transitions between cycles when changing A2
register value. A1 register is updated at the cycle boundary, which is defined as when the internal counter
reaches the value one. The internal counter values are within a range from one up to register A1 value in
MCB mode. The internal counter must not reach 0x0 as consequence of a rollover.To avoid this the user
must start MCB only if the value stored at internal counter is fewer than the value that EMIOS_CADR
register stores.

Selected
Counter Bus

FLAG
Set Event

A1 Match

0xxxxxxx 0x001000 0x001000 0x001000

Notes: 1 EMIOS_CADR[n] = A1
2 EMIOS_CBDR[n] = B1

B1 Match B1 Match

0xxxxxxx 0x001100 0x0011000x001100

A1 Match
Update to
A1 & B1

Output
Flip-Flop

A1 Value1

B1 Value2

A2 = A1 according to OU[n] bit
B2 = B1 according to OU[n] bit

0x000500 0x001000 0x001100 0x001000 0x001100

MODE[6] = 0

Selected
Counter Bus

FLAG
Set Event

A1 Match

0xxxxxxx 0x001000 0x001000 0x001000

Notes: 1 EMIOS_CADR[n] = A1
2 EMIOS_CBDR[n] = B1

B1 Match B1 Match

0xxxxxxx 0x001100 0x0011000x001100

A1 Match
Update to
A1 & B1

Output
Flip-Flop

A1 Value1

B1 Value2

A2 = A1 according to OU[n] bit
B2 = B1 according to OU[n] bit

0x000500 0x001000 0x001100 0x001000 0x001100

MODE[6] = 1

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

26-26 Freescale Semiconductor
 Preliminary

MODE[6] bit selects the internal clock source if set to zero or external, if set to one. When the external
clock is selected the input channel pin is used as the channel clock source. The active edge of this clock is
defined by EDPOL and EDSEL bits in the EMIOS_CCR channel register.

When entering in MCB mode, if the up counter is selected by MODE[4]=0, the internal counter starts
counting from its current value to up direction until A1 match occurs. On the next system clock cycle after
the A1 match occurs, the internal counter is set to one. If up/down counter is selected by setting
MODE[4]=1, the counter changes direction at the A1 match and counts down until it reaches the value
one. After it has reached one, it is set to count in up direction again. Register B1 is set to one at mode
entering and cannot be changed while this mode is selected. B1 register is used to generate a match to set
the internal counter in up-count direction if up/down mode is selected.

The MCB mode counts between one and A1 register value. Only values greater than 0x1 are allowed to
be written at A1 register. Loading values other than those leads to unpredictable results. The counter cycle
period is equal to A1 value in up counter mode. If in up/down counter mode the period is defined by the
expression: (2*A1)-2.

Figure 26-22 describes the counter cycle for several A1 values. Register A1 is loaded with A2 register
value at the cycle boundary. Any value written to A2 register within cycle (n) will be updated to A1 at the
next cycle boundary and therefore will be used on cycle (n+1). The cycle boundary between cycle (n) and
cycle (n+1) is defined as the first system clock cycle of cycle (n+1). The flags are generated as soon as A1
match had occurred.

Figure 26-22. Modulus Counter Buffered (MCB) Up Count Mode

Figure 26-23 describes the MCB in up/down counter mode. A1 register is updated at the cycle boundary.
If A2 is written in cycle (n), this new value will be used in cycle (n+1) for A1 match.

Flags are generated at A1 match only if MODE[5] is 0. If MODE[5] is set to 1 flags are also generated at
the cycle boundary.

EMIOS_CCNTR[n]

Time

Write to A2
Match A1 Match A1 Match A1

Write to A2

0x000001

0x000005
0x000006
0x000007

FLAG Set Event

0x000005 0x000007A2 Value

A1 Value 0x000006 0x000005 0x000007 0x000007

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 26-27
 Preliminary

Figure 26-23. Modulus Counter Buffered (MCB) Up/Down Mode

Figure 26-24 describes the A1 register update process in up counter mode. The A1 load signal is generated
based on the detection of the internal counter reaching one and has the duration of one system clock cycle.
During the load pulse A1 still holds its previous value. It is updated at the second system clock cycle only.

Figure 26-24. MCB Mode A1 Register Update in Up Counter Mode

Figure 26-25 describes the A1 register update in up/down counter mode. Note that A2 can be written at
any time within cycle (n) in order to be used in cycle (n+1). Thus A1 receives this new value at the next
cycle boundary. The update disable bits OUDIS[n] can be used to disable the update of A1 register.

EMIOS_CCNTR[n]

Time

Write to A2
Match A1 Match A1

Write to A2

0x000001

0x000005
0x000006
0x000007

FLAG Set Event

0x000005 0x000007A2 Value

A1 Value 0x000006 0x000005 0x000007

A1 Value 0x000008

0x000008

0x000001

Internal Counter

0x000004

0x000006

A2 Value 0x000008 0x000004 0x000006

0x000002

0x000004 0x000006

Write to A2

A1 Load Signal

8

4

6

Counter = A1
Time

Cycle n Cycle n+1 Cycle n+2

Match A1 Match A1Match A1
Write to A2

1

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

26-28 Freescale Semiconductor
 Preliminary

Figure 26-25. MCB Mode A1 Register Update in Up/Down Counter Mode

26.5.1.1.8 Pulse-Width and Frequency Modulation Buffered (OPWFMB) Mode

This mode provides waveforms with variable duty cycle and frequency. The internal channel counter is
automatically selected as the time base when this mode is selected. A1 register indicates the duty cycle and
B1 register the frequency. Both A1 and B1 registers are double buffered to allow smooth signal generation
when changing the registers values. It supports 0% and 100% duty cycles.

To provide smooth and consistent channel operation this mode differs substantially from the OPWFM
mode. The main differences reside in the A1 and B1 registers update, on the delay from the A1 match to
the output pin transition and on the range of the internal counter values which starts from 1 up to B1
register value. The internal counter must not reach 0x0 as consequence of a rollover. To avoid this, the user
must start OPWFMB only if the value stored at internal counter is fewer than the value that
EMIOS_CBDR register stores.

When a match on comparator A occurs the output register is set to the value of EDPOL. When a match on
comparator B occurs the output register is set to the complement of EDPOL. B1 match also causes the
internal counter to transition to 1, thus restarting the counter cycle.

Only values greater than 0x1 are allowed to be written to B1 register. Loading values other than those leads
to unpredictable results.

Figure 26-26 describes the operation of the OPWFMB mode regarding output pin transitions and A1/B1
registers match events. The output pin transition occurs when the A1 or B1 match signal is deasserted,
which is indicated by the A1 match negedge detection signal. If register A1 is set to 0x000004, the output
pin transitions four counter periods after the cycle has started, plus one system clock cycle. In the example
shown in Figure 26-26 the internal counter prescaler is set to two.

EMIOS_CCNTR[n]

Time

Write to A2
Match A1 Match A1

Write to A2

0x000001

0x000005
0x000006

0x000005

A2 Value

A1 Value 0x000006

0x000005

Selected Counter = 2

A1 Load Signal

0x000006 0x000006

0x000006

Cycle n Cycle n+1 Cycle n+2

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 26-29
 Preliminary

Figure 26-26. OPWFMB A1 and B1 Match to Output Register Delay

Figure 26-27 describes the generated output signal if A1 is set to zero. Because the counter does not reach
zero in this mode, the channel internal logic infers a match as if A1=1 with the difference that in this case,
the posedge of the match signal is used to trigger the output pin transition instead of the negedge used when
A1=1. A1 posedge match signal from cycle (n+1) occurs at the same time as B1 negedge match signal from
cycle (n). This allows to use the A1 posedge match to mask the B1 negedge match when they occur at the
same time. The result is that no transition occurs on the output flip-flop and a 0% duty cycle is generated.

8

1

4

A1 Match

5

A1 Value 0x000004

A1 Match

A1 Match Negedge

Output Pin

EMIOS_CCNTR

Time

B1 Match
B1 Match

B1 Match Negedge

B1 Value 0x000008

System Clock

Prescaler

Detection

Detection

Negedge
Detection

Negedge
Detection

EDPOL = 0

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

26-30 Freescale Semiconductor
 Preliminary

Figure 26-27. OPWFMB Mode with A1 = 0 (0% duty cycle)

Figure 26-28 describes the timing for the A1 and B1 registers load. The A1 and B1 load use the same signal
which is generated based on the selected counter reaching the value one, or EMIOS_CCNTR[n] = 1. This
event is defined as the cycle boundary. The load signal pulse has the duration of one system clock cycle
and occurs at the first system clock period of every counter cycle. If A2 and B2 are written within cycle
(n), their values are loaded into A1 and B1, respectively, at the first clock of cycle (n+1) and the new values
are used for matches at cycle (n+1). The update disable bits OUDIS[n] can be used to control the update
of these registers, thus allowing to delay the A1 and B1 registers update for synchronization purposes.

In Figure 26-28 it is assumed that the channel and global prescalers are set to one, meaning that the channel
internal counter transition at every system clock cycle. FLAGs can be generated only on B1 matches when
MODE[5] is cleared, or on either A1 or B1 matches when MODE[5] is set. Because B1 FLAG occurs at
the cycle boundary, this flag can be used to indicate that A2 or B2 data written on cycle (n) were loaded to
A1 or B1, respectively, thus generating matches in cycle (n+1).

1

4
5

A1 Value 0x000004

A1 Match

A1 Match Negedge

Output Pin

EMIOS_CCNTR

Time

B1 Match Negedge Detection

B1 Match

B1 Match Negedge

B1 Value 0x000008

System Clock

Prescaler

A2 Value 0x000000
0x000000

A1 Match Posedge A1 Match Posedge Detection

No Transition at this Point

1

Cycle n Cycle n+1

Detection

Detection

Detection

A1 Match
Negedge
Detection

EDPOL = 0

Write to A2

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 26-31
 Preliminary

Figure 26-28. OPWFMB A1 and B1 Registers Update and Flags

Figure 26-29 describes the operation of the output disable feature in OPWFMB mode. The output disable
forces the channel output flip-flop to EDPOL bit value. This functionality targets applications that use
active high signals and a high to low transition at A1 match. In this case EDPOL should be set to 0.

Cycle n Cycle n+1 Cycle n+2

A1 Value

B1 Value

B2 Value

0x000008

0x000002

0x000006

0x000008

0x000001

Internal Counter

0x000004

0x000006

A2 Value 0x000002 0x000004 0x000006

0x000002

0x000004 0x000006

0x000008 0x000006

Output Pin

Write to B2
 Match A1 Match B1

 Match B1

A1/B1 Load Signal

Due to B1 Match

FLAG Set Event

Cycle n-1

Time

Write to A2
Match A1

 Write to A2 Match B1

EDPOL = 0

MODE[6] = 1

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

26-32 Freescale Semiconductor
 Preliminary

Figure 26-29. OPWFMB Mode with Active Output Disable

The output disable has a synchronous operation, meaning that the assertion of the output disable input pin
causes the channel output flip-flop to transition to EDPOL at the next system clock cycle. If the output
disable input is deasserted the output pin transition at the following A1 or B1 match.

In Figure 26-29 it is assumed that the output disable input is enabled and selected for the channel. Refer
to Section 26.4.8, “eMIOS200 Control Register (EMIOS_CCR[n]),” for a description of how the ODIS
and ODISSL bits enable and select the output disable inputs.

The FORCMA and FORCMB bits allow the software to force the output flip-flop to the level
corresponding to a match on comparators A or B respectively. Similar to a B1 match FORCMB sets the
internal counter to 0x000001. The FLAG bit is not set by the FORCMA or FORCMB bits being asserted.

Figure 26-30 describes the generation of 100% and 0% duty cycle signals. It is assumed EDPOL=0 and
the resultant prescaler value is 1. Initially, A1=0x000008 and B1=0x000008. In this case, the B1 match
has precedence over the A1 match, thus the output flip-flop is set to the complement of EDPOL bit. This
cycle corresponds to a 100% duty cycle signal. The same output signal can be generated for any A1 value
greater or equal to B1.

MODE[6] = 1
Cycle n Cycle n+1 Cycle n+2

A1 Value

B1 Value

B2 Value

0x000008

0x000002

0x000006

0x000008

0x000001

Internal Counter

0x000004

0x000006

A2 Value 0x000002 0x000004 0x000006

0x000002

0x000004 0x000006

0x000008 0x000006

Output Pin

Write to B2
 Match A1 Match B1

 Match B1

Output Disable

Due to B1 Match

FLAG Set Event

Cycle n-1

Time

Write to A2
Match A1

 Write to A2 Match B1

EDPOL = 0

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 26-33
 Preliminary

Figure 26-30. OPWFMB Mode from 100% to 0% Duty Cycle

A 0% duty cycle signal is generated if A1=0 as shown in cycle 9 in Figure 26-30. In this case, the
B1=0x000008 match from cycle 8 occurs at the same time as the A1=0x000000 match from cycle 9. Refer
to Figure 26-27 for a description of the A1 and B1 match generation. In this case, the A1 match has
precedence over the B1 match and the output signal transitions to EDPOL.

26.5.1.1.9 Center-Aligned Output PWM Buffered with Dead-Time (OPWMCB) Mode

This operation mode generates a center-aligned PWM with dead-time insertion to the leading or trailing
edge. A1 and B1 registers are double buffered to allow smooth output signal generation when changing
A2 or B2 registers values.

The selected counter bus must be running in up/down counter mode, as shown in Figure 26-23. The time
base selected for a channel configured to OPWMCB mode should be a channel configured to MCB mode.
BSL bits select the time base. The time base must start at 0x000001 and upward not prior to OPWMCB
mode is active. Register A1 contains the ideal duty cycle for the PWM signal and is compared with the
selected time base. Register B1 contains the dead-time value and is compared against the internal counter.
For a leading edge dead-time insertion, the output PWM duty cycle is equal to the difference between
register A1 and register B1, and for a trailing edge dead-time insertion, the output PWM duty cycle is equal
to the sum of register A1 and register B1. Mode[6] bit selects between trailing and leading dead-time
insertion, respectively.

NOTE
The internal prescaler of the OPWMCB channel must be set to the same
value of the MCB channel prescaler. These prescalers must also be
synchronized. In this case, A1 and B1 registers represent the same timing
scale for duty cycle and dead-time insertion.

Figure 26-31 describes the load of A1 and B1 registers, which occurs when the selected counter bus
reaches the value one. This counter value defines the cycle boundary. Values written to A2 or B2 within
cycle (n) are loaded into A1 or B1 registers, respectively, and used to generate matches in cycle (n+1).

0x000008 0x000007 0x000006 0x000005 0x000004 0x000003 0x000002 0x000001 0x000000

0%100%

EMIOS_CCNTR

EDPOL = 0

A1 Value

B1 Value

Output Pin

0x000008

Prescaler = 1

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

0x000007 0x000006 0x000005 0x000004 0x000003 0x000002 0x000001 0x000000A2 Value

Time

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

26-34 Freescale Semiconductor
 Preliminary

Figure 26-31. OPWMCB A1 and B1 Registers Load

The OUDIS[n] bit can be used to disable the A1 and B1 updates, thus allowing to synchronize the load on
these registers with the load of A1 or B1 registers in others channels. Using the update disable bit, A1 and
B1 registers can be updated at the same counter cycle, allowing both registers to change at the same time.

In this mode A1 matches always sets the internal counter to 0x000001. When operating with leading edge
dead time insertion the first A1 match sets the internal counter to 0x000001. When a match occurs between
register B1 and the internal time base, the output flip-flop is set to the value of the EDPOL bit. In the
following match between register A1 and the selected time base, the output flip-flop is set to the
complement of the EDPOL bit. This sequence repeats continuously. The internal counter should not reach
0x0 as consequence of a rollover. To avoid this, the user must not write a value greater than twice the
difference between external count up limit and EMIOS_CADR value to the EMIOS_CBDR register.

 Figure 26-32 shows two cycles of a center-aligned PWM signal. Both A1 and B1 register values are
changing within the same cycle, which allows to vary at the same time the duty cycle and dead-time values.

Selected

Time

Write to A2
Write to B2 Write to B2

Write to A2

0x000001

0x000005
0x000006

0x000015

A1 Value

A2 Value 0x000020

0x000015

Selected Counter = 2

A1/B1 Load Signal

0x000020 0x000016

0x000016

Cycle n Cycle n+1 Cycle n+2

B1 Value 0x000004

B2 Value 0x000004 0x0000060x000005

0x000005 0x000006

Counter Bus

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 26-35
 Preliminary

Figure 26-32. Output PWMCB with Lead Dead-Time Insertion

When operating with trailing edge dead-time insertion, the first match between A1 and the selected time
base sets the output flip-flop to the value of the EDPOL bit and sets the internal counter to 0x000001. In
the second match between register A1 and the selected time base, the internal counter is set to 0x000001
and B1 matches are enabled. When the match between register B1 and the selected time base occurs, the
output flip-flop is set to the complement of the EDPOL bit. This sequence repeats continuously.

EDPOL = 1

Internal

Internal Counter is

Dead-Time

A1 Value

A2 Value

B1 Value

B2 Value

Selected

0x000002 0x000004

0x000002 0x000004

0x000015

0x000015 0x000013

0x000013

0x000001
0x000002
0x000004

0x000015
0x000013

0x000020

Output Flip-Flop

FLAG Set Event

0x000001

Counter Bus

Time

Time

Time Base

Dead-Time

Set to 1 on A1 Match

Write to B2
Write to A2

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

26-36 Freescale Semiconductor
 Preliminary

Figure 26-33. Output PWMCB with Trail Dead-Time Insertion

FLAG can be generated in the trailing edge of the output PWM signal when MODE[5] is cleared, or in
both edges when MODE[5] is set. If subsequent matches occur on comparators A and B, the PWM pulses
continue to be generated regardless of the state of the FLAG bit.

NOTE
In OPWMCB mode FORCMA and FORCMB do not have the same
behavior as a regular match. Instead they force the output flip-flop to
constant value, which depends on the selected dead-time insertion mode,
lead or trail and the value of the EDPOL bit.

FORCMA has different behaviors depending upon the selected dead time insertion mode, lead or trail. In
lead dead-time insertion FORCMA force a transition in the output flip-flop to the opposite of EDPOL. In
trail dead-time insertion the output flip-flop is forced to the value of EDPOL bit.

If FORCMB bit is set, the output flip-flop value depends upon the selected dead-time insertion mode. In
lead dead time insertion FORCMB forces the output flip-flop to transition to EDPOL bit value. In trail
dead-time insertion the output flip-flop is forced to the opposite of EDPOL bit value.

NOTE
FORCMA bit set does not set the internal time-base to 0x000001 as a
regular A1 match.

EDPOL = 1

Internal

Internal Counter is

Dead-Time

A1 Value

A2 Value

B1 Value

B2 Value

Selected

0x000002 0x000004

0x000002 0x000004

0x000015

0x000015 0x000013

0x000013

0x000001
0x000002
0x000004

0x000015
0x000013

0x000020

Output Flip-Flop

FLAG Set Event

0x000001

Counter Bus

Time

Time

Time Base

Dead-Time

Set to 1 on A1 Match

Write to B2
Write to A2

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 26-37
 Preliminary

The FLAG bit is not set either in case of a FORCMA or FORCMB or even if both forces are issued at the
same time.

NOTE
FORCMA and FORCMB have the same behavior even in freeze or normal
mode regarding the output pin transition.

When FORCMA is issued along with FORCMB, the output flip-flop is set to the opposite of EDPOL bit
value. This is equivalent of saying that FORCMA has precedence over FORCMB when lead dead-time
insertion is selected and FORCMB has precedence over FORCMA when trail dead-time insertion is
selected.

Duty cycle from 0% to 100% can be generated by setting appropriate values to A1 and B1 registers
relatively to the period of the external time base. Setting A1=1 generates a 100% duty cycle waveform. If
A1 is greater than the maximum value of the selected counter bus period, then a 0% duty cycle is produced.
Assuming EDPOL is set to one and OPWMCB mode with trail dead-time insertion, 100% duty cycle
signals can be generated if B1 occurs at or after the cycle boundary (external counter = 1).

Only values different than 0x0 are allowed to be written to A1 register. If 0x0 is loaded to A1 the results
are unpredictable.

NOTE
A special case occurs when A1 is set to (external counter bus period)/2,
which is the maximum value of the external counter. In this case, the output
flip-flop is constantly set to the EDPOL bit value.

The internal channel logic prevents matches from one cycle to propagate to the next cycle. In trail
dead-time insertion B1 match from cycle (n) could eventually cross the cycle boundary and occur in cycle
(n+1). In this case B1 match is masked out and does not cause the output flip-flop to transition. Therefore
matches in cycle(n+1) are not affected by the late B1 matches from cycle(n).

Figure 26-34 shows a 100% duty cycle output signal generated by setting A1=4 and B1=3. In this case the
trailing edge is positioned at the boundary of cycle n+1, which is actually considered to belong to cycle
n+2 and therefore does not cause the output flip-flip to transition.

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

26-38 Freescale Semiconductor
 Preliminary

Figure 26-34. OPWMCB with 100% Duty Cycle (A1=4 and B1=3)

The output disable input, if enabled, causes the output flip-flop to transition to EDPOL inverted. This
feature allows the channel to force an output pin to a safety state from the application stand point. The
internal channel matches continue to occur even in this case, thus generating flags. As soon as the output
disable is deasserted, the channel output pin is again controlled by the A1 and B1 matches. This process
is synchronous, meaning that the output channel pin transitions on system clock edges only.

It is important to notice that, as in OPWMB and OPWFMB modes, the match signal used to set or clear
the channel output flip-flop is generated on the deassertion of the channel combinational comparator
output signal which compares the selected time base with A1 or B1 register values. Refer to Figure 26-26
which describes the delay from matches to output flip-flop transition in OPWFMB mode. The operation
of OPWMCB mode is similar to OPWFMB regarding matches and output pin transition.

26.5.1.1.10 Pulse-Width Modulation Buffered (OPWMB) Mode

OPWMB mode is used to generate pulses with programmable leading- and trailing-edge placement. An
external counter must be selected from one of the counter buses. The A1 register value defines the first
edge and B1 defines the second edge. The output signal polarity is defined by the EDPOL bit. If EDPOL
is zero, a negative edge occurs when A1 matches the selected counter bus; and a positive edge occurs when
B1 matches the selected counter bus.

The A1 and B1 registers are double buffered and updated from A2 and B2, respectively, at the cycle
boundary. The load operation is similar to the OPWFMB mode. Refer to Figure 26-28 for more
information about A1 and B1 registers’ update.

0x000001

0x000020

0x000004

A1 Value

A2 Value

B1 Value
B2 Value

0x000004

0x000001

Output Flip-Flop

0x000003

0x000015

0x000003
0x000015

0x000003

Selected
Counter Bus

Time

Write to B2

Time

Cycle n Cycle n+1 Cycle n+2

Dead-Time
Dead-Time

Dead-Time

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 26-39
 Preliminary

FLAG can be generated at B1 matches, when MODE[5] is cleared, or on either A1 or B1 matches when
MODE[5] is set. If subsequent matches occur on comparators A and B, the PWM pulses continue to be
generated, regardless of the state of the FLAG bit.

FORCMA and FORCMB bits allow the software to force the output flip-flop to the level corresponding
to a match on A1 or B1. The FLAG bit is not set by the FORCMA and FORCMB operations.

Some rules applicable to the OPWMB mode include:

• B1 matches have precedence over A1 matches if they occur at the same time within the same
counter cycle

• A1=0 match from cycle(n) has precedence over B1 match from cycle(n-1)

• A1 matches are masked out if they occur after B1 match within the same cycle

• Any value written to A2 or B2 on cycle(n) is loaded to A1 and B1 registers at the following cycle
boundary (assuming OUDIS[n] is not asserted). The new values will be used for A1 and B1
matches in cycle(n+1)

Figure 26-35 describes the operation of the OPWMB mode regarding A1 and B1 matches and the
transition of the channel output pin. In this example EDPOL is set to zero.

Figure 26-35. OPWMB Mode Matches and Flags

1

4

A1 Match Negedge

6

A1 Value 0x000004

A1 Match

Output Pin

Selected

Time

B1 Match Negedge
B1 Match

B1 Value 0x000006

Clock

Prescaler

A2 Value 0x000000

0x000000

A1 Match Posedge Detection

1

8
6

FLAG Bit Set

EDPOL = 0

A1 Match Negedge

B1 Match Negedge

A1 Match Posedge

Detection

Detection

Detection

Detection

Cycle n Cycle n+1
Write to A2

Detection

Counter Bus

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

26-40 Freescale Semiconductor
 Preliminary

The output pin transitions are based on the negedges of the A1 and B1 match signals. Figure 26-35 shows
in cycle(n+1) the value of the A1 register being set to zero. In this case, the match posedge is used instead
of the negedge to transition the output flip-flop.

Figure 26-36 describes the channel operation for 0% duty cycle. Note that the A1 match posedge signal
occurs at the same time as the B1=8 negedge signal. In this case A1 match has precedence over B1 match,
causing the output pin to remain at EDPOL bit value, thus generating a 0% duty cycle signal.

Figure 26-36. OPWMB Mode with 0% Duty Cycle

Figure 26-37 describes the operation of the OPWMB mode with the output disable signal asserted. The
output disable forces a transition in the output pin to the EDPOL bit value. After deassertion, the output
disable allows the output pin to transition at the following A1 or B1 match. The output disable does not
modify the flag bit behavior. There is one system clock delay between the assertion of the output disable
signal and the transition of the output pin to EDPOL.

1

4

A1 Match Negedge

A1 Value 0x000004

A1 Match

Output Pin

Selected

Time

B1 Match

B1 Value 0x000008

Clock

Prescaler

A2 Value 0x000000

0x000000

A1 Match Posedge Detection

1

8

FLAG Bit Set

EDPOL = 0

A1 Match Negedge

B1 Match Negedge

A1 Match Posedge

Detection

Detection

Detection

Cycle n Cycle n+1
Write to A2

Detection

8

Counter Bus

A1 Match Negedge Detection

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 26-41
 Preliminary

Figure 26-37. OPWMB Mode with Active Output Disable

Figure 26-38 shows a waveform changing from 100% to 0% duty cycle. In this case, EDPOL is zero. In
this example, B1 is programmed to the same value as the period of the external selected time base.

Figure 26-38. OPWMB Mode from 100% to 0% Duty Cycle

In Figure 26-38, if B1 is set to a value lower than 0x000008, it is not possible to achieve 0% duty cycle by
changing only A1 register value. Because B1 matches have precedence over A1 matches the output pin
transitions to the opposite of EDPOL bit at B1 match. If B1 is set to 0x000009, for instance, B1 match does
not occur, thus a 0% duty cycle signal is generated.

Cycle n Cycle n+1 Cycle n+2

A1 Value

B1 Value

B2 Value

0x000008

0x000002

0x000006

0x000008

0x000001

Selected

0x000004

0x000006

A2 Value 0x000002 0x000004 0x000006

0x000002

0x000004 0x000006

0x000008 0x000006

Output Pin

Write to B2
 Match A1 Match B1

 Match B1

FLAG Set Event

Time

Write to A2
Match A1

 Write to A2 Match B1

Output Disable

Counter Bus

Due to B1 Match
cycle n-1

EDPOL = 0

MODE[6] = 1

0x000008 0x000007 0x000006 0x000005 0x000004 0x000003 0x000002 0x000001 0x000000

0%100%

Selected

EDPOL = 0

A1 Value

B1 Value

Output Pin

0x000008

Prescaler = 1

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

0x000007 0x000006 0x000005 0x000004 0x000003 0x000002 0x000001 0x000000A2 Value

Time

Counter Bus

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

26-42 Freescale Semiconductor
 Preliminary

26.5.1.2 Input Programmable Filter (IPF)

The IPF ensures that only valid input pin transitions are received by the unified channel edge detector. A
block diagram of the IPF is shown in Figure 26-39.

The IPF is a 5-bit programmable up counter that is incremented by the selected clock source, according to
bits IF in EMIOS_CCR[n] register.

Figure 26-39. lnput Programmable Filter Submodule Diagram

The input signal is synchronized by system clock. When a state change occurs in this signal, the 5-bit
counter starts counting up. As long as the new state is stable on the pin, the counter remains incrementing.
If a counter overflow occurs, the new pin value is validated. In this case, it is transmitted as a pulse edge
to the edge detector. If the opposite edge appears on the pin before validation (overflow), the counter is
reset. At the next pin transition, the counter starts counting again. Any pulse that is shorter than a full range
of the masked counter is regarded as a glitch and it is not passed on to the edge detector. Figure 26-40shows
a timing diagram of the input filter.

Figure 26-40. Input Programmable Filter Example

26.5.1.3 Clock Prescaler (CP)

The CP divides the GCP output signal to generate a clock enable for the internal counter of the unified
channels. It is a programmable 2-bit down counter. The GCP output signal is prescaled by the value
defined in the UCPRE bits in EMIOS_CCR[n] register. The output is clocked every time the counter
reaches zero. Counting is enabled by setting the UCPREN bit in the EMIOS_CCR[n]. The counter can be
stopped at any time by clearing this bit, thereby stopping the internal counter in the unified channel.

Synchronizer

IF3

clk

IF2 IF1 IF0

5-bit Up Counter

FCK

Prescaled Clock

EMIOSI

Clock

ipg_clk

Filter Out

Selected Clock

5-bit Counter

Filter Out

EMIOSI

Time

IF[3:0] = 0010

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 26-43
 Preliminary

26.5.1.4 Effect of Freeze on the Unified Channel

When in debug mode, if the FRZ bit in the EMIOS_MCR register and the FREN bit in the
EMIOS_CCR[n] are both set, the internal counter and unified channel capture and compare functions are
halted. The unified channel is frozen in its current state.

During freeze, all registers are accessible. When the unified channel is operating in an output mode, the
force match functions remain available, allowing the software to force the output to the desired level.

During input modes, any input events that may occur while the channel is frozen are ignored.

When exiting debug mode or when the freeze enable bit is cleared (FRZ in the EMIOS_MCR or FREN in
the EMIOS_CCR[n] register), the channel actions resume but may be inconsistent until the channel enters
GPIO mode again.

26.5.2 IP Bus Interface Unit (BIU)

The BIU provides the interface between the internal interface bus (IIB) and the peripheral bus, allowing
communication among all submodules and this IP interface.

The BIU allows 8-, 16-, and 32-bit access. They are performed over a 32-bit data bus in a single cycle
clock.

26.5.2.1 Effect of Freeze on the BIU

When the FRZ bit in the EMIOS_MCR register is set and the module is in debug mode, the operation of
BIU is not affected.

26.5.3 Global Clock Prescaler Submodule (GCP)

The GCP divides the system clock to generate a clock for the CPs of the unified channels. It is a
programmable 8-bit up counter. The main clock signal is prescaled by the value defined in the GPRE bits
in EMIOS_MCR. The output is clocked every time the counter overflows. Counting is enabled by setting
the GPREN bit in the EMIOS_MCR. The counter can be stopped at any time by clearing this bit, thereby
stopping the internal counter in all the unified channels.

26.5.3.1 Effect of Freeze on the GCP

When the FRZ bit in the EMIOS_MCR register is set and the module is in debug mode, the operation of
GCP submodule is not affected, i.e., there is no freeze function in this submodule.

26.6 Reset
The eMIOS200 is reset by the global asynchronous system reset signal.

The MDIS bit in the EMIOS_MCR register and the UCDIS bits in the EMIOSUCDIS registers are cleared
during reset.

On resetting the eMIOS200 all unified channels enter GPIO input mode.

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

26-44 Freescale Semiconductor
 Preliminary

26.7 Interrupts
The eMIOS200 can generate one interrupt per channel. An interrupt request is generated according to the
configuration of the channel and input events or matches. See Section 8.3.1, “Interrupt Source Summary
Table,” for details on the eMIOS200 interrupt vectors.

26.8 DMA Requests
The connection of the eMIOS200 DMA request signals to the DMA channel mux is described in
Section 13.5.2, “Enabling and Configuring Sources.”

26.9 Initialization/Application Information
On resetting the eMIOS200 all unified channels enter GPIO input mode.

26.9.1 Considerations

Before changing an operating mode, the unified channel must be programmed to GPIO mode and
EMIOS_CADR[n] and EMIOS_CBDR[n] registers must be updated with the correct values for the next
operating mode. Then the EMIOS_CCR[n] register can be written with the new operating mode. If a
unified channel is changed from one mode to another without performing this procedure, the first operation
cycle of the selected time base can be random, i.e., matches can occur in random time if the contents of
EMIOS_CADR[n] or EMIOS_CBDR[n] were not updated with the correct value before the time base
matches the previous contents of EMIOS_CADR[n] or EMIOS_CBDR[n].

When interrupts are enabled, the software must clear the FLAG bits before exiting the interrupt service
routine.

26.9.2 Application Information

Correlated output signals can be generated by all output operation modes. Bits OUDIS[n] can be used to
control the update of these output signals.

In order to guarantee the internal counters of correlated channels are incremented in the same clock cycle,
the internal prescalers must be set before enabling the global prescaler. If the internal prescalers are set
after enabling the global prescaler, the internal counters may increment in the same ratio but at a different
clock cycle.

It is recommended to drive output disable input signals with the emios_flag_out signals of some unified
channels running in SAIC mode. When an output disable condition happens, the software interrupt routine
must service the output channels before servicing the channels running SAIC. This procedure avoids
glitches in the output pins.

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 26-45
 Preliminary

26.9.3 Coherent Accesses

For IPWM and IPM modes, it is recommended that the software wait for a new FLAG set event before
reading EMIOS_CADR[n] and EMIOS_CBDR[n] registers to get a new measurement. The FLAG
indicates that new data has been captured and it is the only way to assure data coherency.

The FLAG set event can be detected by polling the FLAG bit or by enabling the interrupt or DMA request
generation.

Reading the EMIOS_CADR[n] register again in the same period of the last read of EMIOS_CBDR[n]
register may lead to incoherent results. This will occur if the last read of EMIOS_CBDR[n] register
occurred after a disabled B2 to B1 transfer.

Enhanced Modular I/O Subsystem (eMIOS200)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

26-46 Freescale Semiconductor
 Preliminary

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 27-1
 Preliminary

Chapter 27
Inter-Integrated Circuit Bus Controller Module (I2C)

27.1 Introduction
The inter-integrated circuit (I2C™) bus is a two-wire bidirectional serial bus that provides a simple and
efficient method of data exchange between devices. It minimizes the external connections to devices and
does not require an external address decoder.

This bus is suitable for applications requiring occasional communication over a short distance between a
number of devices. It also provides flexibility, allowing additional devices to be connected to the bus for
further expansion and system development.

The interface is designed to operate up to 100 kbps with maximum bus loading and timing. The device is
capable of operating at higher baud rates, up to a maximum of module clock/20, with reduced bus loading.
The maximum communication length and the number of devices that can be connected are limited by a
maximum bus capacitance of 400 pF.

27.1.1 Block Diagram

A simplified block diagram of the I2C illustrates the functionality and interdependence of major blocks
(see Figure 27-1).

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

27-2 Freescale Semiconductor
 Preliminary

Figure 27-1. I2C Block Diagram

27.1.2 DMA Interface

A simple DMA interface is implemented so that the I2C can request data transfers with minimal support
from the CPU. DMA mode is enabled by setting bit 1 in the control register.

The DMA interface is only valid when the I2C module is configured for master mode and the DMA
channel mux has selected the I2C DMA request signals to be inputs to a DMA channel.

In/Out
Data
Shift
Register

Address
Compare

SDA

Interrupt

Clock
Control

Start
Stop
Arbitration
Control

SCL

Bus Clock

I2C

Registers

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 27-3
 Preliminary

Figure 27-2. I2C Module DMA Interface Block Diagram

27.1.3 Features

The I2C has these major features:

• Compatible with I2C bus standard

• Multi-master operation

• Software programmable for one of 256 serial clock frequencies

• Software selectable acknowledge bit

• Interrupt driven byte-by-byte data transfer

• Arbitration lost interrupt with automatic mode switching from master to slave

• Calling address identification interrupt

• Start and stop signal generation/detection

Input
Sync

In/Out
Data
Shift
Register

Address

Compare

SDA

IRQAddress

Clock

Control

Start
Stop
Arbitration
Control

CTRL_REG FREQ_REG ADDR_REG STATUS_REG DATA_REG

ADDR_DECODE DATA_MUX

Data bus

SCL

DMA request

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

27-4 Freescale Semiconductor
 Preliminary

• Repeated start signal generation

• Acknowledge bit generation/detection

• Bus busy detection

• Basic DMA interface

Features currently not supported:

• No support for general call address

• Not compliant to ten-bit addressing

27.1.4 Modes of Operation

There are two operating modes of the I2C module: run mode and stop mode. In run mode, I2C_A = 0 in
the SIU_HLT register and all functional parts of the I2C module are running. In stop mode, I2C_A = 1 in
the SIU_HLT register and all clocks to the I2C module are disabled.

27.2 External Signal Description
Refer to Table 2-1 and Section 2.7, “Detailed External Signal Descriptions,” for detailed signal
descriptions.

27.3 Memory Map and Registers
This section provides a detailed description of all I2C registers.

27.3.1 Module Memory Map

Table 27-1 shows the I2C memory map. The address of each register is given as an offset to the I2C base
address. Registers are listed in address order, identified by complete name and mnemonic, and lists the
type of accesses allowed. There are no MPC5510-specific register definitions for the I2C module.

Table 27-1. I2C Memory Map

Offset from
I2C_BASE

(0xFFF8_8000)
Register Access Reset Value Section/Page

0x0000 IBAD — I2C bus address register R/W 0x0000 27.3.2.1/27-5

0x0001 IBFD — I2C bus frequency divider register R/W 0x0000 27.3.2.2/27-5

0x0002 IBCR — I2C bus control register R/W 0x0080 27.3.2.3/27-8

0x0003 IBSR — I2C bus status register R/W 0x0080 27.3.2.4/27-9

0x0004 IBDR — I2C bus data I/O register R/W 0x0000 27.3.2.5/27-10

0x0005 IBIC — I2C bus interrupt config register R/W 0x0000 27.3.2.6/27-11

0x0006–0x3FFF Reserved R 0x0000 N/A

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 27-5
 Preliminary

27.3.2 Register Descriptions

This section lists the I2C registers in address order and describes the registers and their bit fields.

27.3.2.1 I2C Bus Address Register (IBAD)

This register contains the address the I2C bus will respond to when addressed as a slave; it is not the
address sent on the bus during the address transfer.

27.3.2.2 I2C Bus Frequency Divider Register (IBFD)

Offset: 0x00000 Access: Read/write any time

0 1 2 3 4 5 6 7

R
AD

0

W

Reset 0 0 0 0 0 0 0 0

Figure 27-3. I2C Bus Address Register (IBAD)

Table 27-2. IBAD Field Descriptions

Field Description

0–6
AD

Slave Address. Specific slave address to be used by the I2C bus module.
Note: The default mode of I2C bus is slave mode for an address match on the bus.

7 Reserved, must be cleared; will always read 0.

Offset: 0x0001 Access: Read/write any time

0 1 2 3 4 5 6 7

R
MULT ICR

W

Reset 0 0 0 0 0 0 0 0

Figure 27-4. I2C Bus Frequency Divider Register (IBFD)

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

27-6 Freescale Semiconductor
 Preliminary

Figure 27-5. SCL Divider and SDA Hold

Table 27-3. IBFD Field Descriptions

Field Description

MULT I2C Multiplier Factor. The MULT bits define the multiplier factor mul. This factor is used along with the SCL divider to
generate the I2C baud rate. The multiplier factor mul as defined by the MULT bits is provided below.
00 mul = 1
01 mul = 2
10 mul = 4
11 Reserved

ICR I2C Bus Clock Rate. The ICR bits are used to prescale the bus clock for bit rate selection. These bits and the MULT
bits are used to determine the I2C baud rate, the SDA hold time, the SCL Start hold time and the SCL Stop hold time.
Table 27-4 provides the SCL divider and hold values for corresponding values of the ICR.

The SCL divider multiplied by multiplier factor mul is used to generate I2C baud rate.

I2C baud rate = bus speed (Hz)/(mul * SCL divider) Eqn. 27-1

SDA hold time is the delay from the falling edge of SDA (I2C data) to the changing of SDA (I2C data).

SDA hold time = bus period (s) * mul * SDA hold value Eqn. 27-2

SCL Start hold time is the delay from the falling edge of SDA (I2C data) while SCL is high (Start condition) to the
falling edge of SCL (I2C clock).

SCL Start hold time = bus period (s) * mul * SCL Start hold value Eqn. 27-3

SCL Stop hold time is the delay from the rising edge of SCL (I2C clock) to the rising edge of SDA
SDA (I2C data) while SCL is high (Stop condition).

SCL Stop hold time = bus period (s) * mul * SCL Stop hold value Eqn. 27-4

SDA

 SCL

START condition STOP condition

SCL Hold(start) SCL Hold(stop)

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 27-7
 Preliminary

Table 27-4. I2C Divider and Hold Values

ICR
(hex)

SCL
Divider

SDA Hold
Value

SCL Hold
(Start)
Value

SDA Hold
(Stop)
Value

ICR
(hex)

SCL
Divider

SDA Hold
Value

SCL Hold
(Start)
Value

SCL Hold
(Stop)
Value

00 20 7 6 11 20 160 17 78 81

01 22 7 7 12 21 192 17 94 97

02 24 8 8 13 22 224 33 110 113

03 26 8 9 14 23 256 33 126 129

04 28 9 10 15 24 288 49 142 145

05 30 9 11 16 25 320 49 158 161

06 34 10 13 18 26 384 65 190 193

07 40 10 16 21 27 480 65 238 241

08 28 7 10 15 28 320 33 158 161

09 32 7 12 17 29 384 33 190 193

0A 36 9 14 19 2A 448 65 222 225

0B 40 9 16 21 2B 512 65 254 257

0C 44 11 18 23 2C 576 97 286 289

0D 48 11 20 25 2D 640 97 318 321

0E 56 13 24 29 2E 768 129 382 385

0F 68 13 30 35 2F 960 129 478 481

10 48 9 18 25 30 640 65 318 321

11 56 9 22 29 31 768 65 382 385

12 64 13 26 33 32 896 129 446 449

13 72 13 30 37 33 1024 129 510 513

14 80 17 34 41 34 1152 193 574 577

15 88 17 38 45 35 1280 193 638 641

16 104 21 46 53 36 1536 257 766 769

17 128 21 58 65 37 1920 257 958 961

18 80 9 38 41 38 1280 129 638 641

19 96 9 46 49 39 1536 129 766 769

1A 112 17 54 57 3A 1792 257 894 897

1B 128 17 62 65 3B 2048 257 1022 1025

1C 144 25 70 73 3C 2304 385 1150 1153

1D 160 25 78 81 3D 2560 385 1278 1281

1E 192 33 94 97 3E 3072 513 1534 1537

1F 240 33 118 121 3F 3840 513 1918 1921

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

27-8 Freescale Semiconductor
 Preliminary

27.3.2.3 I2C Bus Control Register (IBCR)

Offset: 0x0002 Access: Read/write any time

0 1 2 3 4 5 6 7

R
MDIS IBIE

MS TX
NOACK

0
DMAEN

0

W RSTA

Reset 1 0 0 0 0 0 0 0

Figure 27-6. I2C Bus Control Register (IBCR)

Table 27-5. IBCR Field Descriptions

Field Description

MDIS Module Disable. This bit controls the software reset of the entire I2C bus module.
0 The I2C bus module is enabled. This bit must be cleared before any other IBCR bits have any effect.
1 The module is reset and disabled. This is the power-on reset situation. When high, the interface is held in reset,

but registers can be accessed.
Note: If the I2C bus module is enabled in the middle of a byte transfer, the interface behaves as follows: slave mode

ignores the current transfer on the bus and starts operating when a subsequent start condition is detected.
Master mode will not be aware that the bus is busy; therefore, if a start cycle is initiated, then the current bus
cycle may become corrupt. This ultimately results in the current bus master or the I2C bus module losing
arbitration, after which, bus operation returns to normal.

IBIE I-Bus Interrupt Enable.
0 Interrupts from the I2C bus module are disabled. This does not clear any currently pending interrupt condition.
1 Interrupts from the I2C bus module are enabled. An I2C bus interrupt occurs provided the IBIF bit in the status

register is also set.

MS Master/Slave Mode Select. This bit is cleared on reset. When this bit is changed from 0 to 1, a START signal is
generated on the bus and the master mode is selected. When this bit is changed from 1 to 0, a STOP signal is
generated and the operation mode changes from master to slave. A STOP signal should be generated if only the
IBIF flag is set. MS is cleared without generating a STOP signal when the master loses arbitration.
0 Slave mode.
1 Master mode.

TX Transmit/Receive Mode Select. This bit selects the direction of master and slave transfers. When addressed as a
slave this bit must be set by software according to the SRW bit in the status register. In master mode this bit must
be set according to the type of transfer required. Therefore, for address cycles, this bit is always high.
0 Receive.
1 Transmit.

NOACK Data Acknowledge Disable. This bit specifies the value driven onto SDA during data acknowledge cycles for both
master and slave receivers. The I2C module will always acknowledge address matches, provided it is enabled,
regardless of the value of NOACK. Values written to this bit are used only when the I2C Bus is a receiver, not a
transmitter.
0 An acknowledge signal will be sent out to the bus at the 9th clock bit after receiving one byte of data.
1 No acknowledge signal response is sent (i.e., acknowledge bit = 1).

RSTA Repeat Start. Writing a 1 to this bit generates a repeated START condition on the bus, provided it is the current bus
master. This bit is always read as a low. Attempting a repeated start at the wrong time, if the bus is owned by another
master, results in loss of arbitration.
0 No effect.
1 Generate repeat start cycle.

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 27-9
 Preliminary

27.3.2.4 I2C Bus Status Register (IBSR)

DMAEN DMA enable. When this bit is set, the DMA TX and RX lines are asserted when the I2C module requires data to be
read or written to the data register. No transfer done interrupts are generated when this bit is set; however, an
interrupt is generated if loss of arbitration or addressed as slave conditions occur. The DMA mode is valid only when
the I2C module is configured as a master and the DMA transfer still requires CPU intervention at the start and the
end of each frame of data. See the DMA application information section for more details.
0 Disable the DMA TX/RX request signals.
1 Enable the DMA TX/RX request signals.

bit 7 Reserved. Writes have no functional effect but will change the value when reading the register.

Offset: 0x0003 Access: Read-only any time1

1 With the exception of IBIF and IBAL, which are software clearable.

0 1 2 3 4 5 6 7

R TCF IAAS IBB
IBAL

0 SRW IBIF RXAK

W w1c

Reset 1 0 0 0 0 0 0 0

Figure 27-7. I2C Bus Status Register (IBSR)

Table 27-6. IBSR Field Descriptions

Field Description

TCF Transfer Complete. While one byte of data is transferred, this bit is cleared. It is set by the falling edge of the ninth
clock of a byte transfer. This bit is valid only during or immediately following a transfer to the I2C module or from the
I2C module.
0 Transfer in progress.
1 Transfer complete.

IAAS Addressed as a Slave. When its own specific address (I-bus address register) is matched with the calling address,
this bit is set. The CPU is interrupted provided the IBIE is set. Then the CPU must check the SRW bit and set its
Tx/Rx mode accordingly. Writing to the I-bus control register clears this bit.
0 Not addressed.
1 Addressed as a slave.

IBB Bus Busy. This bit indicates the status of the bus. When a START signal is detected, the IBB is set. If a STOP signal
is detected, IBB is cleared and the bus enters idle state.
0 Bus is idle.
1 Bus is busy.

IBAL Arbitration Lost. The arbitration lost bit (IBAL) is set by hardware when the arbitration procedure is lost. Arbitration
is lost in the following circumstances:
 • SDA is sampled low when the master drives a high during an address or data transmit cycle.
 • SDA is sampled low when the master drives a high during the acknowledge bit of a data receive cycle.
 • A start cycle is attempted when the bus is busy.
 • A repeated start cycle is requested in slave mode.
 • A stop condition is detected when the master did not request it.
This bit must be cleared by software, by writing a one to it. A write of zero has no effect.

Table 27-5. IBCR Field Descriptions (continued)

Field Description

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

27-10 Freescale Semiconductor
 Preliminary

27.3.2.5 I2C Bus Data I/O Register (IBDR)

In master transmit mode, when data is written to IBDR, a data transfer is initiated. The most significant bit
is sent first. In master receive mode, reading this register initiates next byte data receiving. In slave mode,
the same functions are available after an address match has occurred. The TX bit in the IBCR must
correctly reflect the desired direction of transfer in master and slave modes for the transmission to begin.
For instance, if the I2C is configured for master transmit but a master receive is desired, then reading the
IBDR will not initiate the receive.

Reading the IBDR will return the last byte received while the I2C is configured in either master receive or
slave receive modes. The IBDR does not reflect every byte that is transmitted on the I2C bus, nor can
software verify that a byte has been written to the IBDR correctly by reading it back.

In master-transmit mode, the first byte of data written to IBDR following assertion of MS is used for the
address transfer and should comprise the calling address (in position D0–D6) concatenated with the
required R/W bit (in position D7).

bit 4 Reserved for future use. A read will return 0; must be written as 0.

SRW Slave Read/Write. When IAAS is set, this bit indicates the value of the R/W command bit of the calling address sent
from the master. This bit is valid only when the I-bus is in slave mode, a complete address transfer has occurred with
an address match and no other transfers have been initiated. By programming this bit, the CPU can select slave
transmit/receive mode according to the command of the master.
0 Slave receive, master writing to slave.
1 Slave transmit, master reading from slave.

IBIF I-Bus Interrupt Flag. The IBIF bit is set when one of the following conditions occurs:
 • Arbitration lost (IBAL bit set)
 • Byte transfer complete (TCF bit set and DMAEN bit not set)
 • Addressed as slave (IAAS bit set)
 • NoAck from slave (MS & TX bits set)
 • I2C bus going idle (IBB high-low transition and enabled by BIIE)
A processor interrupt request will be caused if the IBIE bit is set. This bit must be cleared by software, by writing a 1
to it. A write of 0 has no effect on this bit. In DMA mode (DMAEN set), a byte transfer complete condition will not
trigger the setting of IBIF. All other conditions apply.

RXAK Received Acknowledge. This is the value of SDA during the acknowledge bit of a bus cycle. If the received
acknowledge bit (RXAK) is low, it indicates an acknowledge signal has been received after the completion of 8 bits
data transmission on the bus. If RXAK is high, it means no acknowledge signal is detected at the 9th clock.
0 Acknowledge received.
1 No acknowledge received.

Offset: 0x0004 Access: Read/write any time

0 1 2 3 4 5 6 7

R
Data

W

Reset 0 0 0 0 0 0 0 0

Figure 27-8. I2C Bus Data I/O Register (IBDR)

Table 27-6. IBSR Field Descriptions (continued)

Field Description

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 27-11
 Preliminary

27.3.2.6 I2C Bus Interrupt Config Register (IBIC)

27.4 Functional Description

27.4.1 I-Bus Protocol

The I2C bus system uses a serial data line (SDA) and a serial clock line (SCL) for data transfer. All devices
connected to it must have open-drain or open-collector outputs. A logical AND function is exercised on
both lines with external pullup resistors. The value of these resistors is system dependent.

Normally, a standard communication is composed of four parts: START signal, slave address transmission,
data transfer, and STOP signal. They are described briefly in the following sections and illustrated in
Figure 27-10.

Offset: 0x0005 Access: Read/write any time

0 1 2 3 4 5 6 7

R
BIIE

0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0

Figure 27-9. I2C Bus Interrupt Config Register (IBIC)

Table 27-7. IBIC Field Descriptions

Field Description

BIIE Bus Idle Interrupt Enable Bit. This config bit can be used to enable the generation of an interrupt after the I2C bus
becomes idle. After this bit is set, an IBB high-low transition sets the IBIF bit. This feature can be used to signal to
the CPU the completion of a STOP on the I2C bus.
0 Bus idle interrupts disabled.
1 Bus idle interrupts enabled.

bits 1–7 Reserved for future use. A read will return 0; must be written as 0.

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

27-12 Freescale Semiconductor
 Preliminary

Figure 27-10. I2C Bus Transmission Signals

27.4.1.1 START Signal

When the bus is free, i.e. no master device is engaging the bus (both SCL and SDA lines are at logical
high), a master may initiate communication by sending a START signal. As shown in Figure 27-10, a
START signal is a high-to-low transition of SDA while SCL is high. This signal denotes the beginning of
a new data transfer (each data transfer may contain several bytes of data) and brings all slaves out of their
idle states.

Figure 27-11. Start and Stop conditions

SCL

SDA

Start
Signal

Ack
Bit

1 2 3 4 5 6 7 8

MSB LSB

1 2 3 4 5 6 7 8

MSB LSB

Stop
Signal

No

SCL

SDA

1 2 3 4 5 6 7 8

MSB LSB

1 2 5 6 7 8

MSB LSB

Repeated

3 4

9 9

AD0 AD1 AD2 AD3 AD4 AD5 AD6 R/W XXX D0 D1 D2 D3 D4 D5 D6 D7

Calling Address Read/ Data Byte

AD0 AD1 AD2 AD3 AD4 AD5 AD6 R/W AD0 AD1 AD2 AD3 AD4 AD5 AD6 R/W

New Calling Address

9 9

XX

Ack
BitWrite

Start
Signal

Start
Signal

Ack
Bit

Calling Address Read/
Write

Stop
Signal

No
Ack
Bit

Read/
Write

SDA

 SCL

START condition STOP condition

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 27-13
 Preliminary

27.4.1.2 Slave Address Transmission

The first byte of data transfer immediately after the START signal is the slave address transmitted by the
master. This is a seven-bit calling address followed by a R/W bit. The R/W bit tells the slave the desired
direction of data transfer.

1 = Read transfer—the slave transmits data to the master

0 = Write transfer—the master transmits data to the slave

Only the slave with a calling address that matches the one transmitted by the master will respond by
sending back an acknowledge bit. This is done by pulling the SDA low at the ninth clock (see
Figure 27-10).

No two slaves in the system may have the same address. If the I2C bus is master, it must not transmit an
address that is equal to its own slave address. The I2C bus cannot be master and slave at the same time.
However, if arbitration is lost during an address cycle the I2C bus will revert to slave mode and operate
correctly, even if it is being addressed by another master.

27.4.1.3 Data Transfer

After successful slave addressing is achieved, the data transfer can proceed byte-by-byte in a direction
specified by the R/W bit sent by the calling master.

All transfers that come after an address cycle are referred to as data transfers, even if they carry sub-address
information for the slave device.

Each data byte is 8 bits long. Data may be changed only while SCL is low and must be held stable while
SCL is high (see Figure 27-10). There is one clock pulse on SCL for each data bit, the MSB being
transferred first. Each data byte must be followed by an acknowledge bit, which is signalled from the
receiving device by pulling the SDA low at the ninth clock. Therefore, one complete data byte transfer
needs nine clock pulses.

If the slave receiver does not acknowledge the master, the SDA line must be left high by the slave. The
master can then generate a stop signal to abort the data transfer or a start signal (repeated start) to
commence a new calling.

If the master receiver does not acknowledge the slave transmitter after a byte transmission, it means end
of data to the slave, so the slave releases the SDA line for the master to generate a STOP or START signal.

27.4.1.4 STOP Signal

The master can terminate the communication by generating a STOP signal to free the bus. However, the
master may generate a START signal followed by a calling command without generating a STOP signal
first. This is called repeated START. A STOP signal is defined as a low-to-high transition of SDA while
SCL is at logical 1 (see Figure 27-10).

The master can generate a STOP even if the slave has generated an acknowledge, at which point the slave
must release the bus.

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

27-14 Freescale Semiconductor
 Preliminary

27.4.1.5 Repeated START Signal

As shown in Figure 27-10, a repeated START signal is a START signal generated without first generating
a STOP signal to terminate the communication. This is used by the master to communicate with another
slave or with the same slave in different mode (transmit/receive mode) without releasing the bus.

27.4.1.6 Arbitration Procedure

The Inter-IC bus is a true multi-master bus that allows more than one master to be connected on it. If two
or more masters try to control the bus simultaneously, a clock synchronization procedure determines the
bus clock, for which the low period is equal to the longest clock low period and the high is equal to the
shortest among the masters. The relative priority of the contending masters is determined by a data
arbitration procedure. A bus master loses arbitration if it transmits logic “1” while another master transmits
logic 0. The losing masters immediately switch to slave receive mode and stop driving the SDA output. In
this case, the transition from master to slave mode does not generate a STOP condition. Meanwhile, a
status bit is set by hardware to indicate loss of arbitration.

27.4.1.7 Clock Synchronization

Because wire-AND logic is performed on the SCL line, a high-to-low transition on the SCL line affects all
the devices connected on the bus. The devices start counting their low period and after a device's clock has
gone low, it holds the SCL line low until the clock high state is reached. However, the change of low to
high in this device clock may not change the state of the SCL line if another device clock remains within
its low period. Therefore, synchronized clock SCL is held low by the device with the longest low period.
Devices with shorter low periods enter a high wait state during this time (see Figure 27-12). When all
engaged devices have counted off their low period, the synchronized clock SCL line is released and pulled
high. There is then no difference between the device clocks and the state of the SCL line and all the devices
start counting their high periods. The first device to complete its high period pulls the SCL line low again.

Figure 27-12. I2C Bus Clock Synchronization

SCL1

SCL2

SCL

Internal Counter Reset

WAIT Start Counting High Period

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 27-15
 Preliminary

27.4.1.8 Handshaking

The clock synchronization mechanism can be used as a handshake in data transfer. Slave devices may hold
the SCL low after completion of one byte transfer (9 bits). In such cases, it halts the bus clock and forces
the master clock into wait state until the slave releases the SCL line.

27.4.1.9 Clock Stretching

The clock synchronization mechanism can be used by slaves to slow the bit rate of a transfer. After the
master has driven SCL low, the slave can drive SCL low for the required period and then release it. If the
slave SCL low period is greater than the master SCL low period then the resulting SCL bus signal low
period is stretched.

27.4.2 Interrupts

27.4.2.1 General

The I2C uses one interrupt vector only.

27.4.2.2 Interrupt Description

There are five types of internal interrupts in the I2C. The interrupt service routine can determine the
interrupt type by reading the status register.

I2C Interrupt can be generated on

• Arbitration lost condition (IBAL bit set)

• Byte rransfer condition (TCF bit set and DMAEN bit not set)

• Address detect condition (IAAS bit set)

• No acknowledge from slave received when expected

• Bus going idle (IBB bit not set)

The I2C interrupt is enabled by the IBIE bit in the I2C control register. It must be cleared by writing 1 to
the IBIF bit in the interrupt service routine. The bus going idle interrupt needs to be additionally enabled
by the BIIE bit in the IBIC register.

Table 27-8. Interrupt Summary

Interrupt Offset Vector Priority Source Description

I2C
Interrupt

— — — IBAL, TCF,
IAAS, IBB bits in

IBSR register

When any IBAL, TCF, or IAAS bits are set an interrupt may
be caused based on arbitration lost, transfer complete or
address detect conditions. If enabled by BIIE, the
deassertion of IBB can also cause an interrupt, indicating
that the bus is idle.

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

27-16 Freescale Semiconductor
 Preliminary

27.5 Initialization/Application Information

27.5.1 I2C Programming Examples

27.5.1.1 Initialization Sequence

Reset will put the I2C bus control register to its default state. Before the interface can be used to transfer
serial data, an initialization procedure must be carried out, as follows:

1. Update the frequency divider register (IBFD) and select the required division ratio to obtain SCL
frequency from system clock.

2. Update the I2C bus address register (IBAD) to define its slave address.

3. Clear the MDIS bit of the I2C bus control register (IBCR) to enable the I2C interface system.

4. Modify the bits of the IBCR to select master/slave mode, transmit/receive mode and interrupt
enable or not. Optionally modify the bits of the I2C bus interrupt config register (IBIC) to further
refine the interrupt behavior.

5. Configure the SDA and SCL pads. (The SIU Pad Configuration registers must be configured to
select the appropriate I2C function. Also, the open drain feature of the pad must be enabled by
setting the ODE bit in the appropriate SIU pad configuration register.)

27.5.1.2 Generation of START

After completion of the initialization procedure, serial data can be transmitted by selecting the master
transmitter mode. If the device is connected to a multi-master bus system, the state of the I2C bus busy bit
(IBB) must be tested to check if the serial bus is free.

If the bus is free (IBB=0), the start condition and the first byte (the slave address) can be sent. The data
written to the data register comprises the slave calling address and the LSB, which is set to indicate the
direction of transfer required from the slave.

The bus free time (i.e., the time between a STOP condition and the following START condition) is built
into the hardware that generates the START cycle. Depending on the relative frequencies of the system
clock and the SCL period, it may be necessary to wait until the I2C is busy after writing the calling address
to the IBDR before proceeding with the following instructions. This is illustrated in the following example.

An example of the sequence of events which generates the START signal and transmits the first byte of
data (slave address) is shown below:

while (bit 2, IBSR ==1) // wait in loop for IBB flag to clear
bit3 and bit 2, IBCR = 1 // set transmit and master mode, i.e. generate start condition
IBDR = calling_address // send the calling address to the data register
while (bit 2, IBSR ==0) // wait in loop for IBB flag to be set

27.5.1.3 Post-Transfer Software Response

Transmission or reception of a byte will set the data transferring bit (TCF) to 1, which indicates one byte
communication is finished. The I2C Bus interrupt bit (IBIF) is set also; an interrupt will be generated if the

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 27-17
 Preliminary

interrupt function is enabled during initialization by setting the IBIE bit. The IBIF (interrupt flag) can be
cleared by writing 1 (in the interrupt service routine, if interrupts are used).

The TCF bit will be cleared to indicate data transfer in progress by reading the IBDR data register in
receive mode or writing the IBDR in transmit mode. The TCF bit must not be used as a data transfer
complete flag because the flag timing depends on a number of factors including the I2C bus frequency.
This bit may not conclusively provide an indication of a transfer complete situation. Transfer complete
situations must be detected using the IBIF flag

Software may service the I2C I/O in the main program by monitoring the IBIF bit if the interrupt function
is disabled. Polling should monitor the IBIF bit rather than the TCF bit because their operation is different
when arbitration is lost.

When an interrupt occurs at the end of the address cycle, the master will always be in transmit mode, i.e.
the address is transmitted. If master receive mode is required, indicated by R/W bit in IBDR, then the TX
bit should be toggled at this stage.

During slave mode address cycles (IAAS=1) the SRW bit in the status register is read to determine the
direction of the subsequent transfer and the TX bit is programmed accordingly. For slave mode data cycles
(IAAS=0) the SRW bit is not valid. The TX bit in the control register should be read to determine the
direction of the current transfer.

The following is an example software sequence for master transmitter in the interrupt routine.
clear bit 6, IBSR // Clear the IBIF flag
if (bit 2, IBCR ==0)

slave_mode() // run slave mode routine
if (bit 3, IBCR ==0))

receive_mode() // run receive_mode routine
if (bit 7, IBSR == 1) // if NO ACK
 end(); // end transmission
else
IBDR = data_to_transmit // transmit next byte of data

27.5.1.4 Generation of STOP

A data transfer ends with a STOP signal generated by the master device. A master transmitter can simply
generate a STOP signal after all the data has been transmitted. The following example shows how a stop
condition is generated by a master transmitter.

if (tx_count == 0) or // check to see if all data bytes have been transmitted
 (bit 7, IBSR == 1) { // or if no ACK generated
 clear bit 2, IBCR // generate stop condition
 }
else {
IBDR = data_to_transmit // write byte of data to DATA register
 tx_count -- // decrement counter
 } // return from interrupt

If a master receiver wants to terminate a data transfer, it must inform the slave transmitter by not
acknowledging the last byte of data. This can be done by setting the transmit acknowledge bit (TXAK)
before reading the second last byte of data. Before reading the last byte of data, a STOP signal must first
be generated. The following example shows how a STOP signal is generated by a master receiver.

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

27-18 Freescale Semiconductor
 Preliminary

rx_count -- // decrease the rx counter
if (rx_count ==1) // 2nd last byte to be read ?
 bit 4, IBCR = 1 // disable ACK
if (rx_count == 0) // last byte to be read ?
 bit 6, IBCR = 0 // generate stop signal
else
data_received = IBDR // read RX data and store

27.5.1.5 Generation of Repeated START

At the end of data transfer, if the master wants to remain communicating on the bus, it can generate another
START signal followed by another slave address without first generating a STOP signal. A program
example is as shown.

bit 5, IBCR = 1 // generate another start (restart)
IBDR == calling_address // transmit the calling address

27.5.1.6 Slave Mode

In the slave interrupt service routine, the module addressed as slave bit (IAAS) must be tested to check if
a calling of its own address has been received. If IAAS is set, software sets the transmit/receive mode
select bit (TX bit of IBCR) according to the R/W command bit (SRW). Writing to the IBCR clears IAAS
automatically. IAAS is read as set when it is from the interrupt at the end of the address cycle where an
address match occurred. Interrupts resulting from subsequent data transfers will have IAAS cleared. A data
transfer may be initiated by writing information to IBDR for slave transmits or dummy reading from IBDR
in slave receive mode. The slave drives SCL low in-between byte transfers SCL is released when the IBDR
is accessed in the required mode.

In slave transmitter routine, the received acknowledge bit (RXAK) must be tested before transmitting the
next byte of data. Setting RXAK means an end of data signal from the master receiver, after which it must
be switched from transmitter mode to receiver mode by software. A dummy read then releases the SCL
line so the master can generate a STOP signal.

27.5.1.7 Arbitration Lost

If several masters try to engage the bus simultaneously, one master wins and the others lose arbitration.
The devices that lost arbitration are immediately switched to slave receive mode by the hardware. Their
data output to the SDA line is stopped, but SCL remains generated until the end of the byte during which
arbitration was lost. An interrupt occurs at the falling edge of the ninth clock of this transfer with IBAL=1
and MS=0. If one master attempts to start transmission while the bus is being engaged by another master,
the hardware inhibits the transmission, switches the MS bit from 1 to 0 without generating a STOP
condition, generates an interrupt to CPU, and sets the IBAL to indicate that the attempt to engage the bus
is failed. When considering these cases, the slave service routine should test the IBAL first and the
software should clear the IBAL bit if it is set.

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 27-19
 Preliminary

Figure 27-13. Flowchart of Typical I2C Interrupt Routine

Clear

Master
Mode

?

Tx/Rx
?

Last Byte
Transmitted

?

RXAK=0
?

End Of
Addr Cycle
(Master Rx)

?

Write Next
Byte To IBDR

Switch To
Rx Mode

Dummy Read
From IBDR

Generate
Stop Signal

Read Data
From IBDR
And Store

Set TXAK =1 Generate
Stop Signal

2nd Last
Byte To Be Read

?

Last
Byte To Be Read

?

Arbitration
Lost

?

Clear IBAL

IAAS=1
?

IAAS=1
?

SRW=1
?

TX/RX
?

Set TX
Mode

Write Data
To IBDR

Set RX
Mode

Dummy Read
From IBDR

ACK From
Receiver

?

Tx Next
Byte

Read Data
From IBDR
And Store

Switch To
Rx Mode

Dummy Read
From IBDR

RTI

Y N

Y

Y Y

Y

Y

Y

Y

Y

Y

N

N

N

NN

N

N

N

N

Y

TX RX

RX

TX(Write)

(Read)

N

IBIF

Address Transfer Data Transfer

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

27-20 Freescale Semiconductor
 Preliminary

27.5.2 DMA Application Information

The DMA interface on the I2C is not completely autonomous and requires intervention from the CPU to
start and to terminate the frame transfer. DMA mode is valid for master-transmit and master-receive modes
only. Software must ensure that the DMA enable bit in the control register is not set when the I2C module
is configured in master mode.

The DMA controller must transfer only one byte of data per Tx/Rx request. This is because there is no
FIFO on the I2C block.

The CPU should also keep the I2C interrupt enabled during a DMA transfer to detect the arbitration lost
condition and take action to recover from this situation. The DMAEN bit in the IBCR register works as a
disable for the transfer complete interrupt. This means that during normal transfers (no errors) there will
always be either an interrupt or a request to the DMA controller, dependant on the setting of the DMAEN
bit. All error conditions will trigger an interrupt and require CPU intervention. The address match
condition will not occur in DMA mode as the I2C should never be configured for slave operation.

The following sections detail how to set up a DMA transfer and what intervention is required from the
CPU. It is assumed that the system DMA controller is capable of generating an interrupt after a certain
number of DMA transfers have taken place.

27.5.2.1 DMA Mode, Master Transmit

Figure 27-14 details exactly the operation for using a DMA controller to transmit n data bytes to a slave.
The first byte (the slave calling address) is always transmitted by the CPU. All subsequent data bytes (apart
from the last data byte) can be transferred by the DMA controller. The last data byte must be transferred
by the CPU.

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 27-21
 Preliminary

Figure 27-14. Flowchart of DMA Mode Master Transmit

27.5.2.2 DMA Mode, Master RX

Figure 27-15 details the exact operation for using a DMA controller to receive n data bytes from a slave.
The first byte (the slave calling address) is always transmitted by the CPU. All subsequent data bytes (apart
from the two last data bytes) can be read by the DMA controller. The last two data bytes must be
transferred by the CPU.

Config I2C for
 Master TX

CPU writes calling
address to slave

interrupt
generated

Arb Lost or
No ack ?

CPU handles

condition

yes

no

 CPU sets
DMAENABLE

DMA writes 1

ipd_rx_req
generated

DMA written

 data ?
(n-1) bytes of

no

yes

 CPU clears
DMA enable

interrupt
generated

Start
Generated

 byte of data

CPU writes last

data byte

interrupt
generated

CPU clears

MS bit in CR
 Stop
generated

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

27-22 Freescale Semiconductor
 Preliminary

Figure 27-15. Flowchart of DMA Mode Master Receive

27.5.2.3 Exiting DMA Mode, System Requirement Considerations

As described above, the final transfers of both Tx and Rx transfers need to be managed via interrupt by the
CPU. To change from DMA to interrupt driven transfers in the I2C module, disable the DMAEN bit in the
IBCR register. The trigger to exit the DMA mode is that the programmed DMA transfer control descriptor
(TCD) has completed all its transfers to/from the I2C module.

Config I2C for
 Master TX

interrupt
generated

Arb Lost or
No ack ?

CPU handles

condition

yes

no

 CPU sets TX/RX
to RX

 CPU: dummy

 CPU sets
DMAENABLE

read of DATAreg

DMA reads byte

ipd_rx_req
generated

of data

 Slave TX one
 byte of data

DMA read

 data ?
(n-2) bytes of

no

yes

 CPU clears
DMA enable

Slave TX n-1

data byte

interrupt
generated

CPU reads n-1
data

 CPU sets
TXACK

Slave TX last
data byte

interrupt
generated

CPU reads last
data byte

Stop
generated

Start
Generated

CPU writes calling
address to slave

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 27-23
 Preliminary

After the last DMA write (TX mode) to the I2C the module immediately starts the next I2C-bus transfer.
The same is true for RX mode. After the DMA read from the IBDR register the module initiates the next
I2C-bus transfer. This results in two possible scenarios in the DMA mode exiting scheme.

1. Fast reaction

The DMAEN bit is cleared before the next I2C-bus transfer completes. In this case the module will
raise an interrupt request to the CPU which can be serviced normally.

2. Slow reaction

The DMAEN bit is cleared after the next I2C-bus transfer has already completed. In this case the
module will not raise an interrupt request to the CPU. Instead the TCF bit can be read to determine
that the transfer completed and the module is ready for further transfer.

27.5.2.3.1 Fast vs. Slow Reaction

The reaction time TR for the system to disable DMAEN after the last DMA controller access to the I2C is
the time required for one byte transfer over the I2C. In a fast reaction the disabling has to occur before the
ninth bit of the data transfer, which is the ACK bit. So the time available is eight times the SCL period.

TR = 8 x TSCL Eqn. 27-5

In fast mode, with 400 kbit/s, TSCL is 2.5 μs, so TR is 20 μs.

Depending on the system and DMA controller there are different possibilities for the deassertion of
DMAEN. Three options are:

1. CPU intervention via interrupt

The DMA controller is programmed to signal an interrupt to the CPU which is then responsible for
the deassertion of DMAEN. This scheme is supported by most systems but can result in a slow
reaction time if higher priority interrupts interfere. Therefore, the interrupt handling routine can
become complicated as it has to check which of the two scenarios happened (check TCF bit) and
act accordingly. In case of slow reaction you can force an interrupt for the I2C in the interrupt
controller to have the further transfer handled by the normal I2C interrupt routine. The use of nested
interrupts can cause problems in this scenario, if the DMA interrupt stalls between the deassertion
and the DMAEN bit and the checking of the TCF bit.

2. DMA channel linking (if supported)

The transfer control descriptor in the DMA controller that performs the data transfer is linked to
another channel that does a write to the I2C IBCR register to disable the DMAEN bit. This is
probably the fastest system solution, but it uses two DMA channels. On the system level, no higher
priority DMA requests must occur between the two linked TCDs because those can result in slow
reaction.

3. DMA scatter/gather process (if supported)

The transfer control descriptor in the DMA controller that performs the data transfer has the
scatter-gather feature activated. This feature initiates a reload of another TCD from system RAM
after the completion of the first TCD. The new TCD will have its start bit already set and
immediately start the required write to the I2C IBCR register to disable the DMAEN bit. This TCD
also has scatter-gather activated and is programmed to reload the initial TCD upon completion,

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

27-24 Freescale Semiconductor
 Preliminary

bringing the system back into a ready-for-I2C-transfer state. The advantage over the two other
solutions is that this does not require CPU intervention or a second DMA channel. This comes at
the cost of 64 bytes RAM (two TCDs), some system bus transfer overhead, and a little increase in
application code complexity. On the system level, no higher priority DMA requests must occur
during the scatter-gather process because those can result in a slow reaction.

Example latencies for a 32 MHz system with a full speed 32-bit AHB bus and an I2C connected via half
speed IPI bus:

• Accessing the I2C from the DMA controller via IPI bus typically requires four cycles (consecutive
accesses to the I2C could be faster):

4 x TIPI = 4 / 16 MHz = 250 ns Eqn. 27-6

• Reloading a new TCD (8 × 32 bit) via AHB to the DMA controller (scatter/gather process):

8 x TAHB = 8 / 32 MHz = 250 ns Eqn. 27-7

With the DMA scatter-gather process, the required IBCR access can be done in 0.5 μs, leaving a large
margin of 19.5 μs for additional system delays. The slow reaction case can be prevented in this way. The
system user must decide which usage model suits his overall requirements best.

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 28-1
 Preliminary

Chapter 28
Periodic Interrupt Timer and Real Time Interrupt (PIT_RTI)

28.1 Introduction
The PIT_RTI is an array of timers that can be used to initiate interrupts and trigger DMA channels. It also
provides a dedicated real-time interrupt (RTI) timer, which runs on a separate clock and can be used for
system wakeup.

28.1.1 Block Diagram

A simplified block diagram of the PIT_RTI illustrates the functionality and interdependence of major
blocks (see Figure 28-1).

Periodic Interrupt Timer and Real Time Interrupt (PIT_RTI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

28-2 Freescale Semiconductor
 Preliminary

Figure 28-1. PIT_RTI Block Diagram

28.1.2 Features

The PIT_RTI has these major features:

• One 32-bit RTI timer to wakeup the CPU in wait mode

• Eight additional 32-bit timers generating DMA trigger pulses

• Timers can be configured to generate interrupts instead of triggers

• Timers 7 and 8 can be the source of the eQADC trigger inputs via SIU configuration

• All interrupts are maskable and can be initiated even when the bus clock is switched off

• Power saving with a separate input clock for the RTI timer
(all other timers share one common core clock)

• Independent timeout periods for each timer

RTI

Timer 8

Timer 1

.

.

.

PIT_RTI
Registers

Peripheral

interrupts

timeout

load_value

Peripheral

PIT_RTI

.

.

.

triggers

Independent
RTI Oscillator

bus

Clock

bus clock

(XOSC)

Periodic Interrupt Timer and Real Time Interrupt (PIT_RTI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 28-3
 Preliminary

28.1.3 Modes of Operation

There are two main operating modes of PIT_RTI: run mode and stop mode. In run mode, PIT=0 in the
SIU_HLT register and all functional parts of the PIT_RTI module are running. In stop mode, PIT=1 in the
SIU_HLT register and all clocks to the PIT_RTI module are disabled except the XOSC.

28.2 Signal Description

28.2.1 External Signal Description

The PIT_RTI module has no external signals.

28.3 Memory Map and Registers
This section provides a detailed description of all PIT_RTI registers.

28.3.1 Module Memory Map

The PIT_RTI memory map is shown in Table 28-2. The address of each register is given as an offset to the
PIT_RTI base address. Registers are listed in address order, identified by complete name and mnemonic,
and lists the type of accesses allowed.

Table 28-1. Timer Features

Timer Interrupt DMA Trigger eQADC Trigger

0 (RTI) X

1 X X

2 X X

3 X X

4 X X

5 X X

6 X X

7 X X X

8 X X X

Periodic Interrupt Timer and Real Time Interrupt (PIT_RTI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

28-4 Freescale Semiconductor
 Preliminary

28.3.2 Register Descriptions

This section lists the PIT_RTI registers in address order and describes the registers and their bit fields.

NOTE
The RTI registers should be set when the RTI clock is running only.

Table 28-2. PIT_RTI Memory Map

Offset from
PIT_RTI_BASE
(0xFFFE_0000)

Register Access Reset Value Section/Page

0x0000 TLVAL0 — PIT RTI load value register R/W 0x0000_0000 28.3.2.2/28-5

0x0004 TLVAL1 — PIT timer load value register 1 R/W 0x0000_0000

0x0008 TLVAL2 — PIT timer load value register 2 R/W 0x0000_0000

0x000C TLVAL3 — PIT timer load value register 3 R/W 0x0000_0000

0x0010 TLVAL4 — PIT timer load value register 4 R/W 0x0000_0000

0x0014 TLVAL5 — PIT timer load value register 5 R/W 0x0000_0000

0x0018 TLVAL6 — PIT timer load value register 6 R/W 0x0000_0000

0x001C TLVAL7 — PIT timer load value register 7 R/W 0x0000_0000

0x0020 TLVAL8 — PIT timer load value register 8 R/W 0x0000_0000

0x0024–0x007F Reserved

0x0080 TVAL0 — PIT current RTI value R 0x0000_0000 28.3.2.2/28-5

0x0084 TVAL1 — PIT current timer value 1 R 0x0000_0000

0x0088 TVAL2 — PIT current timer value 2 R 0x0000_0000

0x008C TVAL3 — PIT current timer value 3 R 0x0000_0000

0x0090 TVAL4 — PIT current timer value 4 R 0x0000_0000

0x0094 TVAL5 — PIT current timer value 5 R 0x0000_0000

0x0098 TVAL6 — PIT current timer value 6 R 0x0000_0000

0x009C TVAL7 — PIT current timer value 7 R 0x0000_0000

0x00A0 TVAL8 — PIT current timer value 8 R 0x0000_0000

0x00A4–0x00FF Reserved

0x0100 PITFLG — PIT interrupt flags register R/W 0x0000_0000 28.3.2.3/28-6

0x0104 PITINTEN — PIT interrupt enable register R/W 0x0000_0000 28.3.2.4/28-6

0x0108 PITINTSEL — PIT interrupt/DMA select register R/W 0x0000_0001 28.3.2.5/28-7

0x010C PITEN — PIT timer enable register R/W 0x0000_0000 28.3.2.6/28-8

0x0110 PITCTRL — PIT control register R/W 0x0100_0000 28.3.2.7/28-8

0x0114–0x01FC Reserved

Periodic Interrupt Timer and Real Time Interrupt (PIT_RTI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 28-5
 Preliminary

28.3.2.1 PIT RTI / Timer Load Value Register (TLVAL0–TLVAL8)

These registers select the timeout period for the timer interrupts. In the case of the RTI, it will take several
cycles until this value is synchronized into the RTI clock domain. For all other timers the value change is
visible immediately.

28.3.2.2 PIT Current RTI / Timer Values (TVAL0–TVAL8)

These registers indicate the current timer position. In the case of the RTI, this will show a value which is
several cycles old, since it originates from a potentially different clock domain.

Offset: 0x0000–0x002B Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R TSV

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TSV

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-2. PIT Timer Load Value Register (TLVAL0–TLVAL8)

Table 28-3. TLVAL0–TLVAL8 Field Descriptions

Field Description

TSV Time Start Value Bits. These bits set the timer start value. The timer will count down until it reaches 0,
then it will generate an interrupt and load this register value again. Writing a new value to this register will
not restart the timer, instead the value will be loaded after the timer expires. To abort the current cycle
and start a timer period with the new value, the timer must be disabled and enabled again (see
Figure 28-7).
Note: For the RTI, the timer must not be set to a value lower than 32 cycles, otherwise interrupts may be

lost, as it takes several cycles to clear the RTI interrupt. For the other timers, this limit does not
apply, however there will be practical limits because the processor will require several cycles to
service an interrupt.

Offset: 0x0080–0x00A0 Access: User read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R TVL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TVL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-3. PIT Current Timer Values (TVAL0–8)

Periodic Interrupt Timer and Real Time Interrupt (PIT_RTI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

28-6 Freescale Semiconductor
 Preliminary

28.3.2.3 Interrupt Flags Register (PITFLG)

This register holds the PIT interrupt flags. Timer 0 is the special timer RTI, which can be used to wake up
the device.

28.3.2.4 PIT Interrupt Enable Register (PITINTEN)

This register enables PIT interrupts.

Table 28-4. TVAL0–8 Field Descriptions

Field Description

TVL Current Timer Value. These bits represent the current timer value. Note that the timer uses a
downcounter.
NOTE: The timer values will be frozen in debug mode.

Offset: 0x0100 Access: User read/write
(write to clear)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 TIF8 TIF7 TIF6 TIF5 TIF4 TIF3 TIF2 TIF1 RTIF

W w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-4. PIT Interrupt Flags Register (PITFLG)

Table 28-5. PITFLG Field Descriptions

Field Description

bits 0–22 Reserved.

TIFn Real Time Interrupt Flags for Timer 1–8. TIFn is set to 1 at the end of the timer period. This flag can be
cleared by writing a 1 only. Writing a 0 has no effect. If enabled (TIEx = 1 and ISELx = 1), TIFn causes
an interrupt request.
0 Time-out has not yet occurred
1 Time-out has occurred

RTIF Real-Time Interrupt Flag. RTIF is set to 1 at the end of the RTI period. This flag can be cleared by writing
a 1 only. Writing a 0 has no effect. If enabled (RTIE = 1), RTIF causes an interrupt request.
0 RTI time-out has not yet occurred
1 RTI time-out has occurred

Periodic Interrupt Timer and Real Time Interrupt (PIT_RTI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 28-7
 Preliminary

28.3.2.5 PIT Interrupt/DMA Select Registers (PITINTSEL)

This register decides whether a channel generates an interrupt or is used for DMA triggering.

Offset: 0x0104 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0
TIE8 TIE7 TIE6 TIE5 TIE4 TIE3 TIE2 TIE1 RTIE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-5. PIT Interrupt Enable Register (PITINTEN)

Table 28-6. PITINTEN Field Descriptions

Field Description

bits 0–22 Reserved.

TIEn Timer Interrupt Enable Bit.
0 Interrupt requests from Timer x are disabled
1 Interrupt will be requested whenever TIFx is set
When an interrupt is pending (TIF/RTIF set), enabling the interrupt will immediately cause an interrupt
event. To avoid this, the associated TIF/RTIF flag must be cleared first.

RTIE Real Time Interrupt Enable Bit.
0 Interrupt requests from RTI are disabled
1 Interrupt will be requested whenever RTIF is set

Offset: 0x0108 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0
ISEL8 ISEL7 ISEL6 ISEL5 ISEL4 ISEL3 ISEL2 ISEL1

1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 28-6. PIT Interrupt/DMA Select Registers (PITINTSEL)

Periodic Interrupt Timer and Real Time Interrupt (PIT_RTI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

28-8 Freescale Semiconductor
 Preliminary

28.3.2.6 PIT Timer Enable Register (PITEN)

This register enables the PIT timers.

28.3.2.7 PIT Control Register (PITCTRL)

This register controls whether the clock for the timers 1–8 is enabled. The RTI timer (timer 0) runs on a
separate clock (XOSC) that is controlled by the CRP and PLL.

Table 28-7. PITINTSEL Field Descriptions

Field Description

0–22 Reserved.

23–30
ISELn

Interrupt Selector.
0 The timer will trigger a DMA channel
1 The timer will generate an interrupt if enabled

31 Reserved.

Offset: 0x010C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0
PEN8 PEN7 PEN6 PEN5 PEN4 PEN3 PEN2 PEN1 PEN0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-7. PIT Timer Enable Register (PITEN)

Table 28-8. PITEN Field Descriptions

Field Description

bits 0–22 Reserved.

PENn Timer Enable Bit.
0 Timer will be disabled
1 Timer will be active

Periodic Interrupt Timer and Real Time Interrupt (PIT_RTI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 28-9
 Preliminary

28.4 Functional Description
This section gives detailed information about the internal operation of the module. The PIT block has nine
timers: one RTI timer and eight additional timers for general-purpose use (e.g. DMA triggering, eQADC
triggering).

28.4.1 Timer / RTI

The timers generate triggers at periodic intervals, when enabled. They load their start values, as specified
in their TLVAL registers, then count down until they reach 0. This creates a trigger, then they load their
respective start value again. Each time a timer reachers 0, it will generate a trigger pulse and set the
interrupt flag.

All interrupts can be enabled or masked (by setting the TIE/RTIE bits in the PITINTEN register and
selecting interrupts in the PITINTSEL register). In the case of the RTI, because clearing the interrupt
crosses clock domains, a minimum value of 32 must be maintained.

If desired, the current counter value of the timer can be read via the TVAL registers. The value of the RTI
counter can be delayed considerably, as it is synchronized to the bus clock from the RTI clock domain.

Offset: 0x0110 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
MDIS

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-8. PIT Control Registers (PITCTRL)

Table 28-9. PITCTRL Field Descriptions

Field Description

bits 0–6 Reserved.

Note: Bit 6 is a reserved bit, but can be read and written. Writing to this bit will update the value, and
reading it will return the last value written, but this bit has no other effect.

MDIS Module Disable. This is used to disable timers 1–8. The RTI (timer 0) is not affected by this bit. The
module should be enabled before any setup is done.
0 Clock for timers 1–8 is enabled
1 Clock for timers 1–8 is disabled (default)

bits 8–31 Reserved.

Periodic Interrupt Timer and Real Time Interrupt (PIT_RTI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

28-10 Freescale Semiconductor
 Preliminary

The counter period can be restarted by first disabling and then enabling the timer with the PITEN register
(see Figure 28-9).

The counter period of a running timer can be modified by first disabling the timer, setting a new load value,
and then enabling the timer again (see Figure 28-10).

It is also possible to change the counter period without restarting the timer by writing the TLVAL register
with the new load value. This value will be loaded after the next trigger event (see Figure 28-11).

Figure 28-9. Stopping and Starting a Timer

Figure 28-10. Modifying Running Timer Period

Figure 28-11. Dynamically Setting a New Load Value

28.4.2 Debug Mode

In debug mode the timers will be frozen—this is intended to aid software development, allowing the
developer to halt the processor, investigate the current state of the system (e.g. the timer values), and then
continue the operation.

28.4.3 Interrupts

The interrupts generated by the PIT are listed in Table 28-10. Refer to the MCU specification for related
vector addresses and priorities.

p1p1

Timer Enabled Disable
Timer

p1

Start Value = p1

Trigger
Event

p1

Re-Enable
Timer

p1

Timer Enabled Disable
Timer, Start Value = p1

Trigger
Event

Re-Enable
Timer

p1

Set new
Start Value

p2 p2 p2

p1p1

Timer Enabled New Start
Value p2 set

p1 p2

Start Value = p1

p2

Trigger
Event

Periodic Interrupt Timer and Real Time Interrupt (PIT_RTI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 28-11
 Preliminary

28.4.3.1 Real-Time Interrupt

The PIT_RTI generates a real-time interrupt when the selected interrupt time period elapses. The RTI
interrupt is disabled locally by setting the RTIE bit to 0. The real time interrupt flag (RTIF) is set to 1 when
a timeout occurs, and is cleared to 0 by writing a 1 to the RTIF bit.

28.4.3.2 Timer Interrupts

The PIT can also generate timer interrupts on all eight timer channels when the timer’s selected interrupt
period elapses. Timer interrupts are disabled locally by setting the TIE bits to 0. The timer interrupt flags
(TIF) are set to 1 when a timeout occurs on the associated timer and are cleared to 0 by writing a 1 to that
TIF bit. To activate a timer interrupt it must also be switched from trigger mode into interrupt mode, using
the PITINTSEL register.

The timer interrupts are general-purpose interrupts.

28.5 Initialization and Application Information

28.5.1 Example Configuration

In the example configuration:

• The PIT clock has a frequency of 50 MHz

• The RTI clock has a frequency of 10 MHz

• The RTI timer shall be set up to create a wakeup interrupt every 500 ms

• Timer 1 shall create an interrupt every 5.12 ms

• Timer 8 shall create a trigger event every 30 ms.

First the PIT module needs to be activated by writing a 0 to the MDIS bit in the PITCTRL register.

The 50 MHz clock frequency equates to a clock period of 20 ns and the 10 MHz frequency equates to a
clock period of 100 ns. Therefore the RTI timer needs to trigger every 500 ms/100 ns = 5000000 cycles,
timer 1 needs to trigger every 5.12 ms/20 ns = 256000 cycles, and timer 8 needs to trigger every
30 ms/20 ns = 1500000 cycles. The value for the TVAL register trigger would be calculated as (period /
clock period) –1.

This means that TVAL0 will be written with 004C4B3F hex, TVAL1 with 0x0003_E7FF, and TVAL8 with
0x0016_E35F.

Table 28-10. PIT Interrupt Vectors

Interrupt Source Local Enable

Real-time interrupt RTIE

Timer interrupts TIE8:1

Periodic Interrupt Timer and Real Time Interrupt (PIT_RTI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

28-12 Freescale Semiconductor
 Preliminary

To generate the interrupt, the interrupt line must be enabled by writing a 1 to the RTIE bit in the PITINTEN
register. There is no need to modify PITINTSEL because the RTI timer is always used for interrupts and
never for trigger events. To start the RTI, PEN0 in the PIT timer enable register 0 (PITEN0) is set.

The interrupt for timer 1 is enabled by setting TIE1 in the PITINTEN register and the interrupt/DMA
selector ISEL1 (in PITINTSEL) is set to 1. The timer is started by writing a 1 to bit PEN1 in the PITEN
register.

Timer 8 will be used for triggering only. Timer 8 is started by writing a 1 to bit PEN8 in the PITEN register.

It is also possible to set up all timers and start them simultaneously by writing to the PITEN register.
However the RTI still cannot start in synchronization because it is running on a separate clock.

The following example code matches the described setup:
// turn on PIT
PIT_REG_P->pit_CTRL = 0x00;

// RTI
CRG_REG_P->crg_CTL |= 1<<2; // Set RTI bit in CLKSEL
PIT_REG_P->pit_TLVAL0 = 0x004C4B3F; // setup RTI for 5000000 cycles
PIT_REG_P->pit_INTEN = 0x00000001; // let RTI generate interrupts
// writing INTSEL is unnecessary
PIT_REG_P->pit_EN |= 1<<0; // start RTI

// Timer 1
PIT_REG_P->pit_TLVAL1 = 0x0003E7FF; // setup timer 1 for 256000 cycles
PIT_REG_P->pit_INTEN |= 1<<1; // enable Timer 1 interrupts
PIT_REG_P->pit_INTSEL |= 1<<1; // select Timer 1 for interrupts
PIT_REG_P->pit_EN |= 1<<1; // start timer 1

// Timer 8
PIT_REG_P->pit_TLVAL8 = 0x0016E35F; // setup timer 8 for 1500000 cycles
// timer 8 can’t generate interrupts -> no settings needed for trigger
PIT_REG_P->pit_EN |= 1<<8; // start timer 8

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 29-1
 Preliminary

Chapter 29
External Bus Interface (EBI)

29.1 Introduction
The EBI manages the transfer of information between the internal buses and the memories or peripherals
in the external address space. The EBI includes a memory controller that generates interface signals to
support a variety of external memories. This includes single data rate (SDR) burst mode flash, SRAM, and
asynchronous memories. It supports up to four regions (via chip selects), each with its own programmed
attributes.

29.1.1 Block Diagram

A simplified block diagram of the EBI illustrates the functionality and interdependence of major blocks
(see Figure 29-1).

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

29-2 Freescale Semiconductor
 Preliminary

Figure 29-1. EBI Block Diagram

29.1.2 Features

The EBI has these major features:

• Multiplexed 32-bit address/data bus (single master and external master)

— In the 208-pin package, there can be up to 24 address bits with 32-bit data and four chip selects.
In the 144-pin and 176-pin packages, there are 24 address bits with only 16 bits of data and four
chip selects

• Memory controller with support for various memory types:

— Synchronous burst SDR flash and SRAM

— Asynchronous/legacy flash and SRAM

External bus
interface

Memory
controller

External master
controller

Bus
monitor

Registers

Arbiter

Slave
interface/

CLKOUT driver CLKOUT

crossbar switch
(AXBS)

Master
interface/

crossbar switch
(AXBS)

Peripheral
bridge

AD[0:31]

CS[0:3]

TS

OE

 RD_WR

BDIP

TA

TEA

WE[0:3]

(PBridge_A)

system bus

system bus

ALE

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 29-3
 Preliminary

• Burst support (wrapped only)

NOTE
Because the MPC5510 has no cache, the core does not generate any burst
accesses; therefore the only burst accesses possible to the EBI are from the
DMA.

• Bus monitor

• Port size configuration per chip select (16 or 32 bits)

• Configurable wait states

• Configurable internal or external transfer acknowledge (TA) per chip select

• Four chip-select (CS[0:3]) signals

• Four write/byte enable (WE[0:3]) signals

• Configurable bus speed modes (1/2 or 1/4 of system clock frequency) - up to 25 MHz maximum
bus frequency

• Stop and module-disable modes for power savings

• Optional automatic CLKOUT gating to save power and reduce EMI

• Misaligned access support (for chip-select accesses only)

29.1.3 Modes of Operation

The mode of the EBI is determined by the MDIS, EXTM, and AD_MUX bits in the EBI_MCR. See
Section 29.3.2.3, “EBI Module Configuration Register (EBI_MCR),” for details. Configurable bus speed
modes and debug mode are modes that the MCU can enter, in parallel to the EBI being configured in one
of its module-specific modes.

29.1.3.1 Single Master Mode

In single-master mode, the EBI responds to internal requests matching one of its regions, but ignores all
externally-initiated bus requests. The MCU is the only master allowed to initiate transactions on the
external bus in this mode; therefore, it acts as a parked master and does not have to arbitrate for the bus
before starting each cycle. Single-master mode is entered when EXTM=0 and MDIS=0 in the EBI_MCR.

29.1.3.2 External Master Mode

External-master mode is supported for factory test use only.

29.1.3.3 Module Disable Mode

The module disable mode is used for MCU power management. The clock to the non-memory-mapped
logic in the EBI can be stopped while in module disable mode. Requests (other than to memory-mapped
logic) must not be made to the EBI while it is in module disable mode, even if the clocks have not yet been
shut off. In this case, the behavior is undefined. Module disable mode is entered when MDIS = 1 in the
EBI_MCR.

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

29-4 Freescale Semiconductor
 Preliminary

29.1.3.4 Configurable Bus Speed Modes

In configurable bus speed modes, the external CLKOUT frequency is divided down from the internal
system clock. The EBI behavior remains dictated by the mode of the EBI, except that the EBI drives and
samples signals at the scaled CLKOUT rather than the internal system clock. This mode is selected by
writing the external clock control register in the system integration module (SIU_ECCR). The
configurable bus speed modes support 1/2 or 1/4 speed modes, meaning that the external CLKOUT
frequency is scaled down (by 2 or 4) compared with that of the internal system clock, which is unchanged.

NOTE
Nothing prevents the user from configuring the SIU register to run the EBI
in 1/2 or 1/4 of system clock frequency; however, the user must ensure that
the maximum operating frequency of the EBI (per the electrical
specification) is not exceeded, or unreliable behavior may result. In the
common case of running the system clock at 66 MHz, this means that only
1/4 speed mode is supported, because at 1/2 speed the maximum EBI bus
frequency (25 MHz) would be exceeded.

29.1.3.5 16-Bit Data Bus Mode

The EBI has an internal 32-bit data bus, but the EBI supports a 16-bit data bus mode for MCUs that have
only 16 data bus signals pinned out, or for systems where the use of a different multiplexed function (e.g.
GPIO) is desired on 16 of the 32 data pins. In this mode, AD[16:31] are the only data signals used by the
EBI by default, though the user can change this to use AD[0:15] instead by modifying the D16_31 bit in
the EBI_MCR.

For EBI-mastered accesses, the operation in 16-bit data bus mode (DBM=1, PS=x) is similar to a
chip-select access to a 16-bit port in 32-bit data bus mode (DBM=0, PS=1), except for the case of a
non-chip-select access of exactly 32-bit size.

EBI-mastered non-chip-select accesses of exactly 32-bit size are supported via a two (16-bit) beat burst
for both reads and writes. See Section 29.4.2.10, “Non-Chip-Select Burst in 16-bit Data Bus Mode,” for
more details. Non-chip-select transfers of non-32-bit size are supported in standard non-burst fashion.

16-bit data bus mode is entered when DBM=1 in the EBI_MCR. On MPC5510, the default value of the
DBM bit out of reset is 0. Thus the EBI operates in 32-bit data bus mode by default.

29.1.3.6 Multiplexed Address on Data Bus Mode

This mode covers several cases aimed at reducing pin count on MCU and external components. In this
mode, the AD pins will drive (for internal master cycles) the address value on the first clock of the cycle
(while TS is asserted). The AD pins will also be used to sample the incoming address on the first clock of
a cycle for external master accesses. The address latch enable (ALE) is valid when the address is presented
on the AD pins and the falling edge of ALE may be used to capture the valid address.

The memory controller supports per-chip-select selection of multiplexing address/data through the
BRx[AD_MUX] bit.

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 29-5
 Preliminary

Address on data bus multiplexing also supports the 16-bit data bus mode (MCR[DBM]=1) and 16-bit
memories (ORx[PS]=1). The user can select which 16 data signals are used (AD[0:15] or AD[16:31]) by
writing the D16_31 bit in the EBI_MCR. For either setting of D16_31, the 16 least significant bits (LSBs)
of external address (ADDR[16:31]) are driven onto the selected 16 AD pins. If additional address lines are
required to interface to the memory, then non-muxed address pins are required to complete the address
space (ADDR[8:15] are available as non-muxed address pins).

See Section 29.4.2.11, “Address Data Multiplexing,” for more details.

29.1.3.7 Debug Mode

When the MCU is in debug mode, the EBI behavior is unaffected and remains dictated by the mode of the
EBI.

29.1.3.8 Stop Mode

The EBI supports a stop mode mechanism used for MCU power management. When a request is made to
enter stop mode (controlled in SIU_HLT register outside EBI), the EBI block completes any pending bus
transactions and acknowledges the stop request. After the acknowledgement, the system clock input may
be shut off by the clock driver on the MCU. While the clocks are shut off, the EBI is not accessible. While
in stop mode, accesses to the EBI from the internal master will terminate with transfer error (internally, no
external TEA assertion).

29.2 Signal Description

29.2.1 External Signal Description

29.2.1.1 BDIP — Burst Data in Progress

BDIP is asserted to indicate that the EBI is requesting another data beat following the current one.

BDIP is driven by the EBI on all EBI-mastered external burst cycles, but is only sampled by burst mode
memories that have a corresponding pin.

29.2.1.2 ADDR [8:15] — Address Lines 8-15

The ADDR[8:15] signals specify the physical address of the bus transaction.

29.2.1.3 CLKOUT — Clockout

CLKOUT is a general-purpose clock output signal to connect to the clock input of SDR external memories
and in some cases to the input clock of another MCU in multi-master configurations.

29.2.1.4 CS [0:3] — Chip Selects 0-3

CSx is asserted by the master to indicate that this transaction is targeted for a particular memory bank on
the Primary external bus.

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

29-6 Freescale Semiconductor
 Preliminary

CS is driven in the same clock as the assertion of TS and valid address, and is kept valid until the cycle is
terminated

29.2.1.5 AD[0:31] — Multiplexed Address and Data Lines 0-31

The AD[0:31] signals contain the address and data for the current transaction.

29.2.1.6 ALE — Address Latch Enable

The address latch enable (ALE) is valid when the address is presented on the AD pins and the falling edge
of ALE may be used to capture the valid address. ALE is asserted high during the low phase of CLKOUT
when TS is asserted.

29.2.1.7 OE — Output Enable

OE is used to indicate when an external memory is permitted to drive back read data External memories
must have their data output buffers off when OE is negated. OE is only asserted for chip-select accesses.

For read cycles, OE is asserted one clock after TS assertion and held until the termination of the transfer.
For write cycles, OE is negated throughout the cycle.

29.2.1.8 RD_WR — Read / Write

RD_WR indicates whether the current transaction is a read access or a write access.

RD_WR is driven in the same clock as the assertion of TS and valid address, and is kept valid until the
cycle is terminated.

29.2.1.9 TA — Transfer Acknowledge

TA is asserted to indicate that the slave has received the data (and completed the access) for a write cycle,
or returned data for a read cycle If the transaction is a burst read, TA is asserted for each one of the
transaction beats. For write transactions, TA is only asserted once at access completion, even if more than
one write data beat is transferred.

29.2.1.10 TEA — Transfer Error Acknowledge

TEA is asserted by an external device to indicate that an error condition has occurred during the bus cycle.

29.2.1.11 TS — Transfer Start

TS is asserted by the current bus owner to indicate the start of a transaction on the external bus

TS is only asserted for the first clock cycle of the transaction, and is negated in the successive clock cycles
until the end of the transaction.

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 29-7
 Preliminary

29.2.1.12 WE[0:3] — Write Enables 0-3

Write enables are used to enable program operations to a particular memory WE[0:3] are only asserted for
chip-select accesses.

For chip-select accesses to a 16-bit port, only WE[0:1] are used by the EBI, regardless of which half of the
DATA bus is selected via the D16_31 bit in the EBI_MCR.

29.2.2 Signal Function and Direction by Mode

The EBI operating mode is configured using two fields in the EBI master control register (EBI_MCR):
EXTM and MDIS. Their settings determine which EBI signals are valid and the I/O direction. When a
signal is configured for non-EBI function in the EBI_MCR, the EBI always negates the signal if the EBI
controls the corresponding pad (determined by SIU configuration). Table 29-1 lists the function and
direction of the external signals in each of the EBI modes of operation. The clock signals are not included
because they are output only (from the FMPLL module) and are not affected by EBI modes. See
Section 29.3.2.3, “EBI Module Configuration Register (EBI_MCR),” for details on the EXTM and MDIS
bits.

Table 29-1. Signal Function (f) According to EBI Mode Settings

Signal Name

Modes

Module Disable f

EXTM = n, MDIS = 1

Single Master f
I/O Direction

EXTM = 0, MDIS = 0

External Master f
I/O Direction

EXTM = 1, MDIS = 0

BDIP non-EBI function Burst data in progress
(Output)1

Not supported

CS[0:3] non-EBI function Chip selects (Output)1

AD[0:31] non-EBI function Multiplexed Address and
Data bus (I/O)

ADDR[8:15] non-EBI function Non-multiplexed Address
(O)

OE non-EBI function Output enable (Output)

RD_WR non-EBI function Read_Write (Output)

TA non-EBI function Transfer acknowledge
(I/O)

TEA non-EBI function Transfer error
acknowledge (I/O)

TS non-EBI function Transfer start (Output)

ALE non-EBI function Address latch enable
(Output)

WE[0:3] non-EBI function Write/Byte enables
(Output)1

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

29-8 Freescale Semiconductor
 Preliminary

29.2.3 Signal Pad Configuration by Mode

Depending on the mode of operation, many external signals must have their pads configured to operate as
push/pull signals for correct system operation. This configuration is done in the system integration unit
(SIU) module.

The open drain mode of the pads configuration module is not used for any EBI signals.

Table 29-2 shows how each EBI signal must have its pad configured prior to operating in each of the EBI
modes. See Section 29.3.2.3, “EBI Module Configuration Register (EBI_MCR)” for details on the EXTM
and MDIS bits.

29.3 Memory Map and Registers
This section provides a detailed description of all EBI registers.

29.3.1 Module Memory Map

The EBI memory map is shown in Table 29-3. The address of each register is given as an offset to the EBI
base address. Registers are listed in address order, identified by complete name and mnemonic, and lists
the type of accesses allowed.

1 Although external master accesses can drive these pins, the EBI tri-states the pins and does not sample
them for input.

Table 29-2. Required EBI Pad Configuration by Mode

Signal Name
Module Disable Mode1

(EXTM = X, MDIS = 1)

1 X indicates the pad configuration is a don’t care because the signal is not used by the EBI in this mode.

Single Master Mode
(EXTM = 0, MDIS = 0)

External Master Mode
(EXTM = 1, MDIS = 0)

BDIP X Push/Pull

Not supported

CS[0:3] X Push/Pull

AD[0:31] X Push/Pull,
Three-stateable

ADDR[8:15] X Push/Pull

OE X Push/Pull

RD_WR X Push/Pull

TA X Push/Pull,
Three-stateable

TEA X Push/Pull,
Three-stateable

TS X Push/Pull

ALE X Push/Pull

WE[0:3] X Push/Pull

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 29-9
 Preliminary

29.3.2 Register Descriptions

This section lists some special considerations for EBI registers and then the EBI registers in address order,
describing the registers and their bit fields.

29.3.2.1 Writing EBI Registers While a Transaction is in Progress

Other than the exceptions noted below, EBI registers must not be written while a transaction to the EBI
(from internal master) is in progress (or within 2 CLKOUT cycles after a transaction has just completed,
to allow internal state machines to go IDLE). In such cases, the behavior is undefined.

Exceptions that can be written while an EBI transaction is in progress are the following:

• All bits in EBI_TESR

If code in external memory needs to write EBI registers, this must be done in a way that avoids modifying
EBI registers while external accesses are being performed, such as the following method:

• Copy the code that is doing the register writes (plus a return branch) to internal SRAM

• Branch to internal SRAM to run this code, ending with a branch back to external flash

29.3.2.2 Separate Input Clock for Registers

The EBI registers are accessed with a clock signal separate from the clock used by the rest of the EBI. In
module disable mode, the clock used by the non-register portion of the EBI is disabled to reduce power

Table 29-3. EBI Memory Map

Offset from
EBI_BASE

(0xFFFF_4000)
Register Access Reset Value Section/Page

0x0000 EBI_MCR — EBI module configuration register R/W1

1 All bits may not be writeable. See register description.

0x0000_0804 29.3.2.3/29-10

0x0004 Reserved

0x0008 EBI_TESR — EBI transfer error status register R/W1 0x0000_0000 29.3.2.4/29-11

0x000c EBI_BMCR — EBI bus monitor control register R/W1 0x0000_FF80 29.3.2.5/29-12

0x0010 EBI_BR0 — EBI base register bank 0 R/W1 0x2000_0042 29.3.2.6/29-13

0x0014 EBI_OR0 — EBI option register bank 0 R/W1 0xE000_0000 29.3.2.7/29-15

0x0018 EBI_BR1 — EBI base register bank 1 R/W1 0x2000_0042 29.3.2.6/29-13

0x001C EBI_OR1 — EBI option register bank 1 R/W1 0xE000_0000 29.3.2.7/29-15

0x0020 EBI_BR2 — EBI base register bank 2 R/W1 0x2000_0042 29.3.2.6/29-13

0x0024 EBI_OR2 — EBI option register bank2 R/W1 0xE000_0000 29.3.2.7/29-15

0x0028 EBI_BR3 — EBI base register bank 3 R/W1 0x2000_0042 29.3.2.6/29-13

0x002C EBI_OR3 — EBI option register bank 3 R/W1 0xE000_0000 29.3.2.7/29-15

 0x0020–0x005C Reserved

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

29-10 Freescale Semiconductor
 Preliminary

consumption. The clock signal dedicated to the registers, however, allows access to the registers even
while the EBI is in the module disable mode. Flag bits in the EBI transfer error status register (EBI_TESR),
however, are set and cleared with the clock used by the non-register portion of the EBI. Consequently, in
module disable mode, the EBI_TESR does not have a clock signal and is therefore not writable.

29.3.2.3 EBI Module Configuration Register (EBI_MCR)

The EBI_MCR contains bits that configure various attributes associated with EBI operation.

Offset: 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R ACG
E

EXT
M

EARB
0 1 0 0 0 0

MDIS
0 0 0 D16_

31
AD_
MUX

DBM
W

Reset 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0

Figure 29-2. EBI Module Configuration Register (EBI_MCR)

Table 29-4. EBI_MCR Field Descriptions

Field Description

bits 0–15 Reserved.

ACGE Automatic CLKOUT Gating Enable. Enables the EBI feature of turning off CLKOUT (holding it high) during idle
periods in-between external bus accesses.
0 Automatic CLKOUT gating is disabled.
1 Automatic CLKOUT gating is enabled.

EXTM External Master Mode.
0 External master mode is inactive (single master mode).
1 External master mode is active.
Note: EXTM=1 is not supported on MPC5510.

EARB External Arbitration. When EXTM = 0, the EARB bit is a don’t care, and is treated as 0.
0 Internal arbitration is used.
1 External arbitration is used.

bits 19–24 Reserved.

Note: Reserved bits 19-20 are writeable, but writing to these bits have no effect other than to update the value
of the register. For future compatibility, this bit should be written to zero.

MDIS Module Disable Mode. Allows the clock to be stopped to the non-memory mapped logic in the EBI, effectively
putting the EBI in a software controlled power-saving state. See Section 29.1.3.3, “Module Disable Mode,” for
more information. No external bus accesses can be performed when the EBI is in module disable mode
(MDIS = 1).
0 Module disable mode is inactive.
1 Module disable mode is active.

bits 26–28 Reserved.

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 29-11
 Preliminary

29.3.2.4 EBI Transfer Error Status Register (EBI_TESR)

The EBI_TESR contains a bit for each type of transfer error on the external bus. A bit set to logic 1
indicates what type of transfer error occurred since the last time the bits were cleared. Each bit can be
cleared by reset or by writing a 1 to it. Writing a 0 has no effect.

This register is not writable in module disable mode due to the use of power saving clock modes.

D16_31 Data Bus 16_31 Select. The D16_31 bit controls whether the EBI uses the AD[0:15] or AD[16:31] signals, when
in 16-bit data bus mode (DBM=1) or for chip-select accesses to a 16-bit port (PS=1). For systems using A/D
muxing with a 16-bit port, it is recommended to set D16_31 to 1.
0 AD[0:15] signals are used for 16-bit port accesses
1 AD[16:31] signals are used for 16-bit port accesses

AD_MUX Address on Data Bus Multiplexing Mode. The AD_MUX bit controls whether non-chip-select accesses have the
address driven on the data bus in the address phase of a cycle.
0 Only data on data pins for non-CS accesses.
1 Address on data multiplexing mode is used for non-CS accesses.

DBM Data Bus Mode. Controls whether the EBI is in 32-bit or 16-bit data bus mode. On MPC5510, the default value
of DBM is 0.
0 32-bit data bus mode is used.
1 16-bit data bus mode is used.

Offset: 0x0008 Access: User read/write to clear

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TEAF BMTF

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-3. EBI Transfer Error Status Register (EBI_TESR)

Table 29-5. EBI_TESR Field Descriptions

Field Description

bits 0–29 Reserved.

Table 29-4. EBI_MCR Field Descriptions (continued)

Field Description

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

29-12 Freescale Semiconductor
 Preliminary

29.3.2.5 EBI Bus Monitor Control Register (EBI_BMCR)

The EBI_BMCR controls the timeout period of the bus monitor and whether it is enabled or disabled.

TEAF Transfer Error Acknowledge Flag. Set if the cycle was terminated by an externally generated TEA signal.
0 No error.
1 External TEA occurred.
This bit can be cleared by writing a 1 to it.

BMTF Bus Monitor Timeout Flag. Set if the cycle was terminated by a bus monitor timeout.
0 No error.
1 Bus monitor timeout occurred.
This bit can be cleared by writing a 1 to it.

Offset: 0x000C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
BMT BME

0 0 0 0 0 0 0

W

Reset 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

Figure 29-4. EBI Bus Monitor Control Register (EBI_BMCR)

Table 29-6. EBI_BMCR Field Descriptions

Field Description

bits 0–15 Reserved.

BMT Bus Monitor Timing. Defines the timeout period, in eight external bus clock resolution, for the bus monitor. See
Section 29.4.1.4, “Bus Monitor,” for more details on bus monitor operation.

BME Bus Monitor Enable. Controls whether the bus monitor is enabled for internal to external bus cycles. The BME
bit is ignored (treated as 0) for chip-select accesses with internal TA (SETA=0).
0 Disable bus monitor.
1 Enable bus monitor (for external TA accesses only).

bits 25–31 Reserved.

Table 29-5. EBI_TESR Field Descriptions (continued)

Field Description

Timeout Period 2 + (8 BMT)×
External Bus Clock Frequency
--=

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 29-13
 Preliminary

29.3.2.6 EBI Base Registers 0–3 (EBI_BRn)

The EBI_BRn are used to define the base address and other attributes for the corresponding chip select.

Offset: 0x0010 (EBI_BR0)
0x0018 (EBI_BR1)
0x0020 (EBI_BR2)
0x0028 (EBI_BR3)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BA
BA

W

Reset 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
BA

0 0 0
PS

0 0 0 AD_
MUX

BL WEBS TBDIP
0

SETA BI V
W

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

Figure 29-5. EBI Base Registers 0–3 (EBI_BRn)

Table 29-7. EBI_BRn Field Descriptions

Field Description

BA Base Address. Compared to the corresponding unmasked address signals among ADDR[0:16] of the internal
address bus to determine if a memory bank controlled by the memory controller is being accessed by an internal
bus master.
Note: The upper 3 bits of the BA field, EBI_BRn[0:2] are tied to a fixed value of 001. These bits can be read but

not written. They are ignored by the EBI during the chip-select address comparison

bits 17–19 Reserved.

PS Port Size. Determines the data bus width of transactions to this chip select bank.
0 32-bit port.
1 16-bit port.
Note: If EBI_MCR[DBM] is set for 16-bit data bus mode, the PS bit value is ignored and is always treated as a 1

(16-bit port).

bits 21–23 Reserved.

AD_MUX Address on Data Bus Multiplexing. The AD_MUX bit controls whether accesses for this chip select have the
address driven on the data bus in the address phase of a cycle. On MPC5510, the default value of AD_MUX is 1.
0 Address on data multiplexing mode is disabled for this chip select.
1 Address on data multiplexing mode is enabled for this chip select.

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

29-14 Freescale Semiconductor
 Preliminary

BL Burst Length. This bit is writable, but has no functional effect on MPC5510. Because the MPC5510 uses a 32-bit
data bus width (as opposed to 64-bit), all burst transfers use a 4-word length, regardless of the BL bit value. The
number of beats in a burst is automatically determined by the EBI to be 4 or 8 according to the port size (PS bit)
so that the burst fetches 4 32-bit words.

Note: The EBI does NOT support a 2-word external burst length. This means that neither a 4-beat burst to a
16-bit external memory (nor a 2-beat burst to 32-bit external memory) are supported.

WEBS Write Enable/Byte Select. Controls the functionality of the WE[0:3] signals.
0 The WE[0:3] signals function as write enable.
1 The WE[0:3] signals function as byte enable.

TBDIP Toggle Burst Data in Progress. Determines how long the BDIP signal is asserted for each data beat in a burst
cycle. See Section 29.4.2.5.1, “TBDIP Effect on Burst Transfer,” for details.
0 Assert BDIP throughout the burst cycle, regardless of wait state configuration.
1 Assert BDIP (BSCY + 1) external bus cycles only before expecting subsequent burst data beats.

bit 28 Reserved.

SETA Select External Transfer Acknowledge. The SETA bit controls whether accesses for this chip select will terminate
(end transfer without error) based on externally asserted TA or internally asserted TA. SETA should only be set
when the BI bit is 1 as well, since burst accesses with SETA=1 are not supported. Setting SETA=1 causes the
BI bit to be ignored (treated as 1, burst inhibited).
0 Transfer acknowledge (TA) is an output from the EBI, data phase will be terminated by the EBI.
1 Transfer acknowledge (TA) is an input to the EBI, data phase will be terminated by an external device.

BI Burst Inhibit. Determines whether or not burst read accesses are allowed for this chip-select bank. The BI bit is
ignored (treated as 1) for chip-select accesses with external TA (SETA=1).
0 Enable burst accesses for this bank.
1 Disable burst accesses for this bank. This is the default value out of reset (or when SETA=1).

V Valid Bit. Indicates that the contents of this base register and option register pair are valid. The appropriate CS
signal does not assert unless the corresponding V-bit is set.
0 This bank is not valid.
1 This bank is valid.

Table 29-7. EBI_BRn Field Descriptions (continued)

Field Description

Value Burst Length1

1 Total amount of data fetched in a burst transfer.

PS # Beats in Burst2

2 Number of external data beats used in external burst transfer. The size of each beat is
determined by PS value.

X3

3 An 8-word burst length is only supported for SoC’s using 64-bit data bus width. Because
the MPC5510 uses a 32-bit data bus width, the value of the BL bit is a don’t care, and all
burst transfers use a 4-word length.

4-word4

4 A word always refers to 32-bits of data, regardless of PS.

0 (32-bit) 4

1 (16-bit) 8

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 29-15
 Preliminary

29.3.2.7 EBI Option Registers 0–3 (EBI_ORn)

The EBI_ORn registers are used to define the address mask and other attributes for the corresponding chip
select.

Offset 0x0014 (EBI_OR0)
0x001C (EBI_OR1)

0x0024 (EBI_OR2)
0x002C (EBI_OR3)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 1 1 1
AM

W

Reset 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
AM

0 0 0 0 0 0 0
SCY

0
BSCY

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-6. EBI Option Registers 0–3 (EBI_ORn)

Table 29-8. EBI_ORn

Field Description

AM Address Mask. Allows masking of any corresponding bits in the associated base register. Masking the address
independently allows external devices of different size address ranges to be used. Any clear bit masks the
corresponding address bit. Any set bit causes the corresponding address bit to be used in comparison with the
address pins. Address mask bits can be set or cleared in any order in the field, allowing a resource to reside in
more than one area of the address map. This field can be read or written at any time.
Note: The upper three bits of the address mask (AM) field, EBI_ORx[0:2] are tied to a fixed value of 0b111.

These bits reset to their fixed value.

bits 17–23 Reserved.

SCY Cycle Length in Clocks. Represents the number of wait states (external bus cycles) inserted after the address
phase in the single cycle case, or in the first beat of a burst, when the memory controller handles the external
memory access. Values range from 0 to 15. This is the main parameter for determining the length of the cycle.
These bits are ignored when SETA=1.

The total cycle length for the first beat (including the TS cycle):

See Section 29.5.3.1, “Example Wait State Calculation”.

(2 + SCY) external clock cycles

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

29-16 Freescale Semiconductor
 Preliminary

29.4 Functional Description

29.4.1 External Bus Interface Features

29.4.1.1 Multiplexed 32-bit Address/Data Bus (Single Master)

This is the default mode of operation for MPC5510. See Section 29.1.3.6, “Multiplexed Address on Data
Bus Mode.” A 16-bit data bus mode is available via the DBM bit in EBI_MCR. See Section 29.1.3.5,
“16-Bit Data Bus Mode.”

29.4.1.2 Memory Controller with Support for Various Memory Types

The EBI contains a memory controller that supports a variety of memory types, including synchronous
burst mode flash and external SRAM, and asynchronous/legacy flash and external SRAM with a
compatible interface.

Each CS bank is configured via its own pair of base and option registers. Each time an internal to external
bus cycle access is requested, the internal address is compared with the base address of each valid base
register (with 17 bits having mask). See Figure 29-7. If a match is found, the attributes defined for this
bank in its BR and OR are used to control the memory access. If a match is found in more than one bank,
the lowest bank matched handles the memory access. For example, bank 0 is selected over bank 1.

bit 28 Reserved.

BSCY Burst Beats Length in Clocks. This field determines the number of wait states (external bus cycles) inserted in
all burst beats except the first, when the memory controller starts handling the external memory access and thus
is using SCY[0:3] to determine the length of the first beat. These bits are ignored when SETA=1
 • Total memory access length for each beat:

 • Total cycle length (including the TS cycle):

Note: The number of beats (4, 8, 16) is determined by BL and PS bits in the base register.

00 0-clock cycle wait states (1 clock per data beat)
01 1-clock cycle wait states (2 clocks per data beat)
10 2-clock cycle wait states (3 clocks per data beat)
11 3-clock cycle wait states (4 clocks per data beat)

Table 29-8. EBI_ORn (continued)

Field Description

(1 + BSCY) External Clock Cycles

(2 + SCY) + [(Number of Beats – 1) x (BSCY + 1)]

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 29-17
 Preliminary

Figure 29-7. Bank Base Address and Match Structure

When a match is found on one of the chip select banks, all its attributes (from the appropriate base and
option registers) are selected for the functional operation of the external memory access, such as:

• Number of wait states for a single-memory access, and for any beat in a burst access

• Burst enable

• Port size for the external accessed device

See Section 29.3.2.6, “EBI Base Registers 0–3 (EBI_BRn),” and Section 29.3.2.7, “EBI Option Registers
0–3 (EBI_ORn),” for a full description of all chip select attributes.

When no match is found on any of the chip select banks, the default transfer attributes shown in Table 29-9
are used.

Table 29-9. Default Attributes for Non-Chip Select Transfers

CS Attribute Default Value Comment

PS 0 32-bit port size

BL 0 Burst length is don’t care because burst is disabled

WEBS 0 Write enables

TBDIP 0 Don’t care since burst is disabled

BI 1 Burst inhibited

SCY 0 Don’t care since external TA is used

BSCY 0 Don’t care since external TA is used

AD_MUX 0 Address on data multiplexing

SETA 1 Select external TA to terminate access

BA
[0]

Comp

BA
[1]

Comp

BA
[2]

Comp

BA
[3]

Comp

BA
[4]

Comp

• • •
BA
[15]

Comp

BA
[16]

Comp

AM
[0]

AM
[1]

AM
[2]

AM
[3]

AM
[4]

AM
[5] • • •

AM
[6]

AM
[16]

• • •

A[0:16]

AM[0:16]

Match

Address MaskBase Address

• • •

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

29-18 Freescale Semiconductor
 Preliminary

29.4.1.3 Burst Support (Wrapped Only)

The EBI supports burst read accesses of external burstable memory. To enable bursts to a particular
memory region, clear the burst inhibit (BI) bit in the appropriate base register. All external bursts use a
4-word burst length on MPC5510. See Section 29.4.2.5, “Burst Transfer,” for more details.

In 16-bit data bus mode (EBI_MCR[DBM]=1), a special 2-beat burst case is supported for reads and writes
for 32-bit non-chip select accesses only. This allows 32-bit coherent accesses to another MCU. See
Section 29.4.2.10, “Non-Chip-Select Burst in 16-bit Data Bus Mode.”

Bursting of accesses that are not controlled by the chip selects is not supported for any other case besides
the special case of 32-bit accesses in 16-bit data bus mode.

Burst writes are not supported for any other case besides the special case of 32-bit non-chip select writes
in 16-bit data bus mode. Internal requests to write more than 32 bits (such as a cache line) externally are
broken up into separate 32-bit or 16-bit external transactions according to the port size. See
Section 29.4.2.6, “Small Accesses (Small Port Size and Short Burst Length)” for more detail on these
cases.

29.4.1.4 Bus Monitor

When enabled (via the BME bit in the EBI_BMCR), the bus monitor detects when no TA assertion is
received within a maximum timeout period for non-chip select accesses (that is, accesses that use external
TA). The timeout for the bus monitor is specified by the BMT field in the EBI_BMCR. Each time a timeout
error occurs, the BMTF bit is set in the EBI_TESR. The timeout period is measured in external bus
(CLKOUT) cycles. Thus the effective real-time period is multiplied (by 2, 3, etc) when a slower-speed
mode is used, even though the BMT field itself is unchanged.

29.4.1.5 Port Size Configuration Per Chip Select (16 or 32 Bits)

The EBI supports memories with data widths of 16 or 32 bits. The port size for a particular chip select is
configured by writing the PS bit in the corresponding base register.

29.4.1.6 Configurable Wait States

From 0 to 15 wait states can be programmed for any cycle that the memory controller generates, via the
SCY bits in the appropriate option register. From zero to three wait states between burst beats can be
programmed using the BSCY bits in the appropriate option register.

29.4.1.7 Configurable Internal or External TA per chip select

Each chip select can be configured (via the SETA bit) to have TA driven internally (by the EBI), or
externally (by an external device). See Section 29.3.2.6, “EBI Base Registers 0–3 (EBI_BRn),” for more
details on SETA bit usage.

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 29-19
 Preliminary

29.4.1.8 Four Chip Select (CS[0:3]) Signals

The EBI contains four chip select signals, controlling four independent memory banks. See
Section 29.4.1.2, “Memory Controller with Support for Various Memory Types,” for more details on chip
select bank configuration.

29.4.1.9 Four Write/Byte Enable (WE) Signals

The functionality of the WE[0:3] signals depends on the value of the WEBS bit in the corresponding base
register. Setting WEBS to 1 configures these pins as byte enable (BE[0:3]), but resetting it to 0 configures
them as write enable (WE[0:3]). WE[0:3] are asserted during write accesses only, while BE[0:3] are
asserted for both read and write accesses. The timing of the WE[0:3] signals remains the same in either
case.

The upper write/byte enable (WE0) indicates that the upper eight bits of the data bus (AD[0:7]) contain
valid data during a write/read cycle. The upper middle write/byte enable (WE1) indicates that the upper
middle eight bits of the data bus (AD[8:15]) contain valid data during a write/read cycle. The lower middle
write/byte enable (WE2) indicates that the lower middle eight bits of the data bus (AD[16:23]) contain
valid data during a write/read cycle. The lower write/byte enable (WE3) indicates that the lower eight bits
of the data bus (AD[24:31]) contain valid data during a write/read cycle.

NOTE
The exception to the preceding WE description is that for 16-bit port
transfers (DBM=1 or PS=1), only the WE[0:1] signals are used, regardless
of whether AD[0:15] or AD[16:31] are selected (via the D16_31 bit in the
EBI_MCR). This means if AD[16:31] are selected, WE0 indicates that
AD[16:23] contains valid data, and WE1 indicates that AD[24:31] contains
valid data.

The write/byte enable lines affected in a transaction for a 32-bit port (PS = 0) and a 16-bit port (PS = 1)
are shown in Table 29-10. Only big endian byte ordering is supported by the EBI.

Table 29-10. Write/Byte Enable Signals Function1

(X indicates that valid data is transferred on these bits)

Transfer
Size

Address 32-Bit Port Size 16-Bit Port Size2

A30 A31 WE0 WE1 WE2 WE3 WE0 WE1 WE2 WE3

Byte 0 0 X — — — X — — —

0 1 — X — — — X — —

1 0 — — X — X — — —

1 1 — — — X X — —

16-bit 0 0 X X — — X X — —

1 0 — — X X X X — —

32-bit 0 0 X X X X X3 X 2 — —

Burst 0 0 X X X X X X — —

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

29-20 Freescale Semiconductor
 Preliminary

29.4.1.10 Configurable Bus Speed Clock Modes

The EBI supports configurable bus speed clock modes. Refer to Section 29.1.3.4, “Configurable Bus
Speed Modes,” for more details on this feature.

29.4.1.11 Stop and Module Disable Modes for Power Savings

See Section 29.1.3, “Modes of Operation,” for a description of the power saving modes.

29.4.1.12 Optional Automatic CLKOUT Gating

The EBI has the ability to hold the external CLKOUT pin high when the EBI’s internal master state
machine is idle and no requests are pending. The EBI outputs a signal to the pads logic in the MCU to
disable CLKOUT. This feature is disabled out of reset, and can be enabled or disabled by the ACGE bit in
the EBI_MCR.

29.4.1.13 Misaligned Access Support

The EBI has limited misaligned access support. Misaligned non-burst chip-select transfers from internal
masters are supported. The EBI aligns the accesses when it sends them out to the external bus (splitting
them into multiple aligned accesses if necessary), so that external devices are not required to support
misaligned accesses. Burst accesses (internal master) must be 32-bit aligned.

29.4.1.13.1 Misaligned Access Support (32-bit)

Table 29-11 shows all the misaligned access cases supported by the EBI (using a 32-bit implementation),
as seen on the internal master bus. All other misaligned cases are not supported. If an unsupported
misaligned access to the EBI is attempted (such as non-chip-select or burst misaligned access), the EBI
errors the access on the internal bus and does not start the access (nor assert TEA) externally.

1 This table applies to aligned internal master transfers only. In the case of a misaligned
internal master transfer that is split into multiple aligned external transfers, not all write
enables X’d in the table will necessarily assert. See Section 29.4.1.13, “Misaligned
Access Support.”

2 Also applies when DBM=1 for 16-bit data bus mode.
3 This case consists of two 16-bit external transactions, but for both transactions the

WE[0:1] signals are the only WE signals affected.

Table 29-11. Misalignment Cases Supported by a 32-bit EBI (internal bus)

#1 Program Size and
byte offset

Address
[30:31]2,3 Data Bus Byte Strobes4 HSIZE5 HUNALIGN6

1 Half @0x1 01 0110 10 1

4
—

Half @0x3
(2 AHB transfers)

11
z00

0001
1000

017

00
1
0

8 Word @0x1
(2 AHB transfers)

01 0111
1000

10
00

1
0

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 29-21
 Preliminary

Table 29-12 shows which external transfers are generated by the EBI for the misaligned access cases in
Table 29-11, for each port size.

The number of external transfers for each internal AHB master request is determined by the HSIZE value
for that request relative to the port size. For example, a halfword write to 0×3 (misaligned case #4) with
16-bit port size results in four external 16-bit transfers because the transfer granularity of 32 bits. For cases
where two or more external transfers are required for one internal transfer request, these external accesses
are considered part of a small access set, as described in Section 29.4.2.6, “Small Accesses (Small Port
Size and Short Burst Length).”

Because all transfers are aligned on the external bus, normal timing diagrams and protocol apply.

9 Word @0x2
(2 AHB transfers)

10 0011
1100

10
01

1
0

10
11

Word @0x3
(2 AHB transfers)

11
z00

0001
1110

107

10
1
1

1 Misaligned case number. Only transfers where HUNALIGN=1 are numbered as misaligned cases. The missing
case numbers cannot occur on a 32-bit implementation.

2 Address on internal master AHB bus, not necessarily address on external ADDR pins.
3 Address Z is incremented by one 32-bit word compared to previous access on the bus.
4 Internal byte strobe signals on AHB bus. Shown with big-endian byte ordering in this table, even though internal

master AHB bus uses little-endian byte ordering (EBI flips order internally).
5 Internal signal on AHB bus; 00=8 bits, 01=16 bits, 10=32 bits. HSIZE is driven according to the smallest aligned

container that contains all the requested bytes. This results in extra EBI external transfers in some cases.
6 Internal signal on AHB bus that indicates that this transfer is misaligned (when 1).
7 For this case, the EBI internally treats HSIZE as 00 (1-byte access).

Table 29-12. Misalignment Cases Supported by a 32-bit EBI (external bus)

#1 PS2 Program Size
and byte offset

ADDR[30:31]3,4 WE[0:3]5

1 0 Half @0x1 00 1001

1 00
10

1011
0111

4 0 Half @0x3
(2 AHB

transfers)

116 1110

— z00 0111

4 1 116 1011

— z00 0111

Table 29-11. Misalignment Cases Supported by a 32-bit EBI (internal bus) (continued)

#1 Program Size and
byte offset

Address
[30:31]2,3 Data Bus Byte Strobes4 HSIZE5 HUNALIGN6

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

29-22 Freescale Semiconductor
 Preliminary

29.4.2 External Bus Operations

The following sections provide a functional description of the external bus, the bus cycles provided for
data transfer operations, bus arbitration, and error conditions.

29.4.2.1 External Clocking

The CLKOUT signal sets the frequency of operation for the bus interface directly. Internally, the MCU
uses a phase-locked loop (PLL) circuit to generate a master clock for all of the MCU circuitry (including
the EBI) that is phase-locked to the CLKOUT signal. In general, all signals for the EBI are specified with
respect to the rising-edge of the CLKOUT signal, and they are guaranteed to be sampled as inputs or
changed as outputs with respect to that edge.

29.4.2.2 Reset

Upon detection of internal reset, the EBI immediately terminates all transactions.

8 0 Word @0x1
(2 AHB

transfers)

00 1000

— z00 0111

8 1 00
10

1011
0011

— z00 0111

9 0 Word @0x2
(2 AHB

transfers)

00 1100

— z00 0011

9 1 10 0011

— z00 0011

10 0 Word @0x3
(2 AHB

transfers)

116 1110

11 z00 0001

10 1 116 1011

11 z00
z10

0011
0111

1 Misaligned case number, from Table 29-11.
2 Port size; 0=32 bits, 1=16 bits.
3 External ADDR pins, not necessarily the address on internal master AHB bus.
4 For address with Z — address bit 29 will increment to next word. For all other

cases, address bit 29 will be unchanged.
5 External WE pins. Note that these pins have negative polarity, opposite of the

internal byte strobes in Table 29-11.
6 Treated as 1-byte access.

Table 29-12. Misalignment Cases Supported by a 32-bit EBI (external bus) (continued)

#1 PS2 Program Size
and byte offset

ADDR[30:31]3,4 WE[0:3]5

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 29-23
 Preliminary

29.4.2.3 Basic Transfer Protocol

The basic transfer protocol defines the sequence of actions that must occur on the external bus to perform
a complete bus transaction. A simplified scheme of the basic transfer protocol is shown in Figure 29-8.

Figure 29-8. Basic Transfer Protocol

During the arbitration phase, ownership is requested and granted. This phase is not needed in single-master
mode because the EBI is the permanent bus owner in this mode.

The address transfer phase specifies the address for the transaction and the transfer attributes that describe
the transaction. The signals related to the address transfer phase are TS, ADDR, CS[0:3], RD_WR, and
BDIP. The address and its related signals (with the exception of TS, BDIP) are driven on the bus with the
assertion of the TS signal, and kept valid until the bus master receives TA asserted (the EBI holds them
one cycle beyond TA for writes and external TA accesses). Note that for writes with internal TA, RD_WR
is not held one cycle past TA.

The data transfer phase performs the transfer of data, from master to slave (in write cycles) or from slave
to master (on read cycles), if any is to be transferred. The data phase may transfer a single beat of data (1-4
bytes) for non-burst operations or a 2-beat (special EBI_MCR[DBM]=1 case only), 4-beat, 8-beat, or
16-beat burst of data (2 or 4 bytes per beat depending on port size) when burst is enabled. On a write cycle,
the master must not drive write data until after the address transfer phase is complete. This is to avoid
electrical contentions when switching between drivers. The master must start driving write data one cycle
after the address transfer cycle. The master can stop driving the data bus as soon as it samples the TA line
asserted on the rising edge of CLKOUT. To facilitate asynchronous write support, the EBI keeps driving
valid write data on the data bus until 1 clock after the rising edge where RD_WR (and WE for chip-select
accesses) are negated. See Figure 29-14 for an example of write timing. On a read cycle, the master accepts
the data bus contents as valid on the rising edge of the CLKOUT in which the TA signal is sampled
asserted. See Figure 29-10 for an example of read timing.

The termination phase is where the cycle is terminated by the assertion of either TA (normal termination)
or TEA (termination with error). Termination is discussed in detail in Section 29.4.2.9, “Termination
Signals Protocol.”

29.4.2.4 Single Beat Transfer

The flow and timing diagrams in this section assume that the EBI is configured in single master mode.

29.4.2.4.1 Single Beat Read Flow

The handshakes for a single beat read cycle are illustrated in the following flow and timing diagrams.

Arbitration Address transfer Data transfer Termination

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

29-24 Freescale Semiconductor
 Preliminary

Figure 29-9. Basic Flow Diagram of a Single Beat Read Cycle

Figure 29-10. Single Beat 32-Bit Read Cycle, CS Access, Zero Wait States

Yes

No

Receives address

Asserts transfer start (TS)
drives address and attributes

Master (EBI)

Drives data

Asserts transfer
acknowledge (TA)

Asserts transfer
acknowledge (TA)

Receives data

Slave

CS access and !SETA
?

DATA is valid

CLKOUT

ADDR[8:31]

TS

DATA[0:31]

TA

RD_WR

BDIP

OE

CSn

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 29-25
 Preliminary

Figure 29-11. Single Beat 32-Bit Read Cycle, CS Access, One Wait State

Figure 29-12. Single Beat 32-Bit Read Cycle, Non-CS Access, Zero Wait States

Wait state

DATA is valid

CLKOUT

ADDR[8:31]

TS

DATA[0:31]

TA

RD_WR

BDIP

OE

CSn

DATA is valid

The EBI drives address and control signals an extra cycle because it uses a latched
version of the external TA (1 cycle delayed) to terminate the cycle.

*

*

CLKOUT

ADDR[8:31]

TS

DATA[0:31]

TA (input)

RD_WR

BDIP

OE

CSn

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

29-26 Freescale Semiconductor
 Preliminary

29.4.2.4.2 Single Beat Write Flow

The handshakes for a single beat write cycle are illustrated in the following flow and timing diagrams.

Figure 29-13. Basic Flow Diagram of a Single Beat Write Cycle

Yes

No

Receives address

Asserts transfer start (TS)
drives address and attributes

Master

Receives data

Asserts transfer
acknowledge (TA)

Asserts transfer
acknowledge (TA)

Waits 1 clock

Slave

stops driving data

Drives data

CS access and !SETA
?

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 29-27
 Preliminary

Figure 29-14. Single Beat 32-Bit Write Cycle, CS Access, Zero Wait States

Figure 29-15. Single Beat 32-Bit Write Cycle, CS Access, One Wait State

DATA is valid

CLKOUT

ADDR[8:31]

TS

DATA[0:31]

TA

RD_WR

BDIP

WE[0:3]

CSn

Wait state

DATA is valid

CLKOUT

ADDR[8:31]

TS

DATA[0:31]

TA

RD_WR

BDIP

WE[0:3]

CSn

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

29-28 Freescale Semiconductor
 Preliminary

Figure 29-16. Single Beat 32-bit Write Cycle, Non-CS Access, Zero Wait States

29.4.2.4.3 Back-to-Back Accesses

Due to internal bus protocol, one dead cycle is necessary between back-to-back external bus accesses that
are not part of a set of small accesses (see Section 29.4.2.6, “Small Accesses (Small Port Size and Short
Burst Length),” for small access timing). Besides this dead cycle, in most cases, back-to-back accesses on
the external bus do not cause any change in the timing from that shown in the previous diagrams, and the
two transactions are independent of each other. The only exceptions to this are:

• Back-to-back accesses where the first access ends with an externally-driven TA or TEA. In these
cases, an extra cycle is required between the end of the first access and the TS assertion of the
second access. See Section 29.4.2.9, “Termination Signals Protocol,” for more details.

NOTE
In some cases, CS remains asserted during this dead cycle, such as the cases
of back-to-back writes or read-after-write to the same chip-select. See
Figure 29-20 and Figure 29-21. The following diagrams show a few
examples of back-to-back accesses on the external bus.

DATA is valid

CLKOUT

ADDR[8:31]

TS

DATA[0:31]

TA (Input)

RD_WR

BDIP

WE[0:3]

CSn

DATA is valid

The EBI drives address and control signals an extra cycle because it uses a latched
version of the external TA (1 cycle delayed) to terminate the cycle.

*

*

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 29-29
 Preliminary

Figure 29-17. Back-to-Back 32-Bit Reads to the Same CS Bank

Figure 29-18. Back-to-Back 32-Bit Reads to Different CS Banks

DATA is valid DATA is valid

CLKOUT

ADDR[8:31]

TS

DATA[0:31]

TA

RD_WR

BDIP

OE

CSn

DATA is valid

CLKOUT

ADDR[8:31]

TS

DATA[0:31]

TA

RD_WR

BDIP

OE

CSy

DATA is valid
CSn

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

29-30 Freescale Semiconductor
 Preliminary

Figure 29-19. Write After Read to the Same CS Bank

ADDR[8:31]

TS

DATA[0:31]

TA

RD_WR

DATA is valid

TSIZ[0:1]

BDIP

WE

CSx

’00’

DATA is valid

CLKOUT

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 29-31
 Preliminary

Figure 29-20. Back-to-Back 32-Bit Writes to the Same CS Bank

CLKOUT

ADDR[8:31]

TS

DATA[0:31]

TA

RD_WR

BDIP

WE

CSn

DATA is valid DATA is valid

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

29-32 Freescale Semiconductor
 Preliminary

Figure 29-21. Read After Write to the Same CS Bank

29.4.2.5 Burst Transfer

The EBI supports wrapping 16-byte critical-doubleword-first burst transfers. Bursting is supported only
for internally-requested 16-byte read accesses to external devices that use the chip selects1. Accesses from
an external master or to devices operating without a chip select are always single beat. If an internal request

ADDR[3:31]

TS

DATA[0:31]

TA

RD_WR

DATA is valid

TSIZ[0:1]

BDIP

WE

CSx

’00’

DATA is valid

CLKOUT

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 29-33
 Preliminary

to the EBI indicates a size of less than 16 bytes, the request is fulfilled by running one or more single-beat
external transfers, not by an external burst transfer.

A 4-word wrapping burst reads four 32-bit words by supplying a starting address that points to one of the
words (word aligned) and requiring the memory device to sequentially drive each word on the data bus.
The selected slave device must internally increment ADDR[28:29] (also ADDR30 in the case of a 16-bit
port size device) of the supplied address for each transfer, until the address reaches a 4-word boundary, and
then wrap the address to the beginning of the 4-word boundary. The address and transfer attributes supplied
by the EBI remain stable during the transfers, and the EBI terminates each beat transfer by asserting TA
(if SETA=0, by the EBI, or externally generated when SETA=0). The EBI requires that addresses be
aligned to a doubleword boundary on all burst cycles.

Table 29-13 shows the burst order of beats returned for a 4-word burst to a 32-bit port.

The general case of burst transfers assumes that the external memory has a 32-bit port size. The EBI can
also burst from 16-bit port size memories, taking twice as many external beats to fetch the data as
compared to a 32-bit port with the same burst length.

During burst cycles, the BDIP (burst data in progress) signal is used to indicate the duration of the burst
data. During the data phase of a burst read cycle, the EBI receives data from the addressed slave. If the
EBI needs more than one data, it asserts the BDIP signal. Upon receiving the data prior to the last data, the
EBI negates BDIP. Thus, the slave stops driving new data after it receives the negation of BDIP on the
rising edge of the clock. Some slave devices have their burst length and timing configurable internally and
thus may not support connecting to a BDIP pin. In this case, BDIP is driven by the EBI normally, but the
output is ignored by the memory and the burst data behavior is determined by the internal configuration
of the EBI and slave device. When the TBDIP bit is set in the appropriate base register, the timing for BDIP
is altered. See Section 29.4.2.5.1, “TBDIP Effect on Burst Transfer,” for this timing.

Because burst writes are not supported by the EBI1, the EBI negates BDIP during write cycles.

1. Except for the special case of a 32-bit non-chip select access in 16-bit data bus mode. See Section 29.4.2.10,
“Non-Chip-Select Burst in 16-bit Data Bus Mode.”

Table 29-13. Wrap Bursts Order

Burst Starting Address
ADDR[28:29]

Burst Order
(Assuming 32-Bit Port Size)

00 word0 → word1 → word2 → word3

01 word1 → word2 → word3 → word0

10 word2 → word3 → word0 → word1

11 word3 → word0 → word1 → word2

1. Except for the special case of a 32-bit non-chip select access in 16-bit data bus mode. See Section 29.4.2.10,
“Non-Chip-Select Burst in 16-bit Data Bus Mode.”

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

29-34 Freescale Semiconductor
 Preliminary

Figure 29-22. Basic Flow Diagram of a Burst Read Cycle

No

Yes

Receives address

Asserts transfer start (TS)
drives address and attributes

Master

Next to
last data beat

Slave

Drives data

Asserts transfer acknowledge (TA)
receives data

?

Negate BDIP

Drives last data

Asserts transfer acknowledge (TA)
receives last data

Assert BDIP

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 29-35
 Preliminary

Figure 29-23. Burst 32-Bit Read Cycle, Zero Wait States

Figure 29-24. Burst 32-Bit Read Cycle, One Initial Wait State

29.4.2.5.1 TBDIP Effect on Burst Transfer

Some memories require different timing on the BDIP signal than the default to run burst cycles. Using the
default value of TBDIP = 0 in the appropriate EBI base register results in BDIP being asserted (SCY+1)
cycles after the address transfer phase, and being held asserted throughout the cycle regardless of the wait
states between beats (BSCY). Figure 29-25 shows an example of the TBDIP = 0 timing for a 4-beat burst
with BSCY = 1.

CLKOUT

ADDR[8:31]

BDIP

DATA[0:31]

TA

RD_WR

TS

OE

CSn

Expects more data

ADDR[29:31] = ‘000’

DATA is valid

Wait state

CLKOUT

ADDR[8:31]

BDIP

DATA[0:31]

TA

RD_WR

TS

OE

CSn

Expects more data

ADDR[29:31] = ‘000’

DATA is valid

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

29-36 Freescale Semiconductor
 Preliminary

Figure 29-25. Burst 32-bit Read Cycle, One Wait State Between Beats, TBDIP = 0

When using TBDIP = 1, the BDIP behavior changes to toggle between every beat when BSCY is a
non-zero value. Figure 29-26 shows an example of the TBDIP = 1 timing for the same four-beat burst
shown in Figure 29-25.

Figure 29-26. Burst 32-bit Read Cycle, One Wait State Between Beats, TBDIP = 1

29.4.2.6 Small Accesses (Small Port Size and Short Burst Length)

In this context, a small access refers to an access whose burst length and port size are such that the number
of bytes requested by the internal master cannot all be fetched (or written) in one external transaction. This

DATA is valid

Wait state
Wait state

CLKOUT

ADDR[8:31]

BDIP

DATA[0:31]

TA

RD_WR

TS

OE

CSn

Expects more data

ADDR[29:31] = ‘000’

Wait state Wait state

DATA is valid

Wait state
Wait state

CLKOUT

ADDR[8:31]

BDIP

DATA[0:31]

TA

RD_WR

TS

OE

CSn

Expects more data

ADDR[29:31] = ‘000’

Wait state Wait state

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 29-37
 Preliminary

is the case when the base register’s burst length bit (EBI_BRn[BL]) and port size bit (EBI_BRn[PS]) are
set such that one of two situations occur:

• Burst accesses are inhibited and the number of bytes requested by the master is greater than the
port size (16 or 32 bit) can accommodate in a single access.

• Burst accesses are enabled and the number of bytes requested by the master is greater than the
selected burst length (4 words or 8 words).

If this is the case, the EBI initiates multiple transactions until all the requested data is transferred. It should
be noted that all the transactions initiated to complete the data transfer are considered as an atomic
transaction, so the EBI does not allow other unrelated master accesses to intervene between the transfers.

Table 29-14 shows all the combinations of burst length, port size, and requested byte count that cause the
EBI to run multiple external transactions to fulfill the request.

In most cases, the timing for small accesses is the same as for normal single-beat and burst accesses, except
that multiple back-to-back external transfers are executed for each internal request. These transfers have
no additional dead cycles in-between that are not present for back-to-back stand-alone transfers except for
the case of writes with an internal request size greater than 64 bits, discussed in Section 29.4.2.6.2, “Small
Access Example #2: 32-byte Write with External TA.”

The following sections show a few examples of small accesses. The timing for the remaining cases in
Table 29-14 can be extrapolated from these and the other timing diagrams in this document.

Table 29-14. Small Access Cases

Byte Count
Requested by Internal

Master1

1 The MPC5510 bus masters do not generate any 32-byte requests so these cases cannot occur.

Burst Length Port Size
External Accesses

to Fulfill Request

Non-Burstable Chip-Select Banks (BI=1) or Non-Chip-Select Access

4 1 beat 16-bit 2/12

2 In 32-bit data bus mode (DBM=0 in EBI_MCR), two accesses are performed. In 16-bit data bus mode
(DBM=1), one 2-beat burst access is performed and this is not considered a small access case. See
Section 29.4.2.10, “Non-Chip-Select Burst in 16-bit Data Bus Mode” for this special DBM=1 case.

8 1 beat 32-bit 2

8 1 beat 16-bit 4

16 1 beat 32-bit 4

16 1 beat 16-bit 8

32 1 beat 32-bit N/A

32 1 beat 16-bit N/A

Burstable Chip-Select Banks (BI=0)

32 4 words 16-bit (8 beats), 32-bit
(4 beats)

N/A

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

29-38 Freescale Semiconductor
 Preliminary

29.4.2.6.1 Small Access Example #1: 32-Bit Write to 16-Bit Port

Figure 29-27 shows an example of a 32-bit write to a 16-bit port, requiring two 16-bit external transactions.

Figure 29-27. Single Beat 32-Bit Write Cycle, 16-bit Port Size, Basic Timing

29.4.2.6.2 Small Access Example #2: 32-byte Write with External TA

Figure 29-28 shows an example of a 32-byte write to a non-chip select device, such as an external master,
using external TA, requiring eight 32-bit external transactions. Due to the use of external TA, RD_WR
does not toggle between the accesses unless that access is the end of a 64-bit boundary. In this case, an
extra cycle is required between TA and the next TS in order to get the next 64-bits of write data internally
and RD_WR negates during this extra cycle.

DATA is validDATA is valid

CLKOUT

ADDR[8:31]

TS

DATA[0:31]

TA

RD_WR

BDIP

WE

CSn

A A+2

ABCDXXXX EFGHXXXX

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 29-39
 Preliminary

Figure 29-28. 32-Byte Write Cycle with External TA, Basic Timing

29.4.2.7 Size, Alignment, and Packaging on Transfers

Table 29-15 shows the allowed sizes that an internal or external master can request from the EBI. The
behavior of the EBI for request sizes not shown below is undefined. No error signal is asserted for these
erroneous cases.

Even though misaligned non-burst transfers from internal masters are supported, the EBI naturally aligns
the accesses when it sends them out to the external bus, splitting them into multiple aligned accesses if
necessary. See Section 29.4.1.13, “Misaligned Access Support,” for these cases.

Table 29-15. Transaction Sizes Supported by EBI

No. Bytes (Internal Master) No. Bytes (External Master)

1 1

2 2

4 4

31

11 Some misaligned access cases may result in 3-byte writes. These
cases are treated as power-of-2 sized requests by the EBI, using
WE[0:3] to make sure only the appropriate 3 bytes get written.

8

16

DATA is validDATA is valid

CLKOUT

ADDR[8:31]

TS

DATA[0:31]

TA

RD_WR

BDIP

WE

CSn

A A+4 A+8 A+0xc

DATA is valid

This extra cycle is required after accesses 2, 4, and 6 in order to get the next 64-bits of internal write data.*
Four more external accesses (not shown) are required to complete the internal 32-byte request.
The timing of these is the same as accesses 1-4 shown in this diagram.

**

1 2 3 4***

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

29-40 Freescale Semiconductor
 Preliminary

Natural alignment for the EBI means:

• Byte access can have any address.

• 16-bit access, address bit 31 must be 0.

• 32-bit access, address bits 30–31 must be 0.

• For burst accesses of any size, address bits 29–31 must be 0.

The EBI requires that the portion of the data bus used for a transfer to/from a particular port size be fixed.
A 32-bit port must reside on data bus bits 0–31, and a 16-bit port must reside on bits 0–15.

In the following figures and tables the following convention is adopted:

• The most significant byte of a 32-bit operand is OP0, the least significant byte is OP3.

• The two bytes of a 16-bit operand are OP0 (most significant) and OP1, or OP2 (most significant)
and OP3, depending on the address of the access.

• The single byte of a byte-length operand is OP0, OP1, OP2, or OP3, depending on the address of
the access.

The convention can be seen in Figure 29-29.

Figure 29-29. Internal Operand Representation

Figure 29-30 shows the device connections on the AD[0:31] bus.

OP0 OP1 OP2

0 31

32-Bit

16-Bit

Byte

OP0

OP1

OP2

OP3

OP0 OP1

OP2 OP3

OP3

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 29-41
 Preliminary

Figure 29-30. Interface to Different Port Size Devices

Table 29-16 lists the bytes required on the data bus for read cycles. The bytes indicated as ‘—’ are not
required during that read cycle.

Table 29-17 lists the patterns of the data transfer for write cycles when accesses are initiated by the MCU.
A dash indicates bytes that are not driven during that write cycle.

Table 29-16. Data Bus Requirements for Read Cycles

Transfer
Size

TSIZ[0:1]1

1 TSIZ is not enabled on the MPC5510.

Address 32-Bit Port Size 16-Bit Port Size2

2 Also applies when DBM=1 for 16-bit data bus mode.

A30 A31 D0:D7 D8:D15 D16:D23 D24:D31 D0:D7 D8:D15

Byte 01 0 0 OP0 — — — OP0 —

01 0 1 — OP1 — — — OP1

01 1 0 — — OP2 — OP2 —

01 1 1 — — — OP3 — OP3

16-bit 10 0 0 OP0 OP1 — — OP0 OP1

10 1 0 — — OP2 OP3 OP2 OP3

32-bit 00 0 0 OP0 OP1 OP2 OP3 OP0/OP23

3 This case consists of two 16-bit external transactions, the first fetching OP0 and OP1, the second fetching OP2
and OP3.

OP1/OP3

0 31

DATA[16:23]

32-bit port size

DATA[24:31]DATA[8:15]DATA[0:7]

Interface output
register

16-bit port size

OP0 OP1 OP2 OP3

OP0 OP1 OP2 OP3

OP0 OP1

OP2 OP3

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

29-42 Freescale Semiconductor
 Preliminary

29.4.2.8 Arbitration

The MPC5510 does not support arbitration.

29.4.2.9 Termination Signals Protocol

The termination signals protocol was defined to avoid electrical contention on lines that can be driven by
various sources. To do that, a slave must not drive signals associated with the data transfer until the address
phase is completed and it recognizes the address as its own. The slave must disconnect from signals
immediately after it acknowledges the cycle and not later than the termination of the next address phase
cycle.

For EBI-mastered non-chip select accesses, the EBI requires assertion of TA from an external device to
signal that the bus cycle is complete. The EBI uses a latched version of TA (1 cycle delayed) for these
accesses to help make timing at high frequencies. This results in the EBI driving the address and control
signals 1 cycle longer than required, as seen in Figure 29-31. However, the data (AD) does not need to be
held 1 cycle longer by the slave, because the EBI latches AD every cycle during non-chip select accesses.
During these accesses, the EBI does not drive the TA signal, leaving it up to an external device (or weak
internal pullup) to drive TA.

For EBI-mastered chip-select accesses, when the SETA bit is 0, the EBI drives TA the entire cycle,
asserting according to internal wait state counters to terminate the cycle. When the SETA bit is 1, the EBI
samples the TA for the entire cycle. During idle periods on the external bus, the EBI drives TA negated as
long as it is granted the bus; when it no longer owns the bus, it lets go of TA. When an external master
does a transaction to internal address space, the EBI only drives TA for the cycle it asserts TA to return
data and for 1 cycle afterwards to ensure fast negation.

If no device responds by asserting TA within the programmed timeout period (BMT in EBI_BMCR) after
the EBI initiates the bus cycle, the internal bus monitor (if enabled) asserts TEA to terminate the cycle. An
external device may also drive TEA when it detects an error on an external transaction. TEA assertion

Table 29-17. Data Bus Contents for Write Cycles

Transfer
Size

TSIZ[0:1]1

1 TSIZ is not enabled on the MPC5510.

Address 32-Bit Port Size 16-Bit Port Size2

2 Also applies when DBM=1 for 16-bit data bus mode.

A30 A31 D0:D7 D8:D15 D16:D23 D24:D31 D0:D7 D8:D15

Byte 01 0 0 OP0 — — — OP0 —

01 0 1 OP1 OP1 — — — OP1

01 1 0 OP2 — OP2 — OP2 —

01 1 1 OP3 OP3 — OP3 — OP3

16-bit 10 0 0 OP0 OP1 — — OP0 OP1

10 1 0 OP2 OP3 OP2 OP3 OP2 OP3

32-bit 00 0 0 OP0 OP1 OP2 OP3 OP0/OP23

3 This case consists of two 16-bit external transactions, the first writing OP0 and OP1, the second writing OP2 and OP3.

OP1/OP3

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 29-43
 Preliminary

causes the cycle to terminate and the processor to enter exception processing for the error condition. To
properly control termination of a bus cycle for a bus error with external circuitry, TEA must be asserted at
the same time or before (external) TA is asserted. TEA must be negated before the second rising edge after
it was sampled asserted to avoid the detection of an error for the following bus cycle initiated. TEA is
driven only by the EBI during the cycle where the EBI is asserting TEA and the cycle immediately
following this assertion (for fast negation). During all other cycles, the EBI relies on a weak internal
pull-up to hold TEA negated. This allows an external device to assert TEA when it needs to indicate an
error. External devices must follow the same protocol as the EBI, only driving TEA during the assertion
cycle and 1 cycle afterwards for negation.

NOTE
In the case where an external master asserts TEA to timeout a transaction to
an internal address on this MCU, the EBI has no way to terminate the
transfer internally. Therefore, any subsequent TS assertions by the external
master are ignored by the EBI until the original transfer has completed
internally and the EBI has returned to an idle state. The expectation is that
the internal slaves will always respond with valid data or an error indication
within a reasonable period of time to avoid hanging the system.

When TEA is asserted from an external source, the EBI uses a latched version of TEA (1 cycle delayed)
to help make timing at high frequencies. This means that for any accesses where the EBI drives TA (chip
select accesses with SETA=0 and external master accesses to EBI), a TEA assertion that occurs 1 cycle
before or during the last TA of the access could be ignored by the EBI, since it will have completed the
access internally before it detects the latched TEA assertion. This means that non-burst chip select accesses
with no wait states (SCY = 0) cannot be reliably terminated by external TEA. If external error termination
is required for such a device, the EBI must be configured for SCY ≥ 1.

NOTE
For the cases discussed above where TEA could be ignored, this is not
guaranteed. For some small access cases, which always use chip select and
internally-driven TA, a TEA that occurs 1 cycle before or during the TA
cycle or for SCY = 0 may lead to terminating the cycle with error. However,
proper error termination is not guaranteed for these cases, so TEA must
always be asserted at least 2 cycles before an internally-driven TA cycle for
proper error termination.

External TEA assertion that occurs during the same cycle that TS is asserted by the EBI is always treated
as an error (terminating the access) regardless of SCY.

Table 29-18 summarizes how the EBI recognizes the termination signals provided from an external device.

Table 29-18. Termination Signals Protocol

TEA1 TA1 Action

Negated Negated No termination

Asserted X Transfer error termination

Negated Asserted Normal transfer termination

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

29-44 Freescale Semiconductor
 Preliminary

Figure 29-31 shows an example of the termination signals protocol for back-to-back reads to two different
slave devices that properly take turns driving the termination signals. This assumes a system using slave
devices that drive termination signals.

Figure 29-31. Termination Signals Protocol Timing Diagram

29.4.2.10 Non-Chip-Select Burst in 16-bit Data Bus Mode

The timing diagrams in this section apply to the special case of a non-chip select 32-bit access in 16-bit
data bus mode. They specify the behavior for the EBI-master and EBI-slave, as the external master is
expected to be another MCU with this EBI.

For this case, a special 2-beat burst protocol is used for reads and writes, so the EBI-slave can internally
generate one 32-bit read or write access (thus 32-bit coherent), as opposed to two separate 16-bit accesses.

Figure 29-32 shows a 32-bit non-chip-select read in 16-bit data bus mode.

Figure 29-33 shows a 32-bit non-chip-select write in 16-bit data bus mode.

1 Latched version (1 cycle delayed) used for externally driven
TEA and TA.

The EBI drives address and control signals an extra cycle because it uses a latched version of TA*

This is the earliest that the EBI can start another transfer when continuing a set of small accesses.
For all other cases, an extra cycle is needed before the EBI can start another TS.

**

CLKOUT

BB

TS

DATA[0:31]

TA, TEA

ADDR[8:31]

RD_WR

Slave 1 Slave 2* *

**

(1 cycle delayed) to terminate the cycle. An external master is not required to do this.

Slave 1
negates

acknowledge
signals and

turns off

Slave 2
negates

acknowledge
signals and

turns off

Slave 2
allowed to

drive
acknowledge

signals

Slave 1
allowed to

drive
acknowledge

signals

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 29-45
 Preliminary

Figure 29-32. 32-bit Non-Chip-Select Read with DBM=1

Figure 29-33. 32-bit Non-Chip-Select Write with DBM=1

29.4.2.11 Address Data Multiplexing

Address/data multiplexing enables the design of a system with reduced pin count. In such system,
multiplexed address/data functions (on AD pins) are used, instead of having separate address and data
pins. Compared to the normal EBI specification (e.g. 24 address pins+32 data pins), only 32 data pins are
required. Compared to a 16-bit bus implementation, only 24 pins are required (e.g. ADDR[8:15] +
ADDR[16:31]/DATA[16:31]).

CLKOUT

RD_WR

BDIP

ADDR[8:31]

DATA[0:15]

TS (Output)

Minimum
2 wait states DATA is valid

TA (Input)

DATA is valid

DATA is valid

CLKOUT

RD_WR

BDIP

ADDR[8:31]

DATA[0:15]

TS (Output)

Minimum
3 wait states

TA (Input)

DATA is valid

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

29-46 Freescale Semiconductor
 Preliminary

When performing a small access read, as described in Section 29.4.2.6, “Small Accesses (Small Port Size
and Short Burst Length),” with A/D multiplexing enabled for this access, the EBI inserts an idle clock
cycle with OE negated and CS asserted, to allow for the memory to three-state the bus prior to the EBI
driving the address on the next clock. This clock gap already exists (for other reasons) for non-small-access
transfers, so no additional clock gap is inserted for those cases. See Figure 29-34 for an example of a small
access read with A/D multiplexing enabled.

In general, timing diagrams in A/D multiplexing mode are similar to other diagrams in this document,
excepting behavior of the ADDR and DATA busses, which can be seen in Figure 29-34.

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 29-47
 Preliminary

Figure 29-34. Small Access (32-Bit Read to 16-Bit Port) on Address/Data Multiplexed Bus

CLKOUT

*ADDR[3:31]

TS

**DATA[16:31]

TA

RD_WR

DATA is valid

TSIZ[0:1]

BDIP

OE

CSx

’10’

DATA is valid

Addr Addr+0x2

Addr Addr+0x2

Clock gap

* While the EBI drives all of ADDR[3:31] to valid address, typically ADDR[3:15] (or less) only are used in the
system, as DATA[16:31] (or DATA[0:15]) are used for address and data on an external muxed device.

** Or DATA[0:15], based on D16_31 bit in EBI_MCR.

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

29-48 Freescale Semiconductor
 Preliminary

29.5 Initialization/Application Information

29.5.1 Booting from External Memory (for Factory Test only)

The EBI block does not support booting directly to external memory (i.e. fetching the first instruction after
reset externally). The MCU uses an internal boot assist module, which executes after each reset. The BAM
code performs basic configuration of the EBI block, allowing for external boot if desired. Refer to
Chapter 32, “Boot Assist Module (BAM)” for information about the boot modes supported by the MCU.

29.5.2 Running with Single Data Rate (SDR) Burst Memories

This includes flash and external SRAM memories with a compatible burst interface. BDIP is required for
some SDR memories only. Figure 29-32 shows a block diagram of an MCU connected to a 32-bit SDR
burst memory.

Figure 29-35. MCU Connected to SDR Burst Memory

Refer to Figure 29-23 for an example of the timing of a typical burst read operation to an SDR burst
memory. Refer to Figure 29-14 for an example of the timing of a typical single write operation to SDR
memory.

29.5.3 Running with Asynchronous Memories

The EBI also supports asychronous memories. In this case, the CLKOUT, TS, and BDIP pins are not used
by the memory and bursting is not supported. However, the EBI still drives these outputs, and always
drives and latches all signals at positive edge CLKOUT (i.e., there is no asynchronous mode for the EBI).
The data timing is controlled by setting the SCY bits in the appropriate option register to the proper number
of wait states to work with the access time of the asynchronous memory, exactly as done for a synchronous
memory.

CLKOUT

CS0
TS

WE0

ADDR[8:29]

DATA[0:31]

BDIP

OE

MCU

CK

CE

ADV

BAA*

WE**

A[0:21]

D[0:31]

OE

SDR Burstable
Flash or SRAM

* May or may not be connected, depending on the memory used.
Flash memories typically use one WE signal as shown, RAMs use 2 or 4 (16-bit or 32-bit).**

CAL_CS0 ***

*** Not available on all devices, refer to the Signals chapter

4M x 32

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 29-49
 Preliminary

29.5.3.1 Example Wait State Calculation

This example applies to any chip-select memory, synchronous or asynchronous.

For example, if there is a memory with 50 ns access time, and the external bus is running at 66 MHz
(CLKOUT period: 15.2 ns). Assume the input data spec for the MCU is 4 ns.

number of wait states = (access time) / (CLKOUT period) + (0 or 1) (depending on set-up time)

50/15.2 = 3 with 4.4 ns remaining (at least three wait states are needed, now check set-up time)

15.2-4.4=10.8ns (this is the achieved input data set-up time)

Because actual input setup (10.8 ns) is greater than the input setup spec (4.0 ns), three wait states is
sufficient. If the actual input setup was less than 4.0 ns, four wait states would be used instead.

29.5.3.2 Timing and Connections for Asynchronous Memories

The connections to an asynchronous memory are the same as for a synchronous memory, except that the
CLKOUT, TS, and BDIP signals are not used. Figure 29-36 shows a block diagram of an MCU connected
to an asynchronous memory.

Figure 29-36. MCU Connected to Asynchronous Memory

Figure 29-37 shows a timing diagram of a read operation to a 16-bit asynchronous memory using three
wait states. Figure 29-38 shows a timing diagram of a write operation to a 16-bit asynchronous memory
using three wait states.

Flash memories typically use one WE signal as shown, RAMs use two or four (16-bit or 32-bit).*

WE0

ADDR[9:30]

DATA[0:15]

OE

MCU

WE*

A[0:21]

D[0:15]

OE

Asynchronous
Memory

CS0
CE

CAL_CS0

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

29-50 Freescale Semiconductor
 Preliminary

Figure 29-37. Read Operation to Asynchronous Memory, Three Initial Wait States

Figure 29-38. Write Operation to Asynchronous Memory, Three Initial Wait States

29.5.4 Connecting an MCU to Multiple Memories

The MCU can be connected to more than one memory at a time.

Figure 29-39 shows an example of two memories connected to one MCU.

CLKOUT

CSn

OE

TS

ADDR[8:31]

DATA[0:31]

TA

WE[0:1]

3 wait states DATA is valid

CLKOUT

CSn

OE

TS

ADDR[8:31]

DATA[0:31]

TA

WE[0:1]

3 wait states

DATA is valid

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 29-51
 Preliminary

Figure 29-39. MCU Connected to Multiple Memories

29.5.5 Dual-MCU Operation with Reduced Pinout MCUs

Some MCUs with this EBI may not have all the pins described in this document pinned out for a particular
package. Some of the most common pins to be removed are AD[16:31], arbitration pins (BB, BG, BR),
and TSIZ[0:1]. This section describes how to configure dual-MCU systems for each of these scenarios.
More than one section may apply if the applicable pins are not present on one or both MCUs.

NOTE
The MPC5510 does not have TSIZ[0:1] or arbitration pins (BB, BR, BG).

29.5.5.1 Connecting 16-Bit MCU to 32-Bit MCU (Master/Master or Master/Slave)

This scenario is straightforward. Connect AD[0:15] between both MCUs, and configure both for 16-bit
data bus mode operation (DBM=1 in EBI_MCR). 32-bit external memories are not supported in this
scenario.

29.5.5.2 No Transfer Acknowledge (TA) Pin

If an MCU has no TA pin available, this restricts the MCU to chip-select accesses only. Non-chip-select
accesses have no way for the EBI to know which cycle to latch the data. The EBI has no built-in protection

CLKOUT

CS0

TS

WE0

ADDR[8:29]

DATA[0:31]

BDIP

OE

MCU

CK

CE

ADV

WE**

A[0:21]

D[0:31]

OE

BAA*

SDR
Memory

CK

CE

ADV

WE**

A[0:21]

D[0:31]

OE

BAA*

SDR
Memory

CS1

WE1

* May or may not be connected, depending on the memory used.
Flash memories typically use one WE signal as shown, RAMs use two or four (16-bit or 32-bit).**

External Bus Interface (EBI)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

29-52 Freescale Semiconductor
 Preliminary

to prevent non-chip-select accesses in this scenario; the user must set up chip selects and external
memories correctly to ensure all external accesses fall in a valid chip select region.

29.5.5.3 No Transfer Error (TEA) Pin

If an MCU has no TEA pin available, this eliminates the feature of terminating an access with TEA. This
means if an access times out in the EBI bus monitor, the EBI (master) will still terminate the access early,
but there will be no external visibility of this termination, so the slave device might drive data much later,
when a subsequent access is already underway. Therefore, the EBI bus monitor must be disabled when no
TEA pin exists.

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-1
 Preliminary

Chapter 30 FlexRay Communication Controller (FLEXRAY)

30.1 Introduction

30.1.1 Reference

The following documents are referenced.

• FlexRay Communications System Protocol Specification, Version 2.1 Rev A

• FlexRay Communications System Electrical Physical Layer Specification, Version 2.1 Rev A

30.1.2 Glossary

This section provides a list of terms used in the description of the FlexRay block.

Table 30-1. List of Terms (Sheet 1 of 2)

Term Definition

BCU Buffer Control Unit. Handles message buffer access.

BMIF Bus Master Interface. Provides master access to FlexRay memory block.

CC Communication Controller

CDC Clock Domain Crosser

CHI Controller Host Interface

Cycle length in μT The actual length of a cycle in μT for the ideal controller (+/- 0 ppm)

EBI External Bus Interface

FRM FlexRay Memory. Memory to store message buffer payload, header, and status, and to store
synchronization frame related tables.

FSS Frame Start Sequence

HIF Host Interface. Provides host access to FlexRay block.

Host The FlexRay CC host MCU

LUT Look Up Table. Stores message buffer header index value.

MB Message Buffer

MBIDX Message Buffer Index: the position of a header field entry within the header area. If the header area
is accessed as an array, this is the same as the array index of the entry.

MBNum Message Buffer Number: Position of message buffer configuration registers within the register map.
For example, Message Buffer Number 5 corresponds to the MBCCS5 register.

MCU Microcontroller Unit

μT Microtick

MT Macrotick

MTS Media Access Test Symbol

NIT Network Idle Time

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-2 Freescale Semiconductor
 Preliminary

30.1.3 Color Coding

Throughout this chapter types of items are highlighted through the use of an italicized color font.

FlexRay protocol parameters, constants and variables are highlighted with blue italics. An example is the
parameter gdActionPointOffset.

FlexRay protocol states are highlighted in green italics. An example is the state POC:normal active.

30.1.4 Overview

The FlexRay block is a FlexRay communication controller that implements the FlexRay Communications
System Protocol Specification, Version 2.1 Rev A.

The FlexRay block has three main components:

• Controller host interface (CHI)

• Protocol engine (PE)

• Clock domain crossing unit (CDC)

A block diagram of the FlexRay block with its surrounding modules is given in Figure 30-1.

PE Protocol Engine

POC Protocol Operation Control. Each state of the POC is denoted by POC:state

Rx Reception

SEQ Sequencer Engine

TCU Time Control Unit

Tx Transmission

Table 30-1. List of Terms (Sheet 2 of 2)

Term Definition

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-3
 Preliminary

Figure 30-1. FLEXRAY Block Diagram

The protocol engine has two transmitter units TxA and TxB and two receiver units RxA and RxB for
sending and receiving frames through the two FlexRay channels. The time control unit (TCU) is
responsible for maintaining global clock synchronization to the FlexRay network. The overall activity of
the PE is controlled by the sequencer engine (SEQ).

The controller host interface provides host access to the module’s configuration, control, and status
registers, as well as to the message buffer configuration, control, and status registers. The message buffers
themselves, which contain the frame header and payload data received or to be transmitted, and the slot
status information, are stored in the FlexRay Memory (FRM).

The clock domain crossing unit implements signal crossing from the CHI clock domain to the PE clock
domain and vice versa, to allow for asynchronous PE and CHI clock domains.

The FlexRay block stores the frame header and payload data of frames received or of frames to be
transmitted in the FRM. The application accesses the FRM to retrieve and provide the frames to be
processed by the FlexRay block. In addition to the frame header and payload data, the FlexRay block stores
the synchronization frame related tables in the FRM for application processing.

The FlexRay Memory is located in the system memory of the MCU. The FlexRay block has access to the
FRM via its bus master interface (BMIF). The host provides the start address of the FRM window within
the system memory by programming the System Memory Base Address High Register (SYMBADHR)
and System Memory Base Address Low Register (SYMBADLR). All FRM related offsets are stored in
offset registers. The physical address pointer into the FRM window of the MCU system memory is
calculated using the offset values the FlexRay memory base address.

C
lo

ck
 D

om
ai

n
C

ro
ss

in
g

PE

TxA

RxA

TCU

config
SEQ

CHI

HIF

SEARCH

LUT

BCU

FR_A_RX

FR_B_RX

FR_DBG[0]

FR_A_TX

FR_A_TX_EN

FR_B_TX

FR_B_TX_EN

FR_DBG[1]

FR_DBG[2]

FR_DBG[3]

FLEXRAY

Peripheral
Bridge B

XBAR

BMIF

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-4 Freescale Semiconductor
 Preliminary

NOTE
The FlexRay block does not provide a memory protection scheme for the
FlexRay Memory.

30.1.5 Features

The FlexRay block provides the following features:

• FlexRay Communications System Protocol Specification, Version 2.1 Rev A compliant protocol
implementation

• FlexRay Communications System Electrical Physical Layer Specification, Version 2.1 Rev A
compliant bus driver interface

• Single channel support

— FlexRay Port A can be configured to be connected either to physical FlexRay channel A or
physical FlexRay channel B.

• FlexRay bus data rates of 10 Mbit/s, 8 Mbit/s, 5 Mbit/s, and 2.5 Mbit/s supported

• Internal oscillator or internal PLL1 clocking of the protocol engine

• 64 configurable message buffers with

— Individual frame ID filtering
— Individual channel ID filtering
— Individual cycle counter filtering

• Message buffer header, status and payload data stored in dedicated FlexRay memory

— Allows for flexible and efficient message buffer implementation
— Consistent data access ensured by means of buffer locking scheme
— Application can lock multiple buffers at the same time

• Size of message buffer payload data section configurable from 0 up to 254 bytes

• Two independent message buffer segments with configurable size of payload data section

— Each segment can contain message buffers assigned to the static segment and message buffers
assigned to the dynamic segment at the same time

• Zero padding for transmit message buffers in static segment

— Applied when the frame payload length exceeds the size of the message buffer data section
• Transmit message buffers configurable with state/event semantics

• Message buffers can be configured as

— Receive message buffer
— Single buffered transmit message buffer
— Double buffered transmit message buffer (combines two single buffered message buffer)

• Individual message buffer reconfiguration supported

— Means provided to safely disable individual message buffers
— Disabled message buffers can be reconfigured

1. Due to the tight timing requirements and overall system requirements of FlexRAY systems, usage of the PLL as the clock
source has not been fully evaluated. It is recommended to use a 40 MHz crystal for the clock source.

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-5
 Preliminary

• Two independent receive FIFOs

— One receive FIFO per channel
— Up to 255 entries for each FIFO
— Global frame ID filtering, based on both value/mask filters and range filters
— Global channel ID filtering
— Global message ID filtering for the dynamic segment

• Four configurable slot error counters

• Four dedicated slot status indicators

— Used to observe slots without using receive message buffers
• Measured value indicators for the clock synchronization

— Internal synchronization frame ID and synchronization frame measurement tables can be
copied into the FlexRay Memory

• Fractional macroticks are supported for clock correction

• Maskable interrupt sources provided via individual and combined interrupt lines

• One absolute timer

• One timer that can be configured to absolute or relative

30.1.6 Modes of Operation

This section describes the basic operational power modes of the FlexRay block.

30.1.6.1 Disabled Mode

This is the mode the FlexRay block enters during hard reset. The FlexRay block indicates that it is in the
disabled mode by negating the module enable bit MEN in the Module Configuration Register (MCR).

No communication is performed on the FlexRay bus.

All registers with the write access conditions Any Time and Disabled Mode can be accessed for writing as
stated in Section 30.5.2, “Register Descriptions”.

The application configures the FlexRay block by accessing the configuration bits and fields in the Module
Configuration Register (MCR).

30.1.6.1.1 Leave Disabled Mode

The FlexRay block leaves the disabled mode and enters the normal mode, when the application writes 1
to the module enable bit MEN in the Module Configuration Register (MCR)

NOTE
When the FlexRay block was enabled, it cannot be disabled the later on.

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-6 Freescale Semiconductor
 Preliminary

30.1.6.2 Normal Mode

In this mode the FlexRay block is fully functional. The FlexRay block indicates that it is in normal mode
by asserting the module enable bit MEN in the Module Configuration Register (MCR).

30.1.6.2.1 Enter Normal Mode

This mode is entered when the application requests the FlexRay block to leave the disabled mode. If the
normal mode was entered by leaving the disabled mode, the application has to perform the protocol
initialization described in 30.7.1.2, “Protocol Initialization” to achieve full FlexRay functionality.

Depending on the values of the SCM, CHA, and CHB bits in the Module Configuration Register (MCR),
the corresponding FlexRay bus driver ports are enabled and driven.

30.2 External Signal Description
This section lists and describes the FlexRay block signals, connected to external pins. These signals are
summarized in Table 30-2 and described in detail in Section 30.2.1, “Detailed Signal Descriptions.”

NOTE
The off-chip signals FR_A_RX, FR_A_TX, and FR_A_TX_EN are
available on each package option. The availability of the other off-chip
signals depends on the package option.

30.2.1 Detailed Signal Descriptions

This section provides a detailed description of the FlexRay block signals, connected to external pins.

30.2.1.1 FR_A_RX — Receive Data Channel A

The FR_A_RX signal carries the receive data for channel A from the corresponding FlexRay bus driver.

Table 30-2. External Signal Properties

Name Direction Active Reset Function

FR_A_RX Input — — Receive Data Channel A

FR_A_TX Output — 1 Transmit Data Channel A

FR_A_TX_EN Output Low 1 Transmit Enable Channel A

FR_B_RX Input — — Receive Data Channel B

FR_B_TX Output — 1 Transmit Data Channel B

FR_B_TX_EN Output Low 1 Transmit Enable Channel B

FR_DBG[0] Output — 0 Debug Strobe Signal 0

FR_DBG[1] Output — 0 Debug Strobe Signal 1

FR_DBG[2] Output — 0 Debug Strobe Signal 2

FR_DBG[3] Output — 0 Debug Strobe Signal 3

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-7
 Preliminary

30.2.1.2 FR_A_TX — Transmit Data Channel A

The FR_A_TX signal carries the transmit data for channel A to the corresponding FlexRay bus driver.

30.2.1.3 FR_A_TX_EN — Transmit Enable Channel A

The FR_A_TX_EN signal indicates to the FlexRay bus driver that the FlexRay block is attempting to
transmit data on channel A.

30.2.1.4 FR_B_RX — Receive Data Channel B

The FR_B_RX signal carries the receive data for channel B from the corresponding FlexRay bus driver.

30.2.1.5 FR_B_TX — Transmit Data Channel B

The FR_B_TX signal carries the transmit data for channel B to the corresponding FlexRay bus driver

30.2.1.6 FR_B_TX_EN — Transmit Enable Channel B

The FR_B_TX_EN signal indicates to the FlexRay bus driver that the FlexRay block is attempting to
transmit data on channel B.

30.2.1.7 FR_DBG[3], FR_DBG[2], FR_DBG[1], FR_DBG[0] — Strobe Signals

These signals provide the selected debug strobe signals. For details on the debug strobe signal selection
refer to Section 30.6.16, “Strobe Signal Support.”

30.3 Controller Host Interface Clocking
The clock for the CHI is derived from the system bus clock and has the same phase and frequency. Because
the FlexRay protocol requires data delivery at fixed points in time, the memory read cycles from the FRM
must be finished after a fixed amount of time. To ensure this, a minimum frequency fchi of the CHI clock
is required, which is given in Equation 30-1.

Eqn. 30-1

Additional requirements for the minimum frequency of the CHI clock result from the number of message
buffer. The requirement is provides in Section 30.7.3, “Number of Usable Message Buffers.”

30.4 Protocol Engine Clocking
The clock for the protocol engine can be generated by two sources. The first source is the internal crystal
oscillator and the second source is an internal PLL1. The clock source to be used is selected by the clock
source select bit CLKSEL in the Module Configuration Register (MCR).

1. Due to the tight timing requirements and overall system requirements of FlexRAY systems, usage of the PLL as the clock
source has not been fully evaluated. It is recommended to use a 40 MHz crystal for the clock source.

fchi 32MHz≥

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-8 Freescale Semiconductor
 Preliminary

30.4.1 Oscillator Clocking

If the protocol engine is clocked by the internal crystal oscillator, an 40 MHz crystal or 40 MHz CMOS
compatible clock must be connected to the oscillator pins. The crystal or clock must fulfil the requirements
given by the FlexRay Communications System Protocol Specification, Version 2.1 Rev A.

The PLL predivider has to be configured for divide-by-2 operation.

30.4.2 PLL Clocking

If the protocol engine is clocked by the internal PLL1, the frequency of the PE clock source is
system clock / 2. The system clock frequency must be 80 MHz.

30.5 Memory Map and Register Description
The FlexRay block occupies 768 bytes of address space starting at the FlexRay block’s base address
defined by the memory map of the MCU.

30.5.1 Memory Map

The complete memory map of the FlexRay block is shown in Table 30-3. The addresses presented here are
the offsets relative to the FlexRay block base address, which is defined by the MCU address map.

1. Due to the tight timing requirements and overall system requirements of FlexRAY systems, usage of the PLL as the clock
source has not been fully evaluated. It is recommended to use a 40 MHz crystal for the clock source.

Table 30-3. FlexRay Memory Map (Sheet 1 of 4)

Offset from
FLEXRAY_BASE
(0xFFFD_8000)

Register Access

Module Configuration and Control

0x0000 Module Version Register (MVR) R

0x0002 Module Configuration Register (MCR) R/W

0x0004 System Memory Base Address High Register (SYMBADHR) R/W

0x0006 System Memory Base Address Low Register (SYMBADLR) R/W

0x0008 Strobe Signal Control Register (STBSCR) R/W

0x000A Reserved R

0x000C Message Buffer Data Size Register (MBDSR) R/W

0x000E Message Buffer Segment Size and Utilization Register (MBSSUTR) R/W

Test Registers

0x0010 Reserved R

0x0012 Reserved R

Interrupt and Error Handling

0x0014 Protocol Operation Control Register (POCR) R/W

0x0016 Global Interrupt Flag and Enable Register (GIFER) R/W

0x0018 Protocol Interrupt Flag Register 0 (PIFR0) R/W

0x001A Protocol Interrupt Flag Register 1 (PIFR1) R/W

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-9
 Preliminary

0x001C Protocol Interrupt Enable Register 0 (PIER0) R/W

0x001E Protocol Interrupt Enable Register 1 (PIER1) R/W

0x0020 CHI Error Flag Register (CHIERFR) R/W

0x0022 Message Buffer Interrupt Vector Register (MBIVEC) R

0x0024 Channel A Status Error Counter Register (CASERCR) R

0x0026 Channel B Status Error Counter Register (CBSERCR) R

Protocol Status

0x0028 Protocol Status Register 0 (PSR0) R

0x002A Protocol Status Register 1 (PSR1) R

0x002C Protocol Status Register 2 (PSR2) R

0x002E Protocol Status Register 3 (PSR3) R/W

0x0030 Macrotick Counter Register (MTCTR) R

0x0032 Cycle Counter Register (CYCTR) R

0x0034 Slot Counter Channel A Register (SLTCTAR) R

0x0036 Slot Counter Channel B Register (SLTCTBR) R

0x0038 Rate Correction Value Register (RTCORVR) R

0x003A Offset Correction Value Register (OFCORVR) R

0x003C Combined Interrupt Flag Register (CIFRR) R

0x003E System Memory Access Time-Out Register (SYMATOR) R/W

Sync Frame Counter and Tables

0x0040 Sync Frame Counter Register (SFCNTR) R

0x0042 Sync Frame Table Offset Register (SFTOR) R/W

0x0044 Sync Frame Table Configuration, Control, Status Register (SFTCCSR) R/W

Sync Frame Filter

0x0046 Sync Frame ID Rejection Filter Register (SFIDRFR) R/W

0x0048 Sync Frame ID Acceptance Filter Value Register (SFIDAFVR) R/W

0x004A Sync Frame ID Acceptance Filter Mask Register (SFIDAFMR) R/W

Network Management Vector

0x004C Network Management Vector Register 0 (NMVR0) R

0x004E Network Management Vector Register 1 (NMVR1) R

0x0050 Network Management Vector Register 2 (NMVR2) R

0x0052 Network Management Vector Register 3 (NMVR3) R

0x0054 Network Management Vector Register 4 (NMVR4) R

0x0056 Network Management Vector Register 5 (NMVR5) R

0x0058 Network Management Vector Length Register (NMVLR) R/W

Timer Configuration

0x005A Timer Configuration and Control Register (TICCR) R/W

0x005C Timer 1 Cycle Set Register (TI1CYSR) R/W

0x005E Timer 1 Macrotick Offset Register (TI1MTOR) R/W

Table 30-3. FlexRay Memory Map (Sheet 2 of 4)

Offset from
FLEXRAY_BASE
(0xFFFD_8000)

Register Access

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-10 Freescale Semiconductor
 Preliminary

0x0060 Timer 2 Configuration Register 0 (TI2CR0) R/W

0x0062 Timer 2 Configuration Register 1 (TI2CR1) R/W

Slot Status Configuration

0x0064 Slot Status Selection Register (SSSR) R/W

0x0066 Slot Status Counter Condition Register (SSCCR) R/W

Slot Status

0x0068 Slot Status Register 0 (SSR0) R

0x006A Slot Status Register 1 (SSR1) R

0x006C Slot Status Register 2 (SSR2) R

0x006E Slot Status Register 3 (SSR3) R

0x0070 Slot Status Register 4 (SSR4) R

0x0072 Slot Status Register 5 (SSR5) R

0x0074 Slot Status Register 6 (SSR6) R

0x0076 Slot Status Register 7 (SSR7) R

0x0078 Slot Status Counter Register 0 (SSCR0) R

0x007A Slot Status Counter Register 1 (SSCR1) R

0x007C Slot Status Counter Register 2 (SSCR2) R

0x007E Slot Status Counter Register 3 (SSCR3) R

MTS Generation

0x0080 MTS A Configuration Register (MTSACFR) R/W

0x0082 MTS B Configuration Register (MTSBCFR) R/W

Shadow Buffer Configuration

0x0084 Receive Shadow Buffer Index Register (RSBIR) R/W

Receive FIFO — Configuration

0x0086 Receive FIFO Selection Register (RFSR) R/W

0x0088 Receive FIFO Start Index Register (RFSIR) R/W

0x008A Receive FIFO Depth and Size Register (RFDSR) R/W

Receive FIFO - Status

0x008C Receive FIFO A Read Index Register (RFARIR) R

0x008E Receive FIFO B Read Index Register (RFBRIR) R

Receive FIFO - Filter

0x0090 Receive FIFO Message ID Acceptance Filter Value Register (RFMIDAFVR) R/W

0x0092 Receive FIFO Message ID Acceptance Filter Mask Register (RFMIAFMR) R/W

0x0094 Receive FIFO Frame ID Rejection Filter Value Register (RFFIDRFVR) R/W

0x0096 Receive FIFO Frame ID Rejection Filter Mask Register (RFFIDRFMR) R/W

0x0098 Receive FIFO Range Filter Configuration Register (RFRFCFR) R/W

0x009A Receive FIFO Range Filter Control Register (RFRFCTR) R/W

Dynamic Segment Status

0x009C Last Dynamic Transmit Slot Channel A Register (LDTXSLAR) R

Table 30-3. FlexRay Memory Map (Sheet 3 of 4)

Offset from
FLEXRAY_BASE
(0xFFFD_8000)

Register Access

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-11
 Preliminary

30.5.2 Register Descriptions

This section provides detailed descriptions of all registers in ascending address order, presented as 16-bit
wide entities

Table 30-4 provides a key for the register figures and register tables.

0x009E Last Dynamic Transmit Slot Channel B Register (LDTXSLBR) R

Protocol Configuration

0x00A0
...

0x00DC

Protocol Configuration Register 0 (PCR0)
...

Protocol Configuration Register 30 (PCR30)

R/W
–

R/W

0x00DE
...

0x00FE
Reserved R

Message Buffers Configuration, Control, Status

0x0100 Message Buffer Configuration, Control, Status Register 0 (MBCCSR0) R/W

0x0102 Message Buffer Cycle Counter Filter Register 0 (MBCCFR0) R/W

0x0104 Message Buffer Frame ID Register 0 (MBFIDR0) R/W

0x0106 Message Buffer Index Register 0 (MBIDXR0) R/W

...

0x02F8 Message Buffer Configuration, Control, Status Register 63 (MBCCSR63) R/W

0x02FA Message Buffer Cycle Counter Filter Register 63 (MBCCFR63) R/W

0x02FC Message Buffer Frame ID Register 63 (MBFIDR63) R/W

0x02FE Message Buffer Index Register 63 (MBIDXR63) R/W

Table 30-4. Register Access Conventions

Convention Description

Depending on its placement in the read or write row, indicates that the bit is not readable or not writeable.

R* Reserved bit or field, will not be changed. Application must not write any value different from the reset value.

FIELDNAME Identifies the field. Its presence in the read or write row indicates that it can be read or written.

Register Field Types

rwm A read/write bit that may be modified by a hardware in some fashion other than by a reset.

w1c Write one to clear. A flag bit that can be read, is cleared by writing a one, writing 0 has no effect.

Reset Value

0 Resets to zero.

1 Resets to one.

– Not defined after reset and not affected by reset.

Table 30-3. FlexRay Memory Map (Sheet 4 of 4)

Offset from
FLEXRAY_BASE
(0xFFFD_8000)

Register Access

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-12 Freescale Semiconductor
 Preliminary

30.5.2.1 Register Reset

All registers except the Message Buffer Cycle Counter Filter Registers (MBCCFRn), Message Buffer
Frame ID Registers (MBFIDRn), and Message Buffer Index Registers (MBIDXRn) are reset to their reset
value on system reset. The registers mentioned above are located in physical memory blocks and, thus,
they are not affected by reset. For some register fields, additional reset conditions exist. These additional
reset conditions are mentioned in the detailed description of the register. The additional reset conditions
are explained in Table 30-5.

30.5.2.2 Register Write Access

This section describes the write access restriction terms that apply to all registers.

30.5.2.2.1 Register Write Access Restriction

For each register bit and register field, the write access conditions are specified in the detailed register
description. A description of the write access conditions is given in Table 30-6. If, for a specific register
bit or field, none of the given write access conditions is fulfilled, any write attempt to this register bit or
field is ignored without any notification. The values of the bits or fields are not changed. The condition
term [A or B] indicates that the register or field can be written to if at least one of the conditions is fulfilled.

30.5.2.2.2 Register Write Access Requirements

For some of the registers, a 16-bit wide write access is required to ensure correct operation. This write
access requirement is stated in the detailed register description for each register affected

30.5.2.2.3 Internal Register Access

The following memory-mapped registers are used to access multiple internal registers.

Table 30-5. Additional Register Reset Conditions

Condition Description

Protocol RUN Command The register field is reset when the application writes to RUN command “0101” to the
POCCMD field in the Protocol Operation Control Register (POCR).

Message Buffer Disable The register field is reset when the application has disabled the message buffer.
This happens when the application writes 1 to the message buffer disable trigger bit
MBCCSRn.EDT while the message buffer is enabled (MBCCSn.EDS = 1) and the FlexRay
block grants the disable to the application by clearing the MBCCSRn.EDS bit.

Table 30-6. Register Write Access Restrictions

Condition Indication Description

Any Time — No write access restriction.

Disabled Mode MCR.MEN = 0 Write access only when the FlexRay block is in Disabled Mode.

Normal Mode MCR.MEN = 1 Write access only when the FlexRay block is in Normal Mode.

POC:config PSR0.PROTSTATE = POC:config Write access only when the Protocol is in the POC:config state.

MB_DIS MBCCSRn.EDS = 0 Write access only when the related Message Buffer is disabled.

MB_LCK MBCCSRn.LCKS = 1 Write access only when the related Message Buffer is locked.

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-13
 Preliminary

• Strobe Signal Control Register (STBSCR)

• Slot Status Selection Register (SSSR)

• Slot Status Counter Condition Register (SSCCR)

• Receive Shadow Buffer Index Register (RSBIR)

Each of these memory-mapped registers provides a SEL field and a WMD bit. The SEL field is used to
select the internal register. The WMD bit controls the write mode. If the WMD bit is set to 0 during the
write access, all fields of the internal register are updated. If the WMD bit set to 1, only the SEL field is
changed. All other fields of the internal register remain unchanged. This allows for reading back the values
of the selected internal register in a subsequent read access.

30.5.2.3 Module Version Register (MVR)

This register provides the FlexRay block version number. The module version number is derived from the
CHI version number and the PE version number.

30.5.2.4 Module Configuration Register (MCR)

This register defines the global configuration of the FlexRay block.

Base + 0x0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CHIVER PEVER

W

Reset 1 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0

Figure 30-2. Module Version Register (MVR)

Table 30-7. MVR Field Descriptions

Field Description

CHIVER CHI Version Number.This field provides the version number of the controller host interface.

PEVER PE Version Number. This field provides the version number of the protocol engine.

Base + 0x0002 Write: MEN, SCM, CHB, CHA, CLKSEL, BITRATE: Disabled Mode
SFFE: Disabled Mode or POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MEN

0
SCM CHB CHA SFFE

0
R*

0 0 0 CLKS
EL

BITRATE
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-3. Module Configuration Register (MCR)

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-14 Freescale Semiconductor
 Preliminary

Table 30-8. MCR Field Descriptions

Field Description

MEN Module Enable.This bit indicates whether or not the FlexRay block is in the disabled mode. The application
requests the FlexRay block to leave the disabled mode by writing 1 to this bit. Before leaving the disabled mode,
the application must configure the SCM, CHB, CHA, TMODE, CLKSEL, BITRATE values. For details see
Section 30.1.6, “Modes of Operation”.
0 Write: ignored, FlexRay block disable not possible

Read: FlexRay block disabled
1 Write: enable FlexRay block

Read: FlexRay block enabled
Note: If the FlexRay block is enabled it can not be disabled.

SCM Single Channel Device Mode. This control bit defines the channel device mode of the FlexRay block as described
in Section 30.6.10, “Channel Device Modes”.
0 FlexRay block works in dual channel device mode
1 FlexRay block works in single channel device mode

CHB
CHA

Channel Enable. protocol related parameter: pChannels
The semantic of these control bits depends on the channel device mode controlled by the SCM bit and is given
Table 30-9.

SFFE Synchronization Frame Filter Enable. This bit controls the filtering for received synchronization frames. For
details see Section 30.6.15, “Sync Frame Filtering”.
0 Synchronization frame filtering disabled
1 Synchronization frame filtering enabled

R* Reserved. This bit is reserved. It is read as 0. Application must not write 1 to this bit.

CLKSEL Protocol Engine Clock Source Select . This bit is used to select the clock source for the protocol engine.
0 PE clock source is generated by on-chip crystal oscillator.
1 PE clock source is generated by on-chip PLL1.

1 Due to the tight timing requirements and overall system requirements of FlexRAY systems, usage of the PLL as the clock
source has not been fully evaluated. It is recommended to use a 40 MHz crystal for the clock source.

BITRATE FlexRay Bus Bit Rate. This bit field defines the bit rate of the flexray channels according to Table 30-10.

Table 30-9. FlexRay Channel Selection (Sheet 1 of 2)

SCM CHB CHA Description

Dual Channel Device Modes

0

0 0

ports FR_A_RX, FR_A_TX, and FR_A_TX_EN not driven by FlexRay block
ports FR_B_RX, FR_B_TX, and FR_A_TX_EN not driven by FlexRay block
PE channel 0 idle
PE channel 1 idle

0 1

ports FR_A_RX, FR_A_TX, and FR_A_TX_EN driven by FlexRay block
ports FR_B_RX, FR_B_TX, and FR_A_TX_EN not driven by FlexRay block
PE channel 0 active
PE channel 1 idle

1 0

ports FR_A_RX, FR_A_TX, and FR_A_TX_EN not driven by FlexRay block
ports FR_B_RX, FR_B_TX, and FR_A_TX_EN driven by FlexRay block
PE channel 0 idle
PE channel 1 active

1 1

ports FR_A_RX, FR_A_TX, and FR_A_TX_EN driven by FlexRay block
ports FR_B_RX, FR_B_TX, and FR_A_TX_EN driven by FlexRay block
PE channel 0 active
PE channel 1 active

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-15
 Preliminary

30.5.2.5 System Memory Base Address High Register (SYMBADHR) and
System Memory Base Address Low Register (SYMBADLR)

Single Channel Device Mode

1

0 0

ports FR_A_RX, FR_A_TX, and FR_A_TX_EN not driven by FlexRay block
ports FR_B_RX, FR_B_TX, and FR_A_TX_EN not driven by FlexRay block
PE channel 0 idle
PE channel 1 idle

0 1

ports FR_A_RX, FR_A_TX, and FR_A_TX_EN driven by FlexRay block
ports FR_B_RX, FR_B_TX, and FR_A_TX_EN not driven by FlexRay block
PE channel 0 active
PE channel 1 idle

1 0

ports FR_A_RX, FR_A_TX, and FR_A_TX_EN driven by FlexRay block
ports FR_B_RX, FR_B_TX, and FR_A_TX_EN not driven by FlexRay block
PE channel 0 active, uses cCrcInit[B] (see Figure 30-134)
PE channel 1 idle

1 1 reserved

Table 30-10. FlexRay Channel Bit Rate Selection

MCR[BITRATE] FlexRay Channel Bit Rate [Mbit/s]

000 10.0
001 5.0

010 2.5

011 8.0
100 reserved

101 reserved

110 reserved
111 reserved

Base + 0x0004 Write: Disabled Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SYS_MEM_BASE_ADDR[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-4. System Memory Base Address High Register (SYMBADHR)

Base + 0x0006 Write: Disabled Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SYS_MEM_BASE_ADDR[15:4]

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-5. System Memory Base Address Low Register (SYMBADLR)

Table 30-9. FlexRay Channel Selection (Sheet 2 of 2)

SCM CHB CHA Description

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-16 Freescale Semiconductor
 Preliminary

NOTE
The system memory base address must be set before the FlexRay block is
enabled.

The system memory base address registers define the base address of the FRM within the system memory.
The base address is used by the BMIF to calculate the physical memory address for system memory
accesses.

30.5.2.6 Strobe Signal Control Register (STBSCR)

This register is used to assign the individual protocol timing related strobe signals given in Table 30-13 to
the external strobe ports. Each strobe signal can be assigned to at most one strobe port. Each write access
to registers overwrites the previously written ENB and STBPSEL values for the signal indicated by SEL.
If more than one strobe signal is assigned to one strobe port, the current values of the strobe signals are
combined with a binary OR and presented at the strobe port. If no strobe signal is assigned to a strobe port,
the strobe port carries logic 0. For more detailed and timing information refer to Section 30.6.16, “Strobe
Signal Support”.

NOTE
In single channel device mode, channel B related strobe signals are
undefined and should not be assigned to the strobe ports.

Table 30-11. SYMBADHR and SYMBADLR Field Descriptions

Field Description

SYMBADHR
SYMBADLR

This base address will be added to all system memory offset values stored in registers or calculated in the
FlexRay block before the FlexRay block accesses the system memory via its bus master interface. The system
memory base address must be aligned to an 16-byte boundary.

Base + 0x0008 16-bit write access required Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
SEL

0 0 0
ENB

0 0
STBPSEL

W WMD

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-6. Strobe Signal Control Register (STBSCR)

Table 30-12. STBSCR Field Descriptions (Sheet 1 of 2)

Field Description

WMD Write Mode. This control bit defines the write mode of this register.
0 Write to all fields in this register on write access.
1 Write to SEL field only on write access.

SEL Strobe Signal Select. This control field selects one of the strobe signals given in Table 30-13 to be enabled or
disabled and assigned to one of the four strobe ports given in Table 30-13.

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-17
 Preliminary

.;

ENB Strobe Signal Enable. The control bit is used to enable and to disable the strobe signal selected by STBSSEL.
0 Strobe signal is disabled and not assigned to any strobe port.
1 Strobe signal is enabled and assigned to the strobe port selected by STBPSEL.

STBPSEL Strobe Port Select. This field selects the strobe port that the strobe signal selected by the SEL is assigned to.
All strobe signals that are enabled and assigned to the same strobe port are combined with a binary OR
operation.
00 assign selected signal to FR_DBG[0]
01 assign selected signal to FR_DBG[1]
10 assign selected signal to FR_DBG[2]
11 assign selected signal to FR_DBG[3]

Table 30-13. Strobe Signal Mapping (Sheet 1 of 3)

SEL
Description Channel Type Offset1 Reference

dec hex

0 0x00 poc_startup_state[0] (for coding see PSR0[4])

- value 0 MT start

1 0x01 poc_startup_state[1] (for coding see PSR0[5])
2 0x02 poc_startup_state[2] (for coding see PSR0[6])
3 0x03 poc_startup_state[3] (for coding see PSR0[7])
4 0x04 poc_state[0] (for coding see PSR0[8])
5 0x05 poc_state[1] (for coding see PSR0[9])
6 0x06 poc_state[2] (for coding see PSR0[10])
7 0x07

channel idle indicator
A

level +5
FR_A_RX

8 0x08 B FR_B_RX
9 0x09

receive data after glitch filtering
A

value +4
FR_A_RX

10 0x0A B FR_B_RX
11 0x0B

synchronization edge strobe
A

pulse +4
FR_A_RX

12 0x0C B FR_B_RX
13 0x0D

header received
A

pulse +4
FR_A_RX

14 0x0E B FR_B_RX
15 0x0F

wakeup symbol decoded
A

pulse +5
FR_A_RX

16 0x10 B FR_B_RX
17 0x11

MTS or CAS symbol decoded
A

pulse +4
FR_A_RX

18 0x12 B FR_B_RX
19 0x13

frame decoded
A

pulse +4
FR_A_RX

20 0x14 B FR_B_RX
21 0x15

channel idle detected
A

pulse +4
FR_A_RX

22 0x16 B FR_B_RX
23 0x17

start of communication element detected
A

pulse +4
FR_A_RX

24 0x18 B FR_B_RX
25 0x19

potential frame start channel
A

pulse +4
FR_A_RX

26 0x1A B FR_B_RX
27 0x1B

wakeup collision detected
A

pulse +5
FR_A_RX

28 0x1C B FR_B_RX
29 0x1D

content error detected
A

level +4
FR_A_RX

30 0x1E B FR_B_RX

Table 30-12. STBSCR Field Descriptions (Sheet 2 of 2)

Field Description

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-18 Freescale Semiconductor
 Preliminary

31 0x1F
syntax error detected

A
pulse +4

FR_A_RX
32 0x20 B FR_B_RX
33 0x21

start transmission of wakeup pattern
A

pulse -1
FR_A_TX

34 0x22 B FR_B_TX
35 0x23

start transmission of MTS or CAS symbol
A

pulse -1
FR_A_TX

36 0x24 B FR_B_TX
37 0x25

start of transmission
A

pulse -1
FR_A_TX

38 0x26 B FR_B_TX
39 0x27

end of transmission
A

pulse -1
FR_A_TX

40 0x28 B FR_B_TX
41 0x29 static segment indicator - level 0 MT start
42 0x2A dynamic segment indicator - level 0 MT start
43 0x2B symbol window indicator - level 0 MT start
44 0x2C NIT indicator - level 0 MT start
45 0x2D action point - pulse -1 FR_A_TX
46 0x2E sync calculation complete2 - pulse - -
47 0x2F start of offset correction - pulse -2 MT start
48 0x30 cycle count[0]

- value -2 MT start

49 0x31 cycle count[1]
50 0x32 cycle count[2]
51 0x33 cycle count[3]
52 0x34 cycle count[4]
53 0x35 cycle count[5]
54 0x36 slot count[0]

A value 0 MT start

55 0x37 slot count[1]
56 0x38 slot count[2]
57 0x39 slot count[3]
58 0x3A slot count[4]
59 0x3B slot count[5]
60 0x3C slot count[6]
61 0x3D slot count[7]
62 0x3E slot count[8]
63 0x3F slot count[9]
64 0x40 slot count[10]
65 0x41 slot count[0]

B value 0 MT start

66 0x42 slot count[1]
67 0x43 slot count[2]
68 0x44 slot count[3]
69 0x45 slot count[4]
70 0x46 slot count[5]
71 0x47 slot count[6]
72 0x48 slot count[7]
73 0x49 slot count[8]
74 0x4A slot count[9]
75 0x4B slot count[10]
76 0x4C cycle start - pulse 0 MT start

Table 30-13. Strobe Signal Mapping (Sheet 2 of 3)

SEL
Description Channel Type Offset1 Reference

dec hex

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-19
 Preliminary

30.5.2.7 Message Buffer Data Size Register (MBDSR)

This register defines the size of the message buffer data section for the two message buffer segments in a
number of two-byte entities.

The FlexRay block provides two independent segments for the individual message buffers. All individual
message buffers within one segment have to have the same size for the message buffer data section. This
size can be different for the two message buffer segments.

30.5.2.8 Message Buffer Segment Size and Utilization Register (MBSSUTR)

This register is used to define the last individual message buffer that belongs to the first message buffer
segment and the number of the last used individual message buffer.

77 0x4D
slot start

A
pulse 0 MT start

78 0x4E B
79 0x4F minislot start - pulse 0 MT start
80 0x50 arm - value +1 MT start
81 0x51 mt - value +1 MT start

1 Given in PE clock cycles
2 Indicates internal PE event not directly related to FlexRay bus timing

Base + 0x000C Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
MBSEG2DS

0
MBSEG1DS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-7. Message Buffer Data Size Register (MBDSR)

Table 30-14. MBDSR Field Descriptions

Field Description

MBSEG2DS Message Buffer Segment 2 Data Size. The field defines the size of the message buffer data section in two-byte
entities for message buffers within the second message buffer segment.

MBSEG1DS Message Buffer Segment 1 Data Size. The field defines the size of the message buffer data section in two-byte
entities for message buffers within the first message buffer segment.

Base + 0x000E Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
LAST_MB_SEG1

0 0
LAST_MB_UTIL

W

Reset 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1

Figure 30-8. Message Buffer Segment Size and Utilization Register (MBSSUTR)

Table 30-13. Strobe Signal Mapping (Sheet 3 of 3)

SEL
Description Channel Type Offset1 Reference

dec hex

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-20 Freescale Semiconductor
 Preliminary

30.5.2.9 Protocol Operation Control Register (POCR)

The application uses this register to issue

• protocol control commands

• external clock correction commands

Protocol control commands are issued by writing to the POCCMD field. For more information on protocol
control commands, see Section 30.7.4, “Protocol Control Command Execution”.

External clock correction commands are issued by writing to the EOC_AP and ERC_AP fields. For more
information on external clock correction, refer to Section 30.6.11, “External Clock Synchronization”.

Table 30-15. MBSSUTR Field Descriptions

Field Description

LAST_MB_SEG1 Last Message Buffer In Segment 1. This field defines the message buffer number of the last individual
message buffer that is assigned to the first message buffer segment. The individual message buffers in the
first segment correspond to the message buffer control registers MBCCSRn, MBCCFRn, MBFIDRn,
MBIDXRn with n <= LAST_MB_SEG1. The first message buffer segment contains LAST_MB_SEG1+1
individual message buffers.
Note: The first message buffer segment contains at least one individual message buffer.

The individual message buffers in the second message buffer segment correspond to the message buffer
control registers MBCCSRn, MBCCFRn, MBFIDRn, MBIDXRn with LAST_MB_SEG1 < n < 64.
Note: If LAST_MB_SEG1 = 63 all individual message buffers belong to the first message buffer segment

and the second message buffer segment is empty.

LAST_MB_UTIL Last Message Buffer Utilized. This field defines the message buffer number of last utilized individual
message buffer. The message buffer search engine examines all individual message buffer with a message
buffer number n <= LAST_MB_UTIL.
Note: If LAST_MB_UTIL=LAST_MB_SEG1 all individual message buffers belong to the first message

buffer segment and the second message buffer segment is empty.

Base + 0x0014 Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
EOC_AP ERC_AP

BSY 0 0 0
POCCMD

W WME WMC

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-9. Protocol Operation Control Register (POCR)

Table 30-16. POCR Field Descriptions (Sheet 1 of 2)

Field Description

WME Write Mode External Correction. This bit controls the write mode of the EOC_AP and ERC_AP fields.
0 Write to EOC_AP and ERC_AP fields on register write.
1 No write to EOC_AP and ERC_AP fields on register write.

EOC_AP External Offset Correction Application. This field is used to trigger the application of the external offset correction
value defined in the Protocol Configuration Register 29 (PCR29).
00 do not apply external offset correction value
01 reserved
10 subtract external offset correction value
11 add external offset correction value

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-21
 Preliminary

ERC_AP External Rate Correction Application. This field is used to trigger application of the external rate correction value
defined in the Protocol Configuration Register 21 (PCR21)
00 do not apply external rate correction value
01 reserved
10 subtract external rate correction value
11 add external rate correction value

BSY

WMC

Protocol Control Command Write Busy. This status bit indicates the acceptance of the protocol control command
issued by the application via the POCCMD field. The FlexRay block sets this status bit when the application has
issued a protocol control command via the POCCMD field. The FlexRay block clears this status bit when protocol
control command was accepted by the PE.When the application issues a protocol control command while the
BSY bit is asserted, the FlexRay block ignores this command, sets the protocol command ignored error flag
PCMI_EF in the CHI Error Flag Register (CHIERFR), and will not change the value of the POCCMD field.
0 Command write idle, command accepted and ready to receive new protocol command.
1 Command write busy, command not yet accepted, not ready to receive new protocol command.

Write Mode Command. This bit controls the write mode of the POCCMD field.
0 Write to POCCMD field on register write.
1 Do not write to POCCMD field on register write.

POCCMD Protocol Control Command. The application writes to this field to issue a protocol control command to the PE.
The FlexRay block sends the protocol command to the PE immediately. While the transfer is running, the BSY
bit is set.
0000 ALLOW_COLDSTART — Immediately activate capability of node to cold start cluster.
0001 ALL_SLOTS — Delayed1 transition to the all slots transmission mode.
0010 CONFIG — Immediately transition to the POC:config state.
0011 FREEZE — Immediately transition to the POC:halt state.
0100 READY, CONFIG_COMPLETE — Immediately transition to the POC:ready state.
0101 RUN — Immediately transition to the POC:startup start state.
0110 DEFAULT_CONFIG — Immediately transition to the POC:default config state.
0111 HALT — Delayed transition to the POC:halt state
1000 WAKEUP — Immediately initiate the wakeup procedure.
1001 reserved
1010 reserved
1011 reserved
1100 RESET2 — Immediately reset the Protocol Engine.
1101 reserved
1110 reserved
1111 reserved

1 Delayed means on completion of current communication cycle.
2 Additional to FlexRay Communications System Protocol Specification, Version 2.1 Rev A

After sending the RESET command, it is mandatory to execute the
command sequence described in Section 30.7.5, “Protocol Reset
Command” immediately, to reach the DEFAULT CONFIG state correctly.

Table 30-16. POCR Field Descriptions (Sheet 2 of 2)

Field Description

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-22 Freescale Semiconductor
 Preliminary

30.5.2.10 Global Interrupt Flag and Enable Register (GIFER)

This register provides the means to control some of the interrupt request lines and provides the
corresponding interrupt flags. The interrupt flags MIF, PRIF, CHIF, RBIF, and TBIF are the outcome of a
binary OR of the related individual interrupt flags and interrupt enables. The generation scheme for these
flags is depicted in Figure 30-143. For more details on interrupt generation, see Section 30.6.19, “Interrupt
Support. These flags are cleared automatically when all of the corresponding interrupt flags or interrupt
enables in the related interrupt flag and enable registers are cleared by the application.

Base + 0x0016 Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MIF PRIF CHIF

WUP
IF

FNEB
IF

FNEA
IF

RBIF TBIF
MIE PRIE CHIE

WUP
IE

FNEB
IE

FNEA
IE

RBIE TBIE

W w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-10. Global Interrupt Flag and Enable Register (GIFER)

Table 30-17. GIFER Field Descriptions (Sheet 1 of 3)

Field Description

MIF Module Interrupt Flag. This flag is set if at least one of the other interrupt flags is in this register is asserted and
the related interrupt enable is asserted, too. The FlexRay block generates the module interrupt request if MIE is
asserted.
0 No interrupt flag is asserted or no interrupt enable is set
1 At least one of the other interrupt flags in this register is asserted and the related interrupt bit is asserted, too

PRIF Protocol Interrupt Flag. This flag is set if at least one of the individual protocol interrupt flags in the Protocol
Interrupt Flag Register 0 (PIFR0) and Protocol Interrupt Flag Register 1 (PIFR1) is asserted and the related
interrupt enable flag is asserted, too. The FlexRay block generates the combined protocol interrupt request if the
PRIE flag is asserted.
0 All individual protocol interrupt flags are equal to 0 or no interrupt enable bit is set.
1 At least one of the individual protocol interrupt flags and the related interrupt enable is equal to 1.

CHIF CHI Interrupt Flag. This flag is set if at least one of the individual CHI error flags in the CHI Error Flag Register
(CHIERFR) is asserted and the chi error interrupt enable GIFER.CHIE is asserted. The FlexRay block generates
the combined CHI error interrupt if the CHIE flag is asserted, too.
0 All CHI error flags are equal to 0 or the chi error interrupt is disabled
1 At least one CHI error flag is asserted and chi error interrupt is enabled

WUPIF Wakeup Interrupt Flag. This flag is set when the FlexRay block has received a wakeup symbol on the FlexRay
bus. The application can determine on which channel the wakeup symbol was received by reading the related
wakeup flags WUB and WUA in the Protocol Status Register 3 (PSR3). The FlexRay block generates the wakeup
interrupt request if the WUPIE flag is asserted.
0 No wakeup condition or interrupt disabled
1 Wakeup symbol received on FlexRay bus and interrupt enabled

FNEBIF Receive FIFO channel B Not Empty Interrupt Flag. This flag is set when the receive FIFO for channel B is not
empty. If the application writes 1 to this bit, the FlexRay block updates the FIFO status, increments or wraps the
FIFO read index in the Receive FIFO B Read Index Register (RFBRIR) and clears the interrupt flag if the FIFO
B is now empty. If the FIFO is still not empty, the FlexRay block sets this flag again. The FlexRay block generates
the Receive FIFO B Not empty interrupt if the FNEBIE flag is asserted.
0 Receive FIFO B is empty or interrupt is disabled
1 Receive FIFO B is not empty and interrupt enabled

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-23
 Preliminary

FNEAIF Receive FIFO channel A Not Empty Interrupt Flag. This flag is set when the receive FIFO for channel A is not
empty. If the application writes 1 to this bit, the FlexRay block updates the FIFO status, increments or wraps the
FIFO read index in the Receive FIFO A Read Index Register (RFARIR) and clears the interrupt flag if the FIFO
A is now empty. If the FIFO is still not empty, the FlexRay block sets this flag again. The FlexRay block generates
the Receive FIFO A Not empty interrupt if the FNEAIE flag is asserted.
0 Receive FIFO A is empty or interrupt is disabled
1 Receive FIFO A is not empty and interrupt enabled

RBIF Receive Message Buffer Interrupt Flag. This flag is set if for at least one of the individual receive message buffers
(MBCCSn.MTD = 0) both the interrupt flag MBIF and the interrupt enable bit MBIE in the corresponding Message
Buffer Configuration, Control, Status Registers (MBCCSRn) are asserted. The application can not clear this
RBIF flag directly. This flag is cleared by the FlexRay block when all of the interrupt flags MBIF of the individual
receive message buffers are cleared by the application or if the application has cleared the interrupt enables bit
MBIE.
0 None of the individual receive message buffers has the MBIF and MBIE flag asserted.
1 At least one individual receive message buffer has the MBIF and MBIE flag asserted.

TBIF Transmit Buffer Interrupt Flag. This flag is set if for at least one of the individual single or double transmit
message buffers (MBCCSn.MTD = 0) both the interrupt flag MBIF and the interrupt enable bit MBIE in the
corresponding Message Buffer Configuration, Control, Status Registers (MBCCSRn) are equal to 1. The
application can not clear this TBIF flag directly. This flag is cleared by the FlexRay block when either all of the
individual interrupt flags MBIF of the individual transmit message buffers are cleared by the application or the
host has cleared the interrupt enables bit MBIE.
0 None of the individual transmit message buffers has the MBIF and MBIE flag asserted.
1 At least one individual transmit message buffer has the MBIF and MBIE flag asserted.

MIE Module Interrupt Enable. This flag controls if the module interrupt line is asserted when the MIF flag is set.
0 Disable interrupt line
1 Enable interrupt line

PRIE Protocol Interrupt Enable. This flag controls if the protocol interrupt line is asserted when the PRIF flag is set.
0 Disable interrupt line
1 Enable interrupt line

CHIE CHI Interrupt Enable. This flag controls if the CHI interrupt line is asserted when the CHIF flag is set.
0 Disable interrupt line
1 Enable interrupt line

WUPIE Wakeup Interrupt Enable. This flag controls if the wakeup interrupt line is asserted when the WUPIF flag is set.
0 Disable interrupt line
1 Enable interrupt line

FNEBIE Receive FIFO Channel B Not Empty Interrupt Enable. This flag controls if the receive FIFO B interrupt line is
asserted when the FNEBIF flag is set.
0 Disable interrupt line
1 Enable interrupt line

FNEAIE Receive FIFO Channel A Not Empty Interrupt Enable. This flag controls if the receive FIFO A interrupt line is
asserted when the FNEAIF flag is set.
0 Disable interrupt line
1 Enable interrupt line

Table 30-17. GIFER Field Descriptions (Sheet 2 of 3)

Field Description

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-24 Freescale Semiconductor
 Preliminary

30.5.2.11 Protocol Interrupt Flag Register 0 (PIFR0)

The register holds one set of the protocol-related individual interrupt flags.

RBIE Receive Buffer Interrupt Enable.This flag controls if the receive buffer interrupt line is asserted when the RBIF
flag is set.
0 Disable interrupt line
1 Enable interrupt line

TBIE Transmit Interrupt Enable. This flag controls if the transmit buffer interrupt line is asserted when the TBIF flag is
set.
0 Disable interrupt line
1 Enable interrupt line

Base + 0x0018 Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FATL
_IF

INTL
_IF

ILCF
_IF

CSA
_IF

MRC
_IF

MOC
_IF

CCL
_IF

MXS
_IF

MTX
_IF

LTXB
_IF

LTXA
_IF

TBVB
_IF

TBVA
_IF

TI2
_IF

TI1
_IF

CYS
_IF

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-11. Protocol Interrupt Flag Register 0 (PIFR0)

Table 30-18. PIFR0 Field Descriptions (Sheet 1 of 3)

Field Description

FATL_IF Fatal Protocol Error Interrupt Flag. This flag is set when the protocol engine has detected a fatal protocol error.
In this case, the protocol engine goes into the POC:halt state immediately. The fatal protocol errors are:
1) pLatestTx violation, as described in the MAC process of the FlexRay protocol
2) transmission across slot boundary violation, as described in the FSP process of the FlexRay protocol
0 No such event.
1 Fatal protocol error detected.

INTL_IF Internal Protocol Error Interrupt Flag. This flag is set when the protocol engine has detected an internal protocol
error. In this case, the protocol engine goes into the POC:halt state immediately. An internal protocol error occurs
when the protocol engine has not finished a calculation and a new calculation is requested. This can be caused
by a hardware error.
0 No such event.
1 Internal protocol error detected.

ILCF_IF Illegal Protocol Configuration Interrupt Flag. This flag is set when the protocol engine has detected an illegal
protocol configuration parameter setting. In this case, the protocol engine goes into the POC:halt state
immediately.
The protocol engine checks the listen_timeout value programmed into the Protocol Configuration Register 14
(PCR14) and Protocol Configuration Register 15 (PCR15) when the CONFIG_COMPLETE command was sent
by the application via the Protocol Operation Control Register (POCR). If the value of listen_timeout is equal to
zero, the protocol configuration setting is considered as illegal.
0 No such event.
1 Illegal protocol configuration detected.

Table 30-17. GIFER Field Descriptions (Sheet 3 of 3)

Field Description

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-25
 Preliminary

CSA_IF Cold Start Abort Interrupt Flag. This flag is set when the configured number of allowed cold start attempts is
reached and none of these attempts was successful. The number of allowed cold start attempts is configured
by the coldstart_attempts field in the Protocol Configuration Register 3 (PCR3).
0 No such event.
1 Cold start aborted and no more coldstart attempts allowed.

MRC_IF Missing Rate Correction Interrupt Flag. This flag is set when an insufficient number of measurements is available
for rate correction at the end of the communication cycle.
0 No such event
1 Insufficient number of measurements for rate correction detected

MOC_IF Missing Offset Correction Interrupt Flag. This flag is set when an insufficient number of measurements is
available for offset correction. This is related to the MISSING_TERM event in the CSP process for offset
correction in the FlexRay protocol.
0 No such event.
1 Insufficient number of measurements for offset correction detected.

CCL_IF Clock Correction Limit Reached Interrupt Flag. This flag is set when the internal calculated offset or rate
calculation values have reached or exceeded its configured thresholds as given by the offset_coorection_out
field in the Protocol Configuration Register 9 (PCR9) and the rate_correction_out field in the Protocol
Configuration Register 14 (PCR14).
0 No such event.
1 Offset or rate correction limit reached.

MXS_IF Max Sync Frames Detected Interrupt Flag. This flag is set when the number of synchronization frames detected
in the current communication cycle exceeds the value of the node_sync_max field in the Protocol Configuration
Register 30 (PCR30).
0 No such event.
1 More than node_sync_max sync frames detected.
Note: Only synchronization frames that have passed the synchronization frame acceptance and rejection filters

are taken into account.

MTX_IF Media Access Test Symbol Received Interrupt Flag. This flag is set when the MTS symbol was received on
channel A or channel B.
0 No such event.
1 MTS symbol received.

LTXB_IF pLatestTx Violation on Channel B Interrupt Flag. This flag is set when the frame transmission on channel B in
the dynamic segment exceeds the dynamic segment boundary. This is related to the pLatestTx violation, as
described in the MAC process of the FlexRay protocol.
0 No such event.
1 pLatestTx violation occurred on channel B.

LTXA_IF pLatestTx Violation on Channel A Interrupt Flag. This flag is set when the frame transmission on channel A in
the dynamic segment exceeds the dynamic segment boundary. This is related to the pLatestTx violation as
described in the MAC process of the FlexRay protocol.
0 No such event.
1 pLatestTx violation occurred on channel A.

TBVB_IF Transmission Across Boundary on Channel B Interrupt Flag. This flag is set when the frame transmission on
channel B crosses the slot boundary. This is related to the transmission across slot boundary violation as
described in the FSP process of the FlexRay protocol.
0 No such event.
1 Transmission across boundary violation occurred on channel B.

Table 30-18. PIFR0 Field Descriptions (Sheet 2 of 3)

Field Description

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-26 Freescale Semiconductor
 Preliminary

30.5.2.12 Protocol Interrupt Flag Register 1 (PIFR1)

The register holds one set of the protocol-related individual interrupt flags.

TBVA_IF Transmission across boundary on channel A Interrupt Flag. This flag is set when the frame transmission on
channel A crosses the slot boundary. This is related to the transmission across slot boundary violation as
described in the FSP process of the FlexRay protocol.
0 No such event.
1 Transmission across boundary violation occurred on channel A.

TI2_IF Timer 2 Expired Interrupt Flag. This flag is set whenever timer 2 expires.
0 No such event.
1 Timer 2 has reached its time limit.

TI1_IF Timer 1 Expired Interrupt Flag. This flag is set whenever timer 1 expires.
0 No such event
1 Timer 1 has reached its time limit

CYS_IF Cycle Start Interrupt Flag. This flag is set when a communication cycle starts.
0 No such event
1 Communication cycle started.

Base + 0x001A Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EMC
_IF

IPC
_IF

PECF
_IF

PSC
_IF

SSI3
_IF

SSI2
_IF

SSI1
_IF

SSI0
_IF

0 0
EVT
_IF

ODT
_IF

0 0 0 0

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-12. Protocol Interrupt Flag Register 1 (PIFR1)

Table 30-19. PIFR1 Field Descriptions (Sheet 1 of 2)

Field Description

EMC_IF Error Mode Changed Interrupt Flag. This flag is set when the value of the ERRMODE bit field in the Protocol
Status Register 0 (PSR0) is changed by the FlexRay block.
0 No such event.
1 ERRMODE field changed.

IPC_IF Illegal Protocol Control Command Interrupt Flag. This flag is set when the PE tries to execute a protocol control
command, which was issued via the POCCMD field of the Protocol Operation Control Register (POCR), and
detects that this protocol control command is not allowed in the current protocol state. In this case the command
is not executed. For more details, see Section 30.7.4, “Protocol Control Command Execution”.
0 No such event.
1 Illegal protocol control command detected.

PECF_IF Protocol Engine Communication Failure Interrupt Flag. This flag is set if the FlexRay block has detected a
communication failure between the protocol engine and the controller host interface
0 No such event.
1 Protocol Engine Communication Failure detected.

PSC_IF Protocol State Changed Interrupt Flag. This flag is set when the protocol state in the PROTSTATE field in the
Protocol Status Register 0 (PSR0) has changed.
0 No such event.
1 Protocol state changed.

Table 30-18. PIFR0 Field Descriptions (Sheet 3 of 3)

Field Description

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-27
 Preliminary

30.5.2.13 Protocol Interrupt Enable Register 0 (PIER0)

This register defines whether or not the individual interrupt flags defined in the Protocol Interrupt Flag
Register 0 (PIFR0) can generate a protocol interrupt request.

SSI[3:0]_IF Slot Status Counter Incremented Interrupt Flag. Each of these flags is set when the SLOTSTATUSCNT field in
the corresponding Slot Status Counter Registers (SSCR0–SSCR3) is incremented.
0 No such event.
1 The corresponding slot status counter has incremented.

EVT_IF Even Cycle Table Written Interrupt Flag. This flag is set if the FlexRay block has written the sync frame
measurement / ID tables into the FlexRay Memory for the even cycle.
0 No such event.
1 Sync frame measurement table written

ODT_IF Odd Cycle Table Written Interrupt Flag. This flag is set if the FlexRay block has written the sync frame
measurement / ID tables into the FlexRay Memory for the odd cycle.
0 No such event.
1 Sync frame measurement table written

Base + 0x001C Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FATL
_IE

INTL
_IE

ILCF
_IE

CSA
_IE

MRC
_IE

MOC
_IE

CCL
_IE

MXS
_IE

MTX
_IE

LTXB
_IE

LTXA
_IE

TBVB
_IE

TBVA
_IE

TI2
_IE

TI1
_IE

CYS
_IEW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-13. Protocol Interrupt Enable Register 0 (PIER0)

Table 30-20. PIER0 Field Descriptions

Field Description

FATL_IE Fatal Protocol Error Interrupt Enable. This bit controls FATL_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

INTL_IE Internal Protocol Error Interrupt Enable. This bit controls INTL_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

ILCF_IE Illegal Protocol Configuration Interrupt Enable. This bit controls ILCF_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

CSA_IE Cold Start Abort Interrupt Enable. This bit controls CSA_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

MRC_IE Missing Rate Correction Interrupt Enable. This bit controls MRC_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

MOC_IE Missing Offset Correction Interrupt Enable. This bit controls MOC_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

Table 30-19. PIFR1 Field Descriptions (Sheet 2 of 2)

Field Description

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-28 Freescale Semiconductor
 Preliminary

30.5.2.14 Protocol Interrupt Enable Register 1 (PIER1)

This register defines whether or not the individual interrupt flags defined in Protocol Interrupt Flag
Register 1 (PIFR1) can generate a protocol interrupt request.

CCL_IE Clock Correction Limit Reached Interrupt Enable. This bit controls CCL_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

MXS_IE Max Sync Frames Detected Interrupt Enable. This bit controls MXS_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

MTX_IE Media Access Test Symbol Received Interrupt Enable. This bit controls MTX_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

LTXB_IE pLatestTx Violation on Channel B Interrupt Enable. This bit controls LTXB_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

LTXA_IE pLatestTx Violation on Channel A Interrupt Enable. This bit controls LTXA_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

TBVB_IE Transmission across boundary on channel B Interrupt Enable. This bit controls TBVB_IF interrupt request
generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

TBVA_IE Transmission across boundary on channel A Interrupt Enable. This bit controls TBVA_IF interrupt request
generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

TI2_IE Timer 2 Expired Interrupt Enable. This bit controls TI1_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

TI1_IE Timer 1 Expired Interrupt Enable. This bit controls TI1_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

CYS_IE Cycle Start Interrupt Enable. This bit controls CYC_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

Base + 0x001E Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EMC
_IE

IPC
_IE

PECF
_IE

PSC
_IE

SSI3
_IE

SSI2
_IE

SSI1
_IE

SSI0
_IE

0 0 EVT
_IE

ODT
_IE

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-14. Protocol Interrupt Enable Register 1 (PIER1)

Table 30-20. PIER0 Field Descriptions (continued)

Field Description

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-29
 Preliminary

30.5.2.15 CHI Error Flag Register (CHIERFR)

This register holds the CHI related error flags. The interrupt generation for each of these error flags is
controlled by the CHI interrupt enable bit CHIE in the Global Interrupt Flag and Enable Register (GIFER).

Table 30-21. PIER1 Field Descriptions

Field Description

EMC_IE Error Mode Changed Interrupt Enable. This bit controls EMC_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

IPC_IE Illegal Protocol Control Command Interrupt Enable. This bit controls IPC_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

PECF_IE Protocol Engine Communication Failure Interrupt Enable. This bit controls PECF_IF interrupt request
generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

PSC_IE Protocol State Changed Interrupt Enable. This bit controls PSC_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

SSI[3:0]_IE Slot Status Counter Incremented Interrupt Enable. This bit controls SSI[3:0]_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

EVT_IE Even Cycle Table Written Interrupt Enable. This bit controls EVT_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

ODT_IE Odd Cycle Table Written Interrupt Enable. This bit controls ODT_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

Base + 0x0020 Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FRLB
_EF

FRLA
_EF

PCMI
_EF

FOVB
_EF

FOVA
_EF

MBS
_EF

MBU
_EF

LCK
_EF

DBL
_EF

SBCF
_EF

FID
_EF

DPL
_EF

SPL
_EF

NML
_EF

NMF
_EF

ILSA
_EF

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-15. CHI Error Flag Register (CHIERFR)

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-30 Freescale Semiconductor
 Preliminary

Table 30-22. CHIERFR Field Descriptions (Sheet 1 of 2)

Field Description

FRLB_EF Frame Lost Channel B Error Flag. This flag is set if a complete frame was received on channel B but could not
be stored in the selected individual message buffer because this message buffer is currently locked by the
application. In this case, the frame and the related slot status information are lost.
0 No such event
1 Frame lost on channel B detected

FRLA_EF Frame Lost Channel A Error Flag. This flag is set if a complete frame was received on channel A but could not
be stored in the selected individual message buffer because this message buffer is currently locked by the
application. In this case, the frame and the related slot status information are lost.
0 No such error
1 Frame lost on channel A detected

PCMI_EF Protocol Command Ignored Error Flag. This flag is set if the application has issued a POC command by writing
to the POCCMD field in the Protocol Operation Control Register (POCR) while the BSY flag is equal to 1. In this
case the command is ignored by the FlexRay block and is lost.
0 No such error
1 POC command ignored

FOVB_EF Receive FIFO Overrun Channel B Error Flag. This flag is set when an overrun of the Receive FIFO for channel
B occurred. This error occurs if a semantically valid frame was received on channel B and matches the all criteria
to be appended to the FIFO for channel B but the FIFO is full. In this case, the received frame and its related slot
status information is lost.
0 No such error
1 Receive FIFO overrun on channel B has been detected

FOVA_EF Receive FIFO Overrun Channel A Error Flag. This flag is set when an overrun of the Receive FIFO for channel
A occurred. This error occurs if a semantically valid frame was received on channel A and matches the all criteria
to be appended to the FIFO for channel A but the FIFO is full. In this case, the received frame and its related slot
status information is lost.
0 No such error
1 Receive FIFO overrun on channel B has been detected

MSB_EF Message Buffer Search Error Flag. This flag is set if the message buffer search engine is still running while the
next search cycle must be started due to the FlexRay protocol timing. In this case, not all message buffers are
considered while searching.
0 No such event
1 Search engine active while search start appears

MBU_EF Message Buffer Utilization Error Flag. This flag is asserted if the application writes to a message buffer control
field that is beyond the number of utilized message buffers programmed in the Message Buffer Segment Size
and Utilization Register (MBSSUTR).
If the application writes to a MBCCSRn register with n > LAST_MB_UTIL, the FlexRay block ignores the write
attempt and asserts the message buffer utilization error flag MBU_EF in the CHI Error Flag Register (CHIERFR).

0 No such event
1 Non-utilized message buffer enabled

LCK_EF Lock Error Flag. This flag is set if the application tries to lock a message buffer that is already locked by the
FlexRay block due to internal operations. In that case, the FlexRay block does not grant the lock to the
application. The application must issue the lock request again.
0 No such error
1 Lock error detected

DBL_EF Double Transmit Message Buffer Lock Error Flag. This flag is set if the application tries to lock the transmit side
of a double transmit message buffer. In this case, the FlexRay block does not grant the lock to the transmit side
of a double transmit message buffer.
0 No such event
1 Double transmit buffer lock error occurred

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-31
 Preliminary

30.5.2.16 Message Buffer Interrupt Vector Register (MBIVEC)

SBCF_EF System Bus Communication Failure Error Flag. This flag is set if the FlexRay block was not able to transmit or
receive data via the system bus in time. In the case of writing, data is lost; in the case of reading, the transmission
onto the FlexRay bus is stopped for the current slot and resumed in the next slot.
0 No such event
1 System bus communication failure occurred

FID_EF Frame ID Error Flag. This flag is set if the frame ID stored in the message buffer header area differs from the
frame ID stored in the message buffer control register.
0 No such error occurred
1 Frame ID error occurred

DPL_EF Dynamic Payload Length Error Flag. This flag is set if the payload length written into the message buffer header
field of a single or double transmit message buffer assigned to the dynamic segment is greater than the
maximum payload length for the dynamic segment as it is configured in the corresponding protocol configuration
register field max_payload_length_dynamic in the Protocol Configuration Register 24 (PCR24).
0 No such error occurred
1 Dynamic payload length error occurred

SPL_EF Static Payload Length Error Flag. This flag is set if the payload length written into the message buffer header
field of a single or double transmit message buffer assigned to the static segment is different from the payload
length for the static segment as it is configured in the corresponding protocol configuration register field
payload_length_static in the Protocol Configuration Register 19 (PCR19).
0 No such error occurred
1 Static payload length error occurred

NML_EF Network Management Length Error Flag. This flag is set if the payload length written into the header structure
of a receive message buffer assigned to the static segment is less than the configured length of the Network
Management Vector as configured in the Network Management Vector Length Register (NMVLR). In this case
the received part of the Network Management Vector will be used to update the Network Management Vector.
0 No such error occurred
1 Network management length error occurred

NMF_EF Network Management Frame Error Flag. This flag is set if a received message in the static segment with a
Preamble Indicator flag PP asserted has its Null Frame indicator flag NF asserted as well. In this case, the Global
Network Management Registers (see Network Management Vector Registers (NMVR0–NMVR5)) are not
updated.
0 No such error occurred
1 Network management frame error occurred

ILSA_EF Illegal System Memory Access Error Flag. This flag is set if the external system memory subsystem has
detected and indicated an illegal system memory access from the FlexRay block. The exact meaning of an illegal
system memory access is defined by the current implementation of the memory subsystem.
0 No such event.
1 Illegal system memory access occurred.

Base + 0x0022

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 TBIVEC 0 0 RBIVEC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-16. Message Buffer Interrupt Vector Register (MBIVEC)

Table 30-22. CHIERFR Field Descriptions (Sheet 2 of 2)

Field Description

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-32 Freescale Semiconductor
 Preliminary

This register indicates the lowest numbered receive message buffer and the lowest numbered transmit
message buffer that have their interrupt status flag MBIF and interrupt enable MBIE bits asserted. This
means that message buffers with lower message buffer numbers have higher priority.

30.5.2.17 Channel A Status Error Counter Register (CASERCR)

This register provides the channel status error counter for channel A. The protocol engine generates a slot
status vector for each static slot, each dynamic slot, the symbol window, and the NIT. The slot status vector
contains the four protocol related error indicator bits vSS!SyntaxError, vSS!ContentError, vSS!BViolation,
and vSS!TxConflict. The FlexRay block increments the status error counter by 1 if, for a slot or segment,
at least one error indicator bit is set to 1. The counter wraps around after it has reached the maximum value.
For more information on slot status monitoring, see Section 30.6.18, “Slot Status Monitoring”.

30.5.2.18 Channel B Status Error Counter Register (CBSERCR)

Table 30-23. MBIVEC Field Descriptions

Field Description

TBIVEC Transmit Buffer Interrupt Vector. This field provides the number of the lowest numbered enabled transmit
message buffer that has its interrupt status flag MBIF and its interrupt enable bit MBIE set. If there is no transmit
message buffer with the interrupt status flag MBIF and the interrupt enable MBIE bits asserted, the value in this
field is set to 0.

RBIVEC Receive Buffer Interrupt Vector. This field provides the message buffer number of the lowest numbered receive
message buffer which has its interrupt flag MBIF and its interrupt enable bit MBIE asserted. If there is no receive
message buffer with the interrupt status flag MBIF and the interrupt enable MBIE bits asserted, the value in this
field is set to 0.

Base + 0x0024 Additional Reset: RUN Command

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R STATUS_ERR_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-17. Channel A Status Error Counter Register (CASERCR)

Table 30-24. CASERCR Field Descriptions

Field Description

STATUS_ERR_CNT Channel Status Error Counter. This field provides the current value channel status error counter. The
counter value is updated within the first macrotick of the following slot or segment.

Base + 0x0026 Additional Reset: RUN Command

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R STATUS_ERR_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-18. Channel B Status Error Counter Register (CBSERCR)

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-33
 Preliminary

This register provides the channel status error counter for channel B. The protocol engine generates a slot
status vector for each static slot, each dynamic slot, the symbol window, and the NIT. The slot status vector
contains the four protocol related error indicator bits vSS!SyntaxError, vSS!ContentError, vSS!BViolation,
and vSS!TxConflict. The FlexRay block increments the status error counter by 1 if, for a slot or segment,
at least one error indicator bit is set to 1. The counter wraps around after it has reached the maximum value.
For more information on slot status monitoring see Section 30.6.18, “Slot Status Monitoring”.

30.5.2.19 Protocol Status Register 0 (PSR0)

This register provides information about the current protocol status.

Table 30-25. CBSERCR Field Descriptions

Field Description

STATUS_ERR_CNT Channel Status Error Counter. This field provides the current channel status error count. The counter
value is updated within the first macrotick of the following slot or segment.

Base + 0x0028

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R ERRMODE SLOTMODE 0 PROTSTATE STARTUPSTATE 0 WAKEUPSTATUS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-19. Protocol Status Register 0 (PSR0)

Table 30-26. PSR0 Field Descriptions (Sheet 1 of 2)

Field Description

ERRMODE Error Mode. Protocol related variable: vPOC!ErrorMode. This field indicates the error mode of the protocol.
00 ACTIVE
01 PASSIVE
10 COMM_HALT
11 reserved

SLOTMODE Slot Mode. Protocol related variable: vPOC!SlotMode. This field indicates the slot mode of the protocol.
00 SINGLE
01 ALL_PENDING
10 ALL
11 reserved

PROTSTATE Protocol State. Protocol related variable: vPOC!State. This field indicates the state of the protocol.
000 POC:default config
001 POC:config
010 POC:wakeup
011 POC:ready
100 POC:normal passive
101 POC:normal active
110 POC:halt
111 POC:startup

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-34 Freescale Semiconductor
 Preliminary

30.5.2.20 Protocol Status Register 1 (PSR1)

STARTUP
STATE

Startup State. Protocol related variable: vPOC!StartupState. This field indicates the current sub-state of the
startup procedure.
0000 reserved
0001 reserved
0010 POC:coldstart collision resolution
0011 POC:coldstart listen
0100 POC:integration consistency check
0101 POC:integrationi listen
0110 reserved
0111 POC:initialize schedule
1000 reserved
1001 reserved
1010 POC:coldstart consistency check
1011 reserved
1100 reserved
1101 POC:integration coldstart check
1110 POC:coldstart gap
1111 POC:coldstart join

WAKEUP
STATUS

Wakeup Status. Protocol related variable: vPOC!WakeupStatus. This field provides the outcome of the execution
of the wakeup mechanism.
000 UNDEFINED
001 RECEIVED_HEADER
010 RECEIVED_WUP
011 COLLISION_HEADER
100 COLLISION_WUP
101 COLLISION_UNKNOWN
110 TRANSMITTED
111 reserved

Base + 0x002A Additional Reset: CSAA, CSP, CPN: RUN Command Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CSAA CSP 0 REMCSAT CPN HHR FRZ APTAC

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-20. Protocol Status Register 1 (PSR1)

Table 30-26. PSR0 Field Descriptions (Sheet 2 of 2)

Field Description

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-35
 Preliminary

30.5.2.21 Protocol Status Register 2 (PSR2)

This register provides a snapshot of status information about the Network Idle Time NIT, the Symbol
Window and the clock synchronization. The NIT related status bits NBVB, NSEB, NBVA, and NSEA are
updated by the FlexRay block after the end of the NIT and before the end of the first slot of the next

Table 30-27. PSR1 Field Descriptions

Field Description

CSAA Cold Start Attempt Aborted Flag. Protocol related event: ‘set coldstart abort indicator in CHI’
This flag is set when the FlexRay block has aborted a cold start attempt.
0 No such event
1 Cold start attempt aborted

CSP Leading Cold Start Path. This status bit is set when the FlexRay block has reached the POC:normal active state
via the leading cold start path. This indicates that this node has started the network
0 No such event
1 POC:normal active reached from POC:startup state via leading cold start path

REMCSAT Remaining Cold Start Attempts. Protocol related variable: vRemainingColdstartAttempts
This field provides the number of remaining cold start attempts that the FlexRay block will execute.

CPN Leading Cold Start Path Noise. Protocol related variable: vPOC!ColdstartNoise
This status bit is set if the FlexRay block has reached the POC:normal active state via the leading cold start path
under noise conditions. This indicates there was some activity on the FlexRay bus while the FlexRay block was
starting up the cluster.
0 No such event
1 POC:normal active state was reached from POC:startup state via noisy leading cold start path

HHR Host Halt Request Pending. Protocol related variable: vPOC!CHIHaltRequest
This status bit is set when FlexRay block receives the HALT command from the application via the Protocol
Operation Control Register (POCR). The FlexRay block clears this status bit after a hard reset condition or when
the protocol is in the POC:default config state.
0 No such event
1 HALT command received

FRZ Freeze Occurred. Protocol related variable: vPOC!Freeze
This status bit is set when the FlexRay block has reached the POC:halt state due to the host FREEZE command
or due to an internal error condition requiring immediate halt. The FlexRay block clears this status bit after a hard
reset condition or when the protocol is in the POC:default config state.
0 No such event
1 Immediate halt due to FREEZE or internal error condition

APTAC Allow Passive to Active Counter. Protocol related variable: vPOC!vAllowPassivetoActive
This field provides the number of consecutive even/odd communication cycle pairs that have passed with valid
rate and offset correction terms, but the protocol is still in the POC:normal passive state due to an application
configured delay to enter POC:normal active state. This delay is defined by the allow_passive_to_active field in
the Protocol Configuration Register 12 (PCR12).

Base + 0x002C Additional Reset: RUN Command

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R NBVB NSEB STCB SBVB SSEB MTB NBVA NSEA STCA SBVA SSEA MTA CLKCORRFAILCNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-21. Protocol Status Register 2 (PSR2)

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-36 Freescale Semiconductor
 Preliminary

communication cycle. The Symbol Window related status bits STCB, SBVB, SSEB, MTB, STCA, SBVA,
SSEB, and MTA are updated by the FlexRay block after the end of the symbol window and before the end
of the current communication cycle. If no symbol window is configured, the symbol window related status
bits remain in their reset state. The clock synchronization related CLKCORRFAILCNT is updated by the
FlexRay block after the end of the static segment and before the end of the current communication cycle.

Table 30-28. PSR2 Field Descriptions (Sheet 1 of 2)

Field Description

NBVB NIT Boundary Violation on Channel B. Protocol related variable: vSS!BViolation for NIT on channel B
This status bit is set when there was some media activity on the FlexRay bus channel B at the end of the NIT.
0 No such event
1 Media activity at boundaries detected

NSEB NIT Syntax Error on Channel B. Protocol related variable: vSS!SyntaxError for NIT on channel B
This status bit is set when a syntax error was detected during NIT on channel B.
0 No such event
1 Syntax error detected

STCB Symbol Window Transmit Conflict on Channel B. Protocol related variable: vSS!TxConflict for symbol window on
channel B
This status bit is set if there was a transmission conflict during the symbol window on channel B.
0 No such event
1 Transmission conflict detected

SBVB Symbol Window Boundary Violation on Channel B. Protocol related variable: vSS!BViolation for symbol window
on channel B
This status bit is set if there was some media activity on the FlexRay bus channel B at the start or at the end of
the symbol window.
0 No such event
1 Media activity at boundaries detected

SSEB Symbol Window Syntax Error on Channel B. Protocol related variable: vSS!SyntaxError for symbol window on
channel B
This status bit is set when a syntax error was detected during the symbol window on channel B.
0 No such event
1 Syntax error detected

MTB Media Access Test Symbol MTS Received on Channel B. protocol related variable: vSS!ValidMTS for Symbol
Window on channel B
This status bit is set if the Media Access Test Symbol MTS was received in the symbol window on channel B.
0 No such event
1 MTS symbol received

NBVA NIT Boundary Violation on Channel A. Protocol related variable: vSS!BViolation for NIT on channel A
This status bit is set when there was some media activity on the FlexRay bus channel A at the end of the NIT.
0 No such event
1 Media activity at boundaries detected

NSEA NIT Syntax Error on Channel A. Protocol related variable: vSS!SyntaxError for NIT on channel A
This status bit is set when a syntax error was detected during NIT on channel A.
0 No such event
1 Syntax error detected

STCA Symbol Window Transmit Conflict on Channel A. Protocol related variable: vSS!TxConflict for symbol window on
channel A
This status bit is set if there was a transmission conflicts during the symbol window on channel A.
0 No such event
1 Transmission conflict detected

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-37
 Preliminary

30.5.2.22 Protocol Status Register 3 (PSR3)

This register provides aggregated channel status information as an accrued status of channel activity for
all communication slots, regardless of whether they are assigned for transmission or subscribed for
reception. It provides accrued information for the symbol window, the NIT, and the wakeup status.

SBVA Symbol Window Boundary Violation on Channel A. Protocol related variable: vSS!BViolation for symbol window
on channel A
This status bit is set if there was some media activity on the FlexRay bus channel A at the start or at the end of
the symbol window.
0 No such event
1 Media activity at boundaries detected

SSEA Symbol Window Syntax Error on Channel A. Protocol related variable: vSS!SyntaxError for symbol window on
channel A
This status bit is set when a syntax error was detected during the symbol window on channel A.
0 No such event
1 Syntax error detected

MTA Media Access Test Symbol MTS Received on Channel A . Protocol related variable: vSS!ValidMTS for symbol
window on channel A
This status bit is set if the Media Access Test Symbol MTS was received in the symbol window on channel A.
1 MTS symbol received
0 No such event

CLKCORR-
FAILCNT

Clock Correction Failed Counter. Protocol related variable: vClockCorrectionFailed
This field provides the number of consecutive even/odd communication cycle pairs that have passed without
clock synchronization having performed an offset or a rate correction due to lack of synchronization frames. It is
not incremented when it has reached the configured value of either max_without_clock_correction_fatal or
max_without_clock_correction_passive as defined in the Protocol Configuration Register 8 (PCR8). The
FlexRay block resets this counter on a hard reset condition, when the protocol enters the POC:normal active
state, or when both the rate and offset correction terms have been calculated successfully.

Base + 0x002E Additional Reset: RUN Command Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 WUB ABVB AACB ACEB ASEB AVFB 0 0 WUA ABVA AACA ACEA ASEA AVFA

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-22. Protocol Status Register 3 (PSR3)

Table 30-29. PSR3 Field Descriptions (Sheet 1 of 2)

Field Description

WUB Wakeup Symbol Received on Channel B. This flag is set when a wakeup symbol was received on channel B.
0 No wakeup symbol received
1 Wakeup symbol received

ABVB Aggregated Boundary Violation on Channel B. This flag is set when a boundary violation has been detected on
channel B. Boundary violations are detected in the communication slots, the symbol window, and the NIT.
0 No boundary violation detected
1 Boundary violation detected

Table 30-28. PSR2 Field Descriptions (Sheet 2 of 2)

Field Description

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-38 Freescale Semiconductor
 Preliminary

AACB Aggregated Additional Communication on Channel B. This flag is set when at least one valid frame was received
on channel B in a slot that also contained an additional communication with either syntax error, content error, or
boundary violations.
0 No additional communication detected
1 Additional communication detected

ACEB Aggregated Content Error on Channel B. This flag is set when a content error has been detected on channel B.
Content errors are detected in the communication slots, the symbol window, and the NIT.
0 No content error detected
1 Content error detected

ASEB Aggregated Syntax Error on Channel B. This flag is set when a syntax error has been detected on channel B.
Syntax errors are detected in the communication slots, the symbol window and the NIT.
0 No syntax error detected
1 Syntax errors detected

AVFB Aggregated Valid Frame on Channel B. This flag is set when a syntactically correct valid frame has been
received in any static or dynamic slot through channel B.
1 At least one syntactically valid frame received
0 No syntactically valid frames received

WUA Wakeup Symbol Received on Channel A. This flag is set when a wakeup symbol was received on channel A.
0 No wakeup symbol received
1 Wakeup symbol received

ABVA Aggregated Boundary Violation on Channel A. This flag is set when a boundary violation has been detected on
channel A. Boundary violations are detected in the communication slots, the symbol window, and the NIT.
0 No boundary violation detected
1 Boundary violation detected

AACA Aggregated Additional Communication on Channel A. This flag is set when a valid frame was received in a slot
on channel A that also contained an additional communication with either syntax error, content error, or
boundary violations.
0 No additional communication detected
1 Additional communication detected

ACEA Aggregated Content Error on Channel A. This flag is set when a content error has been detected on channel A.
Content errors are detected in the communication slots, the symbol window, and the NIT.
0 No content error detected
1 Content error detected

ASEA Aggregated Syntax Error on Channel A. This flag is set when a syntax error has been detected on channel A.
Syntax errors are detected in the communication slots, the symbol window, and the NIT.
0 No syntax error detected
1 Syntax errors detected

AVFA Aggregated Valid Frame on Channel A. This flag is set when a syntactically correct valid frame has been
received in any static or dynamic slot through channel A.
0 No syntactically valid frames received
1 At least one syntactically valid frame received

Table 30-29. PSR3 Field Descriptions (Sheet 2 of 2)

Field Description

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-39
 Preliminary

30.5.2.23 Macrotick Counter Register (MTCTR)

This register provides the macrotick count of the current communication cycle.

30.5.2.24 Cycle Counter Register (CYCTR)

This register provides the number of the current communication cycle.

30.5.2.25 Slot Counter Channel A Register (SLTCTAR)

This register provides the number of the current slot in the current communication cycle for channel A.

Base + 0x0030

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 MTCT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-23. Macrotick Counter Register (MTCTR)

Table 30-30. MTCTR Field Descriptions

Field Description

MTCT Macrotick Counter. Protocol related variable: vMacrotick
This field provides the macrotick count of the current communication cycle.

Base + 0x0032

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 CYCCNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-24. Cycle Counter Register (CYCTR)

Table 30-31. CYCTR Field Descriptions

Field Description

CYCCNT Cycle Counter. Protocol related variable: vCycleCounter
This field provides the number of the current communication cycle. If the counter reaches the maximum value of
63, the counter wraps and starts from zero again.

Base + 0x0034

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 SLOTCNTA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-25. Slot Counter Channel A Register (SLTCTAR)

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-40 Freescale Semiconductor
 Preliminary

30.5.2.26 Slot Counter Channel B Register (SLTCTBR)

This register provides the number of the current slot in the current communication cycle for channel B.

30.5.2.27 Rate Correction Value Register (RTCORVR)

This register provides the sign extended rate correction value in microticks as it was calculated by the clock
synchronization algorithm. The FlexRay block updates this register during the NIT of each odd numbered
communication cycle.

Table 30-32. SLTCTAR Field Descriptions

Field Description

SLOTCNTA Slot Counter Value for Channel A. Protocol related variable: vSlotCounter for channel A
This field provides the number of the current slot in the current communication cycle.

Base + 0x0036

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 SLOTCNTB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-26. Slot Counter Channel B Register (SLTCTBR)

Table 30-33. SLTCTBR Field Descriptions

Field Description

SLOTCNTA Slot Counter Value for Channel B. Protocol related variable: vSlotCounter for channel B
This field provides the number of the current slot in the current communication cycle.

Base + 0x0038 Additional Reset: RUN Command

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R RATECORR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-27. Rate Correction Value Register (RTCORVR)

Table 30-34. RTCORVR Field Descriptions

Field Description

RATECORR Rate Correction Value. Protocol related variable: vRateCorrection (before value limitation and external rate
correction)
This field provides the sign extended rate correction value in microticks as it was calculated by the clock
synchronization algorithm. The value is represented in 2’s complement format. This value does not include the
value limitation and the application of the external rate correction. If the magnitude of the internally calculated
rate correction value exceeds the limit given by rate_correction_out in the Protocol Configuration Register 13
(PCR13), the clock correction reached limit interrupt flag CCL_IF is set in the Protocol Interrupt Flag Register 0
(PIFR0).
Note: If the FlexRay block was not able to calculate a new rate correction term due to a lack of synchronization

frames, the RATECORR value is not updated.

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-41
 Preliminary

30.5.2.28 Offset Correction Value Register (OFCORVR)

This register provides the sign extended offset correction value in microticks as it was calculated by the
clock synchronization algorithm. The FlexRay block updates this register during the NIT.

30.5.2.29 Combined Interrupt Flag Register (CIFRR)

This register provides five combined interrupt flags and a copy of three individual interrupt flags. The
combined interrupt flags are the result of a binary OR of the values of other interrupt flags regardless of
the state of the interrupt enable bits. The generation scheme for the combined interrupt flags is depicted in
Figure 30-144. The individual interrupt flags WUPIF, FNEBIF, and FNEAIF are copies of corresponding
flags in the Global Interrupt Flag and Enable Register (GIFER) and are provided here to simplify the
application interrupt flag check. To clear the individual interrupt flags, the application must use the Global
Interrupt Flag and Enable Register (GIFER).

NOTE
The meanings of the combined status bits MIF, PRIF, CHIF, RBIF, and
TBIF are different from those mentioned in the Global Interrupt Flag and
Enable Register (GIFER).

Base + 0x003A Additional Reset: RUN Command

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R OFFSETCORR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-28. Offset Correction Value Register (OFCORVR)

Table 30-35. OFCORVR Field Descriptions

Field Description

OFFSET-
CORR

Offset Correction Value. Protocol related variable: vOffsetCorrection (before value limitation and external offset
correction)
This field provides the sign extended offset correction value in microticks as it was calculated by the clock
synchronization algorithm. The value is represented in 2’s complement format. This value does not include the
value limitation and the application of the external offset correction. If the magnitude of the internally calculated
rate correction value exceeds the limit given by offset_correction_out field in the Protocol Configuration Register
29 (PCR29), the clock correction reached limit interrupt flag CCL_IF is set in the Protocol Interrupt Flag Register
0 (PIFR0).
Note: If the FlexRay block was not able to calculate an new offset correction term due to a lack of

synchronization frames, the OFFSETCORR value is not updated.

Base + 0x003C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 0 0 0 0 0 0 0 MIF PRIF CHIF

WUP
IF

FNEB
IF

FNEA
IF

RBIF TBIF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-29. Combined Interrupt Flag Register (CIFRR)

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-42 Freescale Semiconductor
 Preliminary

30.5.2.30 System Memory Access Time-Out Register (SYMATOR)

Table 30-36. CIFRR Field Descriptions

Field Description

MIF Module Interrupt Flag. This flag is set if there is at least one interrupt source that has its interrupt flag asserted.
0 No interrupt source has its interrupt flag asserted
1 At least one interrupt source has its interrupt flag asserted

PRIF Protocol Interrupt Flag. This flag is set if at least one of the individual protocol interrupt flags in the Protocol
Interrupt Flag Register 0 (PIFR0) or Protocol Interrupt Flag Register 1 (PIFR1) is equal to 1.
0 All individual protocol interrupt flags are equal to 0
1 At least one of the individual protocol interrupt flags is equal to 1

CHIF CHI Interrupt Flag. This flag is set if at least one of the individual CHI error flags in the CHI Error Flag Register
(CHIERFR) is equal to 1.
0 All CHI error flags are equal to 0
1 At least one CHI error flag is equal to 1

WUPIF Wakeup Interrupt Flag. Provides the same value as GIFER[WUPIF]

FNEBIF Receive FIFO Channel B Not Empty Interrupt Flag. Provides the same value as GIFER[FNEBI]

FNEAIF Receive FIFO Channel A Not Empty Interrupt Flag. Provides the same value as GIFER[FNEAIF]

RBIF Receive Message Buffer Interrupt Flag. This flag is set if for at least one of the individual receive message buffers
(MBCCSRn[MTD] = 0) the interrupt flag MBIF in the corresponding Message Buffer Configuration, Control,
Status Registers (MBCCSRn) is equal to 1.
0 None of the individual receive message buffers has the MBIF flag asserted.
1 At least one individual receive message buffers has the MBIF flag asserted.

TBIF Transmit Message Buffer Interrupt Flag. This flag is set if for at least one of the individual single or double
transmit message buffers (MBCCSRn[MTD] = 1) the interrupt flag MBIF in the corresponding Message Buffer
Configuration, Control, Status Registers (MBCCSRn) is equal to 1.
0 None of the individual transmit message buffers has the MBIF flag asserted.
1 At least one individual transmit message buffers has the MBIF flag asserted.

Base + 0x003E Write: Disabled Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0
TIMEOUT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Figure 30-30. System Memory Access Time-Out Register (SYMATOR)

Table 30-37. SYMATOR Field Descriptions

Field Description

TIMEOUT Time Out. This value defines the maximum number of wait states on the system memory bus interface. This
value must never exceeded in order to ensure no data are lost even under internal worst case conditions.
If the number of wait states is greater than the TIMEOUT value, but is less than twice the TIMEOUT value, and
internal worst case conditions occur, than data might be lost. If data are lost, the System Bus Communication
Failure Error Flag SBCF_EF is set in the CHI Error Flag Register (CHIERFR).
If the number of wait states is greater than twice the TIMEOUT value, data will be lost, and the System Bus
Communication Failure Error Flag SBCF_EF is set in the CHI Error Flag Register (CHIERFR).

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-43
 Preliminary

30.5.2.31 Sync Frame Counter Register (SFCNTR)

This register provides the number of synchronization frames that are used for clock synchronization in the
last even and in the last odd numbered communication cycle. This register is updated after the start of the
NIT and before 10 MT after offset correction start.

NOTE
If the application has locked the even synchronization table at the end of the
static segment of an even communication cycle, the FlexRay block will not
update the fields SFEVB and SFEVA.

If the application has locked the odd synchronization table at the end of the
static segment of an odd communication cycle, the FlexRay block will not
update the values SFODB and SFODA.

30.5.2.32 Sync Frame Table Offset Register (SFTOR)

Base + 0x0040 Additional Reset: RUN Command

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SFEVB SFEVA SFODB SFODA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-31. Sync Frame Counter Register (SFCNTR)

Table 30-38. SFCNTR Field Descriptions

Field Description

SFEVB Sync Frames Channel B, Even Cycle. Protocol related variable: size of (vsSyncIdListB for even cycle)
This field provides the size of the internal list of frame IDs of received synchronization frames used for clock
synchronization.

SFEVB Sync Frames Channel A, Even Cycle. Protocol related variable: size of (vsSyncIdListA for even cycle)
This field provides the size of the internal list of frame IDs of received synchronization frames used for clock
synchronization.

SFODB Sync Frames Channel B, Odd Cycle. Protocol related variable: size of (vsSyncIdListB for odd cycle)
This field provides the size of the internal list of frame IDs of received synchronization frames used for clock
synchronization.

SFODA Sync Frames Channel A, Odd Cycle. Protocol related variable: size of (vsSyncIdListA for odd cycle)
This field provides the size of the internal list of frame IDs of received synchronization frames used for clock
synchronization.

Base + 0x0042 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SFT_OFFSET[15:1]

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-32. Sync Frame Table Offset Register (SFTOR)

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-44 Freescale Semiconductor
 Preliminary

This register defines the Flexray Memory related offset for sync frame tables. For more details, see
Section 30.6.12, “Sync Frame ID and Sync Frame Deviation Tables”.

30.5.2.33 Sync Frame Table Configuration, Control, Status Register (SFTCCSR)

This register provides configuration, control, and status information related to the generation and access
of the clock sync ID tables and clock sync measurement tables. For a detailed description, see
Section 30.6.12, “Sync Frame ID and Sync Frame Deviation Tables”.

Table 30-39. SFTOR Field Description

Field Description

SFTOR Sync Frame Table Offset. The offset of the Sync Frame Tables in the Flexray Memory. This offset is required to
be 16-bit aligned. Thus STF_OFFSET[0] is always 0.

Base + 0x0044 Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 CYCNUM ELKS OLKS EVAL OVAL 0 0 SDV
EN

SID
ENW ELKT OLKT OPT

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-33. Sync Frame Table Configuration, Control, Status Register (SFTCCSR)

Table 30-40. SFTCCSR Field Descriptions (Sheet 1 of 2)

Field Description

ELKT Even Cycle Tables Lock/Unlock Trigger. This trigger bit is used to lock and unlock the even cycle tables.
0 No effect
1 Triggers lock/unlock of the even cycle tables.

OLKT Odd Cycle Tables Lock/Unlock Trigger. This trigger bit is used to lock and unlock the odd cycle tables.
0 No effect
1 Triggers lock/unlock of the odd cycle tables.

CYCNUM Cycle Number. This field provides the number of the cycle in which the currently locked table was recorded.
If none or both tables are locked, this value is related to the even cycle table.

ELKS Even Cycle Tables Lock Status. This status bit indicates whether the application has locked the even cycle
tables.
0 Application has not locked the even cycle tables.
1 Application has locked the even cycle tables.

OLKS Odd Cycle Tables Lock Status. This status bit indicates whether the application has locked the odd cycle
tables.
0 Application has not locked the odd cycle tables.
1 Application has locked the odd cycle tables.

EVAL Even Cycle Tables Valid. This status bit indicates whether the Sync Frame ID and Sync Frame Deviation
Tables for the even cycle are valid. The FlexRay block clears this status bit when it starts updating the tables,
and sets this bit when it has finished the table update.
0 Tables are not valid (update is ongoing)
1 Tables are valid (consistent).

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-45
 Preliminary

30.5.2.34 Sync Frame ID Rejection Filter Register (SFIDRFR)

This register defines the Sync Frame Rejection Filter ID. The application must update this register outside
of the static segment. If the application updates this register in the static segment, it can appear that the
FlexRay block accepts the sync frame in the current cycle.

OVAL Odd Cycle Tables Valid.This status bit indicates whether the Sync Frame ID and Sync Frame Deviation
Tables for the odd cycle are valid. The FlexRay block clears this status bit when it starts updating the tables,
and sets this bit when it has finished the table update.
0 Tables are not valid (update is ongoing)
1 Tables are valid (consistent).

OPT One Pair Trigger. This trigger bit controls whether the FlexRay block writes continuously or only one pair of
Sync Frame Tables into the FRM.
If this trigger is set to 1 while SDVEN or SIDEN is set to 1, the FlexRay block writes only one pair of the
enabled Sync Frame Tables corresponding to the next even-odd-cycle pair into the FRM. In this case, the
FlexRay block clears the SDVEN or SIDEN bits immediately.
If this trigger is set to 0 while SDVEN or SIDEN is set to 1, the FlexRay block writes continuously the enabled
Sync Frame Tables into the FRM.
0 Write continuously pairs of enabled Sync Frame Tables into FRM.
1 Write only one pair of enabled Sync Frame Tables into FRM.

SDVEN Sync Frame Deviation Table Enable. This bit controls the generation of the Sync Frame Deviation Tables. The
application must set this bit to request the FlexRay block to write the Sync Frame Deviation Tables into the
FRM.
0 Do not write Sync Frame Deviation Tables
1 Write Sync Frame Deviation Tables into FRM
Note: If SDVEN is set to 1, then SIDEN must also be set to 1.

SIDEN Sync Frame ID Table Enable. This bit controls the generation of the Sync Frame ID Tables. The application
must set this bit to 1 to request the FlexRay block to write the Sync Frame ID Tables into the FRM.
0 Do not write Sync Frame ID Tables
1 Write Sync Frame ID Tables into FRM

Base + 0x0046 16-bit write access required Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
SYNFRID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-34. Sync Frame ID Rejection Filter Register (SFIDRFR)

Table 30-41. SFIDRFR Field Descriptions

Field Description

SYNFRID Sync Frame Rejection ID. This field defines the frame ID of a frame that must not be used for clock
synchronization. For details see Section 30.6.15.2, “Sync Frame Rejection Filtering”.

Table 30-40. SFTCCSR Field Descriptions (Sheet 2 of 2)

Field Description

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-46 Freescale Semiconductor
 Preliminary

30.5.2.35 Sync Frame ID Acceptance Filter Value Register (SFIDAFVR)

This register defines the sync frame acceptance filter value. For details on filtering, see Section 30.6.15,
“Sync Frame Filtering”.

30.5.2.36 Sync Frame ID Acceptance Filter Mask Register (SFIDAFMR)

This register defines the sync frame acceptance filter mask. For details on filtering see Section 30.6.15.1,
“Sync Frame Acceptance Filtering”.

30.5.2.37 Network Management Vector Registers (NMVR0–NMVR5)

Base + 0x0048 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
FVAL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-35. Sync Frame ID Acceptance Filter Value Register (SFIDAFVR)

Table 30-42. SFIDAFVR Field Descriptions

Field Description

FVAL Filter Value. This field defines the value for the sync frame acceptance filtering.

Base + 0x004A Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
FMSK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-36. Sync Frame ID Acceptance Filter Mask Register (SFIDAFMR)

Table 30-43. SFIDAFMR Field Descriptions

Field Description

FMSK Filter Mask. This field defines the mask for the sync frame acceptance filtering.

Base + 0x004C (NMVR0)
Base + 0x004E (NMVR1)
Base + 0x0050 (NMVR2)
Base + 0x0052 (NMVR3)
Base + 0x0054 (NMVR4)
Base + 0x0056 (NMVR5)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R NMVP[15:8] NMVP[7:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-37. Network Management Vector Registers (NMVR0–NMVR5)

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-47
 Preliminary

Each of these six registers holds one part of the Network Management Vector. The length of the Network
Management Vector is configured in the Network Management Vector Length Register (NMVLR). If
NMVLR is programmed with a value that is less than 12 bytes, the remaining bytes of the Network
Management Vector Registers (NMVR0–NMVR5), which are not used for the Network Management
Vector accumulating, will remain 0.

The NMVR provides accrued information over all received NMVs in the last communication cycle. All
NMVs received in one cycle are ORed into the NMVR. The NMVR is updated at the end of the
communication cycle.

30.5.2.38 Network Management Vector Length Register (NMVLR)

This register defines the length of the network management vector in bytes.

Table 30-44. NMVR[0:5] Field Descriptions

Field Description

NMVP Network Management Vector Part. The mapping between the Network Management Vector Registers
(NMVR0–NMVR5) and the receive message buffer payload bytes in NMV[0:11] is depicted in Table 30-45.

Table 30-45. Mapping of NMVRn to the Received Payload Bytes NMVn

NMVRn Register NMVn Received Payload

NMVR0[NMVP[15:8]] NMV0

NMVR0[NMVP[7:0]] NMV1

NMVR1[NMVP[15:8]] NMV2

NMVR1[NMVP[7:0]] NMV3

...

NMVR5[NMVP[15:8]] NMV10

NMVR5[NMVP[7:0]] NMV11

Base + 0x0058 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0
NMVL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-38. Network Management Vector Length Register (NMVLR)

Table 30-46. NMVLR Field Descriptions

Field Description

NMVL Network Management Vector Length. protocol related variable: gNetworkManagementVectorLength
This field defines the length of the Network Management Vector in bytes. Legal values are between 0 and 12.

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-48 Freescale Semiconductor
 Preliminary

30.5.2.39 Timer Configuration and Control Register (TICCR)

This register is used to configure and control the two timers T1 and T2. For timer details, see
Section 30.6.17, “Timer Support”. The Timer T1 is an absolute timer. The Timer T2 can be configured as
an absolute or relative timer.

NOTE
Both timers are deactivated immediately when the protocol enters a state
different from POC:normal active or POC:normal passive.

Base + 0x005A Write: T2_CFG: POC:config
T2_REP, T1_REP, T1SP, T2SP, T1TR, T2TR: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 T2_
CFG

T2_
REP

0 0 0 T2ST 0 0 0 T1_
REP

0 0 0 T1ST

W T2SP T2TR T1SP T1TR

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-39. Timer Configuration and Control Register (TICCR)

Table 30-47. TICCR Field Descriptions

Field Description

T2_CFG Timer T2 Configuration. This bit configures the timebase mode of Timer T2.
0 T2 is absolute timer.
1 T2 is relative timer.

T2_REP Timer T2 Repetitive Mode. This bit configures the repetition mode of Timer T2.
0 T2 is non repetitive
1 T2 is repetitive

T2SP Timer T2 Stop. This trigger bit is used to stop timer T2.
0 no effect
1 stop timer T2

T2TR Timer T2 Trigger. This trigger bit is used to start timer T2.
0 no effect
1 start timer T2

T2ST Timer T2 State. This status bit provides the current state of timer T2.
0 timer T2 is idle
1 timer T2 is running

T1_REP Timer T1 Repetitive Mode. This bit configures the repetition mode of timer T1.
0 T1 is non repetitive
1 T1 is repetitive

T1SP Timer T1 Stop. This trigger bit is used to stop timer T1.
0 no effect
1 stop timer T1

T1TR Timer T1 Trigger. This trigger bit is used to start timer T1.
0 no effect
1 start timer T1

T1ST Timer T1 State. This status bit provides the current state of timer T1.
0 timer T1 is idle
1 timer T1 is running

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-49
 Preliminary

30.5.2.40 Timer 1 Cycle Set Register (TI1CYSR)

This register defines the cycle filter value and the cycle filter mask for timer T1. For a detailed description
of timer T1, refer to Section 30.6.17.1, “Absolute Timer T1”.

NOTE
If the application modifies the value in this register while the timer is
running, the change becomes effective immediately and timer T1 will expire
according to the changed value.

30.5.2.41 Timer 1 Macrotick Offset Register (TI1MTOR)

This register holds the macrotick offset value for timer T1. For a detailed description of timer T1, refer to
Section 30.6.17.1, “Absolute Timer T1”.

NOTE
If the application modifies the value in this register while the timer is
running, the change becomes effective immediately and timer T1 will expire
according to the changed value.

Base + 0x005C Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
T1_CYC_VAL

0 0
T1_CYC_MSK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-40. Timer 1 Cycle Set Register (TI1CYSR)

Table 30-48. TI1CYSR Field Descriptions

Field Description

T1_CYC_VAL Timer T1 Cycle Filter Value. This field defines the cycle filter value for timer T1.

T1_CYC_MSK Timer T1 Cycle Filter Mask. This field defines the cycle filter mask for timer T1.

Base + 0x005E Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
T1_MTOFFSET

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-41. Timer 1 Macrotick Offset Register (TI1MTOR)

Table 30-49. TI1MTOR Field Descriptions

Field Description

T1_MTOFFSET Timer 1 Macrotick Offset. This field defines the macrotick offset value for timer 1.

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-50 Freescale Semiconductor
 Preliminary

30.5.2.42 Timer 2 Configuration Register 0 (TI2CR0)

The content of this register depends on the value of the T2_CFG bit in the Timer Configuration and Control
Register (TICCR). For a detailed description of timer T2, refer to Section 30.6.17.2, “Absolute / Relative
Timer T2”.

NOTE
If timer T2 is configured as an absolute timer and the application modifies
the values in this register while the timer is running, the change becomes
effective immediately and timer T2 will expire according to the changed
values.

If timer T2 is configured as a relative timer and the application changes the
values in this register while the timer is running, the change becomes
effective when the timer has expired according to the old values.

30.5.2.43 Timer 2 Configuration Register 1 (TI2CR1)

Base + 0x0060 Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
T2_CYC_VAL

0 0
T2_CYC_MSK

W

R
T2_MTCNT[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-42. Timer 2 Configuration Register 0 (TI2CR0)

Table 30-50. TI2CR0 Field Descriptions

Field Description

Fields for absolute timer T2 (TICCR[T2_CFG] = 0)

T2_CYC_VAL Timer T2 Cycle Filter Value. This field defines the cycle filter value for timer T2.

T2_CYC_MSK Timer T2 Cycle Filter Mask. This field defines the cycle filter mask for timer T2.

Fields for relative timer T2 (TICCR[T2_CFG = 1)

T2_MTCNT[31:16] Timer T2 Macrotick High Word. This field defines the high word of the macrotick count for timer T2.

Base + 0x0062 Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
T2_MTOFFSET

W

R
T2_MTCNT[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-43. Timer 2 Configuration Register 1 (TI2CR1)

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-51
 Preliminary

The content of this register depends on the value of the T2_CFG bit in the Timer Configuration and Control
Register (TICCR). For a detailed description of timer T2, refer to Section 30.6.17.2, “Absolute / Relative
Timer T2”.

NOTE
If timer T2 is configured as an absolute timer and the application modifies
the values in this register while the timer is running, the change becomes
effective immediately and the timer T2 will expire according to the changed
values.

If timer T2 is configured as a relative timer and the application changes the
values in this register while the timer is running, the change becomes
effective when the timer has expired according to the old values.

30.5.2.44 Slot Status Selection Register (SSSR)

This register is used to access the four internal non memory-mapped slot status selection registers SSSR0
to SSSR3. Each internal registers selects a slot, or symbol window/NIT, whose status vector will be saved
in the corresponding Slot Status Registers (SSR0–SSR7) according to Table 30-53. For a detailed
description of slot status monitoring, refer to Section 30.6.18, “Slot Status Monitoring”.

Table 30-51. TI2CR1 Field Descriptions

Field Description

Fields for absolute timer T2 (TICCR[T2_CFG] = 0)

T2_MTOFFSET Timer T2 Macrotick Offset. This field holds the macrotick offset value for timer T2.

Fields for relative timer T2 (TICCR[T2_CFG] = 1)

T2_MTCNT[15:0] Timer T2 Macrotick Low Word. This field defines the low word of the macrotick value for timer T2.

Base + 0x0064 16-bit write access required Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
SEL

0
SLOTNUMBER

W WMD

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-44. Slot Status Selection Register (SSSR)

Table 30-52. SSSR Field Descriptions

Field Description

WMD Write Mode. This control bit defines the write mode of this register.
0 Write to all fields in this register on write access.
1 Write to SEL field only on write access.

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-52 Freescale Semiconductor
 Preliminary

30.5.2.45 Slot Status Counter Condition Register (SSCCR)

This register is used to access and program the four internal non-memory mapped Slot Status Counter
Condition Registers SSCCR0 to SSCCR3. Each of these four internal slot status counter condition
registers defines the mode and the conditions for incrementing the counter in the corresponding Slot Status
Counter Registers (SSCR0–SSCR3). The correspondence is given in Table 30-55. For a detailed
description of slot status counters, refer to Section 30.6.18.4, “Slot Status Counter Registers”.

SEL Selector. This field selects one of the four internal slot status selection registers for access.
00 select SSSR0.
01 select SSSR1.
10 select SSSR2.
11 select SSSR3.

SLOTNUMBER Slot Number. This field specifies the number of the slot whose status will be saved in the corresponding slot
status registers.
Note: If this value is set to 0, the related slot status register provides the status of the symbol window after the

NIT start, and provides the status of the NIT after the cycle start.

Table 30-53. Mapping Between SSSRn and SSRn

Internal Slot
Status Selection

Register

Write the Slot Status of the Slot Selected by SSSRn for each

Even Communication Cycle Odd Communication Cycle

For Channel B
to

For Channel A
to

For Channel B
to

For Channel A
to

SSSR0 SSR0[15:8] SSR0[7:0] SSR1[15:8] SSR1[7:0]

SSSR1 SSR2[15:8] SSR2[7:0] SSR3[15:8] SSR3[7:0]

SSSR2 SSR4[15:8] SSR4[7:0] SSR5[15:8] SSR5[7:0]

SSSR3 SSR6[15:8] SSR6[7:0] SSR7[15:8] SSR7[7:0]

Base + 0x0066 16-bit write access required Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
SEL

0
CNTCFG MCY VFR SYF NUF SUF STATUSMASK

W WMD

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-45. Slot Status Counter Condition Register (SSCCR)

Table 30-52. SSSR Field Descriptions (continued)

Field Description

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-53
 Preliminary

Table 30-54. SSCCR Field Descriptions

Field Description

WMD Write Mode. This control bit defines the write mode of this register.
0 Write to all fields in this register on write access.
1 Write to SEL field only on write access.

SEL Selector. This field selects one of the four internal slot counter condition registers for access.
00 select SSCCR0.
01 select SSCCR1.
10 select SSCCR2.
11 select SSCCR3.

CNTCFG Counter Configuration. These bit field controls the channel related incrementing of the slot status counter.
00 increment by 1 if condition is fulfilled on channel A.
01 increment by 1 if condition is fulfilled on channel B.
10 increment by 1 if condition is fulfilled on at least one channel.
11 increment by 2 if condition is fulfilled on both channels channel.

increment by 1 if condition is fulfilled on only one channel.

MCY Multi Cycle Selection. This bit defines whether the slot status counter accumulates over multiple
communication cycles or provides information for the previous communication cycle only.
0 The Slot Status Counter provides information for the previous communication cycle only.
1 The Slot Status Counter accumulates over multiple communication cycles.

VFR Valid Frame Restriction. This bit is used to restrict the counter to received valid frames.
0 The counter is not restricted to valid frames only.
1 The counter is restricted to valid frames only.

SYF Sync Frame Restriction. This bit is used to restrict the counter to received frames with the sync frame indicator
bit set to 1.
0 The counter is not restricted with respect to the sync frame indicator bit.
1 The counter is restricted to frames with the sync frame indicator bit set to 1.

NUF Null Frame Restriction. This bit is used to restrict the counter to received frames with the null frame indicator
bit set to 0.
0 The counter is not restricted with respect to the null frame indicator bit.
1 The counter is restricted to frames with the null frame indicator bit set to 0.

SUF Startup Frame Restriction. This bit is used to restrict the counter to received frames with the startup frame
indicator bit set to 1.
0 The counter is not restricted with respect to the startup frame indicator bit.
1 The counter is restricted to received frames with the startup frame indicator bit set to 1.

STATUSMASK Slot Status Mask. This bit field is used to enable the counter with respect to the four slot status error indicator
bits.
STATUSMASK[3] – This bit enables the counting for slots with the syntax error indicator bit set to 1.
STATUSMASK[2] – This bit enables the counting for slots with the content error indicator bit set to 1.
STATUSMASK[1] – This bit enables the counting for slots with the boundary violation indicator bit set to 1.
STATUSMASK[0] – This bit enables the counting for slots with the transmission conflict indicator bit set to 1.

Table 30-55. Mapping between internal SSCCRn and SSCRn

Condition Register Condition Defined for Register

SSCCR0 SSCR0

SSCCR1 SSCR1

SSCCR2 SSCR2

SSCCR3 SSCR3

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-54 Freescale Semiconductor
 Preliminary

30.5.2.46 Slot Status Registers (SSR0–SSR7)

Each of these eight registers holds the status vector of the slot specified in the corresponding internal slot
status selection register, which can be programmed using the Slot Status Selection Register (SSSR). Each
register is updated after the end of the corresponding slot as shown in Figure 30-141. The register bits are
directly related to the protocol variables and described in more detail in Section 30.6.18, “Slot Status
Monitoring”.

Base + 0x0068 (SSR0)
Base + 0x006A (SSR1)
Base + 0x006C (SSR2)
Base + 0x006E (SSR3)
Base + 0x0070 (SSR4)
Base + 0x0072 (SSR5)
Base + 0x0074 (SSR6)
Base + 0x0076 (SSR7)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R VFB SYB NFB SUB SEB CEB BVB TCB VFA SYA NFA SUA SEA CEA BVA TCA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-46. Slot Status Registers (SSR0–SSR7)

Table 30-56. SSR0–SSR7 Field Descriptions

Field Description

VFB Valid Frame on Channel B. Protocol related variable: vSS!ValidFrame channel B
0 vSS!ValidFrame = 0
1 vSS!ValidFrame = 1

SYB Sync Frame Indicator Channel B. Protocol related variable: vRF!Header!SyFIndicator channel B
0 vRF!Header!SyFIndicator = 0
1 vRF!Header!SyFIndicator = 1

NFB Null Frame Indicator Channel B. Protocol related variable: vRF!Header!NFIndicator channel B
0 vRF!Header!NFIndicator = 0
1 vRF!Header!NFIndicator = 1

SUB Startup Frame Indicator Channel B. Protocol related variable: vRF!Header!SuFIndicator channel B
0 vRF!Header!SuFIndicator = 0
1 vRF!Header!SuFIndicator = 1

SEB Syntax Error on Channel B. Protocol related variable: vSS!SyntaxError channel B
0 vSS!SyntaxError = 0
1 vSS!SyntaxError = 1

CEB Content Error on Channel B. Protocol related variable: vSS!ContentError channel B
0 vSS!ContentError = 0
1 vSS!ContentError = 1

BVB Boundary Violation on Channel B. Protocol related variable: vSS!BViolation channel B
0 vSS!BViolation = 0
1 vSS!BViolation = 1

TCB Transmission Conflict on Channel B. Protocol related variable: vSS!TxConflict channel B
0 vSS!TxConflict = 0
1 vSS!TxConflict = 1

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-55
 Preliminary

30.5.2.47 Slot Status Counter Registers (SSCR0–SSCR3)

Each of these four registers provides the slot status counter value for the previous communication cycle(s)
and is updated at the cycle start. The provided value depends on the control bits and fields in the related
internal slot status counter condition register SSCCRn, which can be programmed by using the Slot Status
Counter Condition Register (SSCCR). For more details, see Section 30.6.18.4, “Slot Status Counter
Registers”.

VFA Valid Frame on Channel A. Protocol related variable: vSS!ValidFrame channel A
0 vSS!ValidFrame = 0
1 vSS!ValidFrame = 1

SYA Sync Frame Indicator Channel A. Protocol related variable: vRF!Header!SyFIndicator channel A
0 vRF!Header!SyFIndicator = 0
1 vRF!Header!SyFIndicator = 1

NFA Null Frame Indicator Channel A. Protocol related variable: vRF!Header!NFIndicator channel A
0 vRF!Header!NFIndicator = 0
1 vRF!Header!NFIndicator = 1

SUA Startup Frame Indicator Channel A. Protocol related variable: vRF!Header!SuFIndicator channel A
0 vRF!Header!SuFIndicator = 0
1 vRF!Header!SuFIndicator = 1

SEA Syntax Error on Channel A. Protocol related variable: vSS!SyntaxError channel A
0 vSS!SyntaxError = 0
1 vSS!SyntaxError = 1

CEA Content Error on Channel A. Protocol related variable: vSS!ContentError channel A
0 vSS!ContentError = 0
1 vSS!ContentError = 1

BVA Boundary Violation on Channel A. Protocol related variable: vSS!BViolation channel A
0 vSS!BViolation = 0
1 vSS!BViolation = 1

TCA Transmission Conflict on Channel A. Protocol related variable: vSS!TxConflict channel A
0 vSS!TxConflict = 0
1 vSS!TxConflict = 1

Base + 0x0078 (SSCR0)
Base + 0x007A (SSCR1)
Base + 0x007C (SSCR2)
Base + 0x007E (SSCR3) Additional Reset: RUN Command

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SLOTSTATUSCNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-47. Slow Status Counter Registers (SSCR0–SSCR3)

Table 30-56. SSR0–SSR7 Field Descriptions (continued)

Field Description

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-56 Freescale Semiconductor
 Preliminary

NOTE
If the counter has reached its maximum value 0xFFFF and is in the
multicycle mode, i.e. SSCCRn[MCY] = 1, the counter is not reset to
0x0000. The application can reset the counter by clearing the
SSCCRn[MCY] bit and waiting for the next cycle start, when the FlexRay
block clears the counter. Subsequently, the counter can be set into the
multicycle mode again.

30.5.2.48 MTS A Configuration Register (MTSACFR)

This register controls the transmission of the Media Access Test Symbol MTS on channel A. For more
details, see Section 30.6.13, “MTS Generation”.

30.5.2.49 MTS B Configuration Register (MTSBCFR)

Table 30-57. SSCR0–SSCR3 Field Descriptions

Field Description

SLOTSTATUSCNT Slot Status Counter. This field provides the current value of the Slot Status Counter.

Base + 0x0080 Write: MTE: Anytime
CYCCNTMSK,CYCCNTVAL:POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MTE

0
CYCCNTMSK

0 0
CYCCNTVAL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-48. MTS A Configuration Register (MTSACFR)

Table 30-58. MTSACFR Field Descriptions

Field Description

MTE Media Access Test Symbol Transmission Enable. This control bit is used to enable and disable the transmission
of the Media Access Test Symbol in the selected set of cycles.
0 MTS transmission disabled
1 MTS transmission enabled

CYCCNTMSK Cycle Counter Mask. This field provides the filter mask for the MTS cycle count filter.

CYCCNTVAL Cycle Counter Value. This field provides the filter value for the MTS cycle count filter.

Base + 0x0082 Write: MTE: Anytime
CYCCNTMSK,CYCCNTVAL:POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MTE

0
CYCCNTMSK

0 0
CYCCNTVAL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-49. MTS B Configuration Register (MTSBCFR)

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-57
 Preliminary

This register controls the transmission of the Media Access Test Symbol MTS on channel B. For more
details, see Section 30.6.13, “MTS Generation”.

30.5.2.50 Receive Shadow Buffer Index Register (RSBIR)

This register is used to provide and retrieve the indices of the message buffer header fields currently
associated with the receive shadow buffers. For more details on the receive shadow buffer concept, refer
to Section 30.6.6.3.5, “Receive Shadow Buffers Concept”.

Table 30-59. MTSBCFR Field Descriptions

Field Description

MTE Media Access Test Symbol Transmission Enable. This control bit is used to enable and disable the transmission
of the Media Access Test Symbol in the selected set of cycles.
0 MTS transmission disabled
1 MTS transmission enabled

CYCCNTMSK Cycle Counter Mask. This field provides the filter mask for the MTS cycle count filter.

CYCCNTVAL Cycle Counter Value. This field provides the filter value for the MTS cycle count filter.

Base + 0x0084 16-bit write access required Write: WMD, SEL: Any Time
RSBIDX: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
SEL

0 0 0 0 0
RSBIDX

W WMD

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-50. Receive Shadow Buffer Index Register (RSBIR)

Table 30-60. RSBIR Field Descriptions

Field Description

WMD Write Mode. This bit controls the write mode for this register.
0 update SEL and RSBIDX field on register write
1 update only SEL field on register write

SEL Selector. This field is used to select the internal receive shadow buffer index register for access.
00 RSBIR_A1 — receive shadow buffer index register for channel A, segment 1
01 RSBIR_A2 — receive shadow buffer index register for channel A, segment 2
10 RSBIR_B1 — receive shadow buffer index register for channel B, segment 1
11 RSBIR_B2 — receive shadow buffer index register for channel B, segment 2

RSBIDX Receive Shadow Buffer Index. This field contains the current index of the message buffer header field of the
receive shadow message buffer selected by the SEL field. The FlexRay block uses this index to determine the
physical location of the shadow buffer header field in the FlexRay memory. The FlexRay block will update this
field during receive operation.The application provides initial message buffer header index value in the
configuration phase.
FlexRay block: Updates the message buffer header index after successful reception.
Application: Provides initial message buffer header index.

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-58 Freescale Semiconductor
 Preliminary

30.5.2.51 Receive FIFO Selection Register (RFSR)

This register is used to select a receiver FIFO for subsequent access through the receiver FIFO
configuration registers summarized in Table 30-61.

30.5.2.52 Receive FIFO Start Index Register (RFSIR)

This register defines the message buffer header index of the first message buffer of the selected FIFO.

Base + 0x0086 Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SEL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-51. Receive FIFO Selection Register (RFSR)

Table 30-61. SEL Controlled Receiver FIFO Registers

Register

Receive FIFO Start Index Register (RFSIR)

Receive FIFO Depth and Size Register (RFDSR)

Receive FIFO Message ID Acceptance Filter Value Register (RFMIDAFVR)

Receive FIFO Message ID Acceptance Filter Mask Register (RFMIAFMR)

Receive FIFO Frame ID Rejection Filter Value Register (RFFIDRFVR)

Receive FIFO Frame ID Rejection Filter Mask Register (RFFIDRFMR)

Receive FIFO Range Filter Configuration Register (RFRFCFR)

Receive FIFO Range Filter Control Register (RFRFCTR)

Table 30-62. RFSR Field Descriptions

Field Description

SEL Select. This control bit selects the receiver FIFO for subsequent programming.
0 Receiver FIFO for channel A selected
1 Receiver FIFO for channel B selected

Base + 0x0088 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
SIDX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-52. Receive FIFO Start Index Register (RFSIR)

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-59
 Preliminary

30.5.2.53 Receive FIFO Depth and Size Register (RFDSR)

This register defines the structure of the selected FIFO, i.e. the number of entries and the size of each entry.

30.5.2.54 Receive FIFO A Read Index Register (RFARIR)

This register provides the message buffer header index of the next available receive FIFO A entry that the
application can read.

Table 30-63. RFSIR Field Descriptions

Field Description

SIDX Start Index. This field defines the number of the message buffer header field of the first message buffer of the
selected receive FIFO. The FlexRay block uses the value of the SIDX field to determine the physical location of
the receiver FIFO’s first message buffer header field.

Base + 0x008A Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
FIFO_DEPTH

0
ENTRY_SIZE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-53. Receive FIFO Depth and Size Register (RFDSR)

Table 30-64. RFDSR Field Descriptions

Field Description

FIFO_DEPTH FIFO Depth. This field defines the depth of the selected receive FIFO, i.e. the number of entries.

ENTRY_SIZE Entry Size. This field defines the size of the frame data sections for the selected receive FIFO in 2 byte entities.

Base + 0x008C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 RDIDX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-54. Receive FIFO A Read Index Register (RFARIR)

Table 30-65. RFARIR Field Descriptions

Field Description

RDIDX Read Index. This field provides the message buffer header index of the next available receive FIFO message
buffer that the application can read. The FlexRay block increments this index when the application writes to the
FNEAIF flag in the Global Interrupt Flag and Enable Register (GIFER). The index wraps back to the first
message buffer header index if the end of the FIFO was reached.

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-60 Freescale Semiconductor
 Preliminary

NOTE
If the receive FIFO not empty flag FNEAIF is not set, the RDIDX field
points to an physical message buffer which content is not valid. Only when
FNEAIF is set, the message buffer indicated by RDIDX contains valid data.

30.5.2.55 Receive FIFO B Read Index Register (RFBRIR)

This register provides the message buffer header index of the next available receive FIFO B entry that the
application can read.

NOTE
If the receive FIFO not empty flag FNEBIF is not set, the RDIDX field
points to an physical message buffer which content is not valid. Only when
FNEBIF is set, the message buffer indicated by RDIDX contains valid data.

30.5.2.56 Receive FIFO Message ID Acceptance Filter Value Register
(RFMIDAFVR)

This register defines the filter value for the message ID acceptance filter of the selected receive FIFO. For
details on message ID filtering see Section 30.6.9.5, “Receive FIFO filtering.”

Base + 0x008E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 RDIDX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-55. Receive FIFO B Read Index Register (RFBRIR)

Table 30-66. RFBRIR Field Descriptions

Field Description

RDIDX Read Index. This field provides the message buffer header index of the next available receive FIFO entry that
the application can read. The FlexRay block increments this index when the application writes to the FNEBIF
flag in the Global Interrupt Flag and Enable Register (GIFER).The index wraps back to the first message buffer
header index if the end of the FIFO was reached.

Base + 0x0090 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MIDAFVAL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-56. Receive FIFO Message ID Acceptance Filter Value Register (RFMIDAFVR)

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-61
 Preliminary

30.5.2.57 Receive FIFO Message ID Acceptance Filter Mask Register (RFMIAFMR)

This register defines the filter mask for the message ID acceptance filter of the selected receive FIFO. For
details on message ID filtering see Section 30.6.9.5, “Receive FIFO filtering.”

30.5.2.58 Receive FIFO Frame ID Rejection Filter Value Register (RFFIDRFVR)

This register defines the filter value for the frame ID rejection filter of the selected receive FIFO. For
details on frame ID filtering see Section 30.6.9.5, “Receive FIFO filtering.”

Table 30-67. RFMIDAFVR Field Descriptions

Field Description

MIDAFVAL Message ID Acceptance Filter Value. Filter value for the message ID acceptance filter.

Base + 0x0092 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MIDAFMSK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-57. Receive FIFO Message ID Acceptance Filter Mask Register (RFMIAFMR)

Table 30-68. RFMIAFMR Field Descriptions

Field Description

MIDAFMSK Message ID Acceptance Filter Mask. Filter mask for the message ID acceptance filter.

Base + 0x0094 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
FIDRFVAL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-58. Receive FIFO Frame ID Rejection Filter Value Register (RFFIDRFVR)

Table 30-69. RFFIDRFVR Field Descriptions

Field Description

FIDRFVAL Frame ID Rejection Filter Value. Filter value for the frame ID rejection filter.

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-62 Freescale Semiconductor
 Preliminary

30.5.2.59 Receive FIFO Frame ID Rejection Filter Mask Register (RFFIDRFMR)

This register defines the filter mask for the frame ID rejection filter of the selected receive FIFO. For
details on frame ID filtering see Section 30.6.9.5, “Receive FIFO filtering.”

30.5.2.60 Receive FIFO Range Filter Configuration Register (RFRFCFR)

This register provides access to the four internal frame ID range filter boundary registers of the selected
receive FIFO. For details on frame ID range filter see Section 30.6.9.5, “Receive FIFO filtering”.

Base + 0x0096 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
FIDRFMSK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-59. Receive FIFO Frame ID Rejection Filter Mask Register (RFFIDRFMR)

Table 30-70. RFFIDRFMR Field Descriptions

Field Description

FIDRFMSK Frame ID Rejection Filter Mask. Filter mask for the frame ID rejection filter.

Base + 0x0098 16-bit write access required Write: WMD, IBD, SEL: Any Time
SID: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
IBD SEL

0
SID

W WMD

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-60. Receive FIFO Range Filter Configuration Register (RFRFCFR)

Table 30-71. RFRFCFR Field Descriptions

Field Description

WMD Write Mode. This control bit defines the write mode of this register.
0 Write to all fields in this register on write access.
1 Write to SEL and IBD field only on write access.

IBD Interval Boundary. This control bit selects the interval boundary to be programmed with the SID value.
0 program lower interval boundary
1 program upper interval boundary

SEL Filter Selector. This control field selects the frame ID range filter to be accessed.
00 select frame ID range filter 0.
01 select frame ID range filter 1.
10 select frame ID range filter 2.
11 select frame ID range filter 3.

SID Slot ID. Defines the IBD-selected frame ID boundary value for the SEL-selected range filter.

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-63
 Preliminary

30.5.2.61 Receive FIFO Range Filter Control Register (RFRFCTR)

This register is used to enable and disable each frame ID range filter and to define whether it is running as
acceptance or rejection filter.

30.5.2.62 Last Dynamic Transmit Slot Channel A Register (LDTXSLAR)

Base + 0x009A Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
F3MD F2MD F1MD F0MD

0 0 0 0
F3EN F2EN F1EN F0EN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-61. Receive FIFO Range Filter Control Register (RFRFCTR)

Table 30-72. RFRFCTR Field Descriptions

Field Description

F3MD Range Filter 3 Mode. This control bit defines the filter mode of the frame ID range filter 3.
0 range filter 3 runs as acceptance filter
1 range filter 3 runs as rejection filter

F2MD Range Filter 2 Mode. This control bit defines the filter mode of the frame ID range filter 2.
0 range filter 2 runs as acceptance filter
1 range filter 2 runs as rejection filter

F1MD Range Filter 1 Mode. This control bit defines the filter mode of the frame ID range filter 1.
0 range filter 1 runs as acceptance filter
1 range filter 1 runs as rejection filter

F0MD Range Filter 0 Mode. This control bit defines the filter mode of the frame ID range filter 0.
0 range filter 0 runs as acceptance filter
1 range filter 0 runs as rejection filter

F3EN Range Filter 3 Enable. This control bit is used to enable and disable the frame ID range filter 3.
0 range filter 3 disabled
1 range filter 3 enabled

F2EN Range Filter 2 Enable. This control bit is used to enable and disable the frame ID range filter 2.
0 range filter 2 disabled
1 range filter 2 enabled

F1EN Range Filter 1 Enable. This control bit is used to enable and disable the frame ID range filter 1.
0 range filter 1 disabled
1 range filter 1 enabled

F0EN Range Filter 0 Enable. This control bit is used to enable and disable the frame ID range filter 0.
0 range filter 0 disabled
1 range filter 0 enabled

Base + 0x009C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 LASTDYNTXSLOTA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-62. Last Dynamic Slot Channel A Register (LDTXSLAR)

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-64 Freescale Semiconductor
 Preliminary

This register provides the number of the last transmission slot in the dynamic segment for channel A. This
register is updated after the end of the dynamic segment and before the start of the next communication
cycle.

30.5.2.63 Last Dynamic Transmit Slot Channel B Register (LDTXSLBR)

This register provides the number of the last transmission slot in the dynamic segment for channel B. This
register is updated after the end of the dynamic segment and before the start of the next communication
cycle.

30.5.2.64 Protocol Configuration Registers

The following configuration registers provide the necessary configuration information to the protocol
engine. The individual values in the registers are described in Table 30-75. For more details about the
FlexRay related configuration parameters and the allowed parameter ranges, see FlexRay
Communications System Protocol Specification, Version 2.1 Rev A.

Table 30-73. LDTXSLAR Field Descriptions

Field Description

LASTDYNTX
SLOTA

Last Dynamic Transmission Slot Channel A. Protocol related variable: zLastDynTxSlot channel A.
Number of the last transmission slot in the dynamic segment for channel A. If no frame was transmitted during
the dynamic segment on channel A, the value of this field is set to 0.

Base + 0x009E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 LASTDYNTXSLOTB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-63. Last Dynamic Slot Channel B Register (LDTXSLBR)

Table 30-74. LDTXSLBR Field Descriptions

Field Description

LASTDYNTX
SLOTB

Last Dynamic Transmission Slot Channel B. Protocol related variable: zLastDynTxSlot channel B
Number of the last transmission slot in the dynamic segment for channel B. If no frame was transmitted during
the dynamic segment on channel B the value of this field is set to 0.

Table 30-75. Protocol Configuration Register Fields (Sheet 1 of 3)

Name Description1 Min Max Unit PCR

coldstart_attempts gColdstartAttempts number 3

action_point_offset gdActionPointOffset - 1 MT 0

cas_rx_low_max gdCASRxLowMax - 1 gdBit 4

dynamic_slot_idle_phase gdDynamicSlotIdlePhase minislot 28

minislot_action_point_offset gdMinislotActionPointOffset - 1 MT 3

minislot_after_action_point gdMinislot - gdMinislotActionPointOffset - 1 MT 2

static_slot_length gdStaticSlot MT 0

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-65
 Preliminary

static_slot_after_action_point gdStaticSlot - gdActionPointOffset - 1 MT 13

symbol_window_exists gdSymbolWindow!=0 0 1 bool 9

symbol_window_after_action_point gdSymbolWindow - gdActionPointOffset - 1 MT 6

tss_transmitter gdTSSTransmitter gdBit 5

wakeup_symbol_rx_idle gdWakeupSymbolRxIdle gdBit 5

wakeup_symbol_rx_low gdWakeupSymbolRxLow gdBit 3

wakeup_symbol_rx_window gdWakeupSymbolRxWindow gdBit 4

wakeup_symbol_tx_idle gdWakeupSymbolTxIdle gdBit 8

wakeup_symbol_tx_low gdWakeupSymbolTxLow gdBit 5

noise_listen_timeout (gListenNoise * pdListenTimeout) - 1 μT 16/17

macro_initial_offset_a pMacroInitialOffset[A] MT 6

macro_initial_offset_b pMacroInitialOffset[B] MT 16

macro_per_cycle gMacroPerCycle MT 10

macro_after_first_static_slot gMacroPerCycle - gdStaticSlot MT 1

macro_after_offset_correction gMacroPerCycle - gOffsetCorrectionStart MT 28

max_without_clock_correction_fatal gMaxWithoutClockCorrectionFatal cyclepairs 8

max_without_clock_correction_passive gMaxWithoutClockCorrectionPassive cyclepairs 8

minislot_exists gNumberOfMinislots!=0 0 1 bool 9

minislots_max gNumberOfMinislots - 1 minislot 29

number_of_static_slots gNumberOfStaticSlots static slot 2

offset_correction_start gOffsetCorrectionStart MT 11

payload_length_static gPayloadLengthStatic 2-bytes 19

max_payload_length_dynamic pPayloadLengthDynMax 2-bytes 24

first_minislot_action_point_offset max(gdActionPointOffset,
gdMinislotActionPointOffset) - 1

MT 13

allow_halt_due_to_clock pAllowHaltDueToClock bool 26

allow_passive_to_active pAllowPassiveToActive cyclepairs 12

cluster_drift_damping pClusterDriftDamping μT 24

comp_accepted_startup_range_a pdAcceptedStartupRange -
pDelayCompensationChA

μT 22

comp_accepted_startup_range_b pdAcceptedStartupRange -
pDelayCompensationChB

μT 26

listen_timeout pdListenTimeout - 1 μT 14/15

key_slot_id pKeySlotId number 18

key_slot_used_for_startup pKeySlotUsedForStartup bool 11

key_slot_used_for_sync pKeySlotUsedForSync bool 11

latest_tx gNumberOfMinislots - pLatestTx minislot 21

sync_node_max gSyncNodeMax number 30

micro_initial_offset_a pMicroInitialOffset[A] μT 20

micro_initial_offset_b pMicroInitialOffset[B] μT 20

Table 30-75. Protocol Configuration Register Fields (Sheet 2 of 3)

Name Description1 Min Max Unit PCR

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-66 Freescale Semiconductor
 Preliminary

30.5.2.64.1 Protocol Configuration Register 0 (PCR0)

30.5.2.64.2 Protocol Configuration Register 1 (PCR1)

micro_per_cycle pMicroPerCycle μT 22/23

micro_per_cycle_min pMicroPerCycle - pdMaxDrift μT 24/25

micro_per_cycle_max pMicroPerCycle + pdMaxDrift μT 26/27

micro_per_macro_nom_half round(pMicroPerMacroNom / 2) μT 7

offset_correction_out pOffsetCorrectionOut μT 9

rate_correction_out pRateCorrectionOut μT 14

single_slot_enabled pSingleSlotEnabled bool 10

wakeup_channel pWakeupChannel see Table 30-76 10

wakeup_pattern pWakeupPattern number 18

decoding_correction_a pDecodingCorrection +
pDelayCompensation[A] + 2

μT 19

decoding_correction_b pDecodingCorrection +
pDelayCompensation[B] + 2

μT 7

key_slot_header_crc header CRC for key slot 0x000 0x7FF number 12

extern_offset_correction pExternOffsetCorrection μT 29

extern_rate_correction pExternRateCorrection μT 21
1 See FlexRay Communications System Protocol Specification, Version 2.1 Rev A for detailed protocol parameter definitions

Table 30-76. Wakeup Channel Selection

wakeup_channel Wakeup Channel

0 A

1 B

Base + 0x00A0 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
action_point_offset static_slot_length

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-64. Protocol Configuration Register 0 (PCR0)

Base + 0x00A2 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
macro_after_first_static_slot

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-65. Protocol Configuration Register 1 (PCR1)

Table 30-75. Protocol Configuration Register Fields (Sheet 3 of 3)

Name Description1 Min Max Unit PCR

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-67
 Preliminary

30.5.2.64.3 Protocol Configuration Register 2 (PCR2)

30.5.2.64.4 Protocol Configuration Register 3 (PCR3)

30.5.2.64.5 Protocol Configuration Register 4 (PCR4)

30.5.2.64.6 Protocol Configuration Register 5 (PCR5)

30.5.2.64.7 Protocol Configuration Register 6 (PCR6)

Base + 0x00A4 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
minislot_after_action_point number_of_static_slots

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-66. Protocol Configuration Register 2 (PCR2)

Base + 0x00A6 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
wakeup_symbol_rx_low minislot_action_point_offset[4:0] coldstart_attempts

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-67. Protocol Configuration Register 3 (PCR3)

Base + 0x00A8 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
cas_rx_low_max wakeup_symbol_rx_window

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-68. Protocol Configuration Register 4 (PCR4)

Base + 0x00AA Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
tss_transmitter wakeup_symbol_tx_low wakeup_symbol_rx_idle

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-69. Protocol Configuration Register 5 (PCR5)

Base + 0x00AC Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
symbol_window_after_action_point macro_initial_offset_a

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-70. Protocol Configuration Register 6 (PCR6)

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-68 Freescale Semiconductor
 Preliminary

30.5.2.64.8 Protocol Configuration Register 7 (PCR7)

30.5.2.64.9 Protocol Configuration Register 8 (PCR8)

30.5.2.64.10 Protocol Configuration Register 9 (PCR9)

30.5.2.64.11 Protocol Configuration Register 10 (PCR10)

Base + 0x00AE Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
decoding_correction_b micro_per_macro_nom_half

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-71. Protocol Configuration Register 7 (PCR7)

Base + 0x00B0 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R max_without_clock_
correction_fatal

max_without_clock_
correction_passive

wakeup_symbol_tx_idle
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-72. Protocol Configuration Register 8 (PCR8)

Base + 0x00B2 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
mini
slot_
exists

sym
bol_
win

dow_
exists

offset_correction_out

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-73. Protocol Configuration Register 9 (PCR9)

Base + 0x00B4 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R single
_slot
_en

abled

wake
up_
chan
nel

macro_per_cycle
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-74. Protocol Configuration Register 10 (PCR10)

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-69
 Preliminary

30.5.2.64.12 Protocol Configuration Register 11 (PCR11)

30.5.2.64.13 Protocol Configuration Register 12 (PCR12)

30.5.2.64.14 Protocol Configuration Register 13 (PCR13)

30.5.2.64.15 Protocol Configuration Register 14 (PCR14)

Base + 0x00B6 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R key_
slot_

used_
for_
start
up

key_
slot_

used_
for_
sync

offset_correction_start
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-75. Protocol Configuration Register 11 (PCR11)

Base + 0x00B8 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
allow_passive_to_active key_slot_header_crc

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-76. Protocol Configuration Register 12 (PCR12)

Base + 0x00BA Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
first_minislot_action_point_offset static_slot_after_action_point

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-77. Protocol Configuration Register 13 (PCR13)

Base + 0x00BC Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
rate_correction_out listen_timeout[20:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-78. Protocol Configuration Register 14 (PCR14)

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-70 Freescale Semiconductor
 Preliminary

30.5.2.64.16 Protocol Configuration Register 15 (PCR15)

30.5.2.64.17 Protocol Configuration Register 16 (PCR16)

30.5.2.64.18 Protocol Configuration Register 17 (PCR17)

30.5.2.64.19 Protocol Configuration Register 18 (PCR18)

30.5.2.64.20 Protocol Configuration Register 19 (PCR19)

Base + 0x00BE Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
listen_timeout[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-79. Protocol Configuration Register 15 (PCR15)

Base + 0x00C0 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
macro_initial_offset_b noise_listen_timeout[24:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-80. Protocol Configuration Register 16 (PCR16)

Base + 0x00C2 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
noise_listen_timeout[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-81. Protocol Configuration Register 17 (PCR17)

Base + 0x00C4 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
wakeup_pattern key_slot_id

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-82. Protocol Configuration Register 18 (PCR18)

Base + 0x00C6 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
decoding_correction_a payload_length_static

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-83. Protocol Configuration Register 19 (PCR19)

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-71
 Preliminary

30.5.2.64.21 Protocol Configuration Register 20 (PCR20)

30.5.2.64.22 Protocol Configuration Register 21 (PCR21)

30.5.2.64.23 Protocol Configuration Register 22 (PCR22)

30.5.2.64.24 Protocol Configuration Register 23 (PCR23)

30.5.2.64.25 Protocol Configuration Register 24 (PCR24)

Base + 0x00C8 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
micro_initial_offset_b micro_initial_offset_a

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-84. Protocol Configuration Register 20 (PCR20)

Base + 0x00CA Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R extern_rate_
correction

latest_tx
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-85. Protocol Configuration Register 21 (PCR21)

Base + 0x00CC Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
R* comp_accepted_startup_range_a micro_per_cycle[19:16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-86. Protocol Configuration Register 22 (PCR22)

Base + 0x00CE Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
micro_per_cycle[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-87. Protocol Configuration Register 23 (PCR23)

Base + 0x00D0 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
cluster_drift_damping max_payload_length_dynamic

micro_per_cycle_min
[19:16]W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-88. Protocol Configuration Register 24 (PCR24)

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-72 Freescale Semiconductor
 Preliminary

30.5.2.64.26 Protocol Configuration Register 25 (PCR25)

30.5.2.64.27 Protocol Configuration Register 26 (PCR26)

30.5.2.64.28 Protocol Configuration Register 27 (PCR27)

30.5.2.64.29 Protocol Configuration Register 28 (PCR28)

Base + 0x00D2 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
micro_per_cycle_min[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-89. Protocol Configuration Register 25 (PCR25)

Base + 0x00D4 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R allow
halt
due
to
clock

comp_accepted_startup_range_b
micro_per_cycle_max

[19:16]W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-90. Protocol Configuration Register 26 (PCR26)

Base + 0x00D6 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
micro_per_cycle_max[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-91. Protocol Configuration Register 27 (PCR27)

Base + 0x00D8 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R dynamic_slot
_idle_phase

macro_after_offset_correction
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-92. Protocol Configuration Register 28 (PCR28)

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-73
 Preliminary

30.5.2.64.30 Protocol Configuration Register 29 (PCR29)

30.5.2.64.31 Protocol Configuration Register 30 (PCR30)

30.5.2.65 Message Buffer Configuration, Control, Status Registers (MBCCSRn)

The content of these registers comprises message buffer configuration data, message buffer control data,
message buffer status information, and message buffer interrupt flags.

Base + 0x00DA Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R extern_offset_
correction

minislots_max
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-93. Protocol Configuration Register 29 (PCR29)

Base + 0x00DC Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0
sync_node_max

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-94. Protocol Configuration Register 30 (PCR30)

Base + 0x0100 (MBCCSR0)
Base + 0x0108 (MBCCSR1)
...
Base + 0x02F8 (MBCCSR63)

Write: MCM, MBT, MTD: POC:config or MB_DIS
CMT: MB_LCK

EDT, LCKT, MBIE, MBIF: Normal Mode

Additional Reset: CMT, DUP, DVAL, MBIF: Message Buffer Disable

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
MCM MBT MTD

CMT 0 0
MBIE

0 0 0 DUP DVAL EDS LCKS MBIF

W rwm EDT LCKT w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-95. Message Buffer Configuration, Control, Status Registers (MBCCSRn)

Table 30-77. MBCCSRn Field Descriptions (Sheet 1 of 3)

Field Description

Message Buffer Configuration

MCM Message Buffer Commit Mode. This bit applies only to double buffered transmit message buffers and defines the
commit mode.
0 Streaming commit mode
1 Immediate commit mode

MBT Message Buffer Type. This bit applies only to transmit message buffers and defines the buffering type.
0 Single buffered transmit message buffer
1 Double buffered transmit message buffer

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-74 Freescale Semiconductor
 Preliminary

MTD Message Buffer Transfer Direction. This bit defines the transfer direction of the message buffer.
0 Receive message buffer
1 Transmit message buffer

Message Buffer Control

CMT Commit for Transmission. This bit applies only to transmit message buffers and indicates whether the message
buffer contains valid data that are ready for transmission. Both the application and the FlexRay block can modify
this bit.
 • Application: The application sets this bit to indicate that the transmit message buffer contains valid data ready

for transmission. The application clears this bit to indicate that the message buffer data are no longer valid for
transmission.

 • FlexRay block: The FlexRay block clears this bit when the message buffer data are no longer valid for
transmission.

0 Message buffer does not contain valid data.
1 Message buffer contains valid data.

EDT Enable/Disable Trigger. This trigger bit is used to enable and disable a message buffer. The message buffer
enable is triggered when the application writes 1 to this bit and the message buffer is disabled, i.e. the EDS status
bit is 0. The message buffer disable is triggered when the application writes 1 to this bit and the message buffer
is enabled, i.e. the EDS status bit is 1.
0 No effect
1 message buffer enable/disable triggered
Note: If the application writes 1 to this bit, the write access to all other bits is ignored.

LCKT Lock/Unlock Trigger. This trigger bit is used to lock and unlock a message buffer. The message buffer lock is
triggered when the application writes 1 to this bit and the message buffer is not locked, i.e. the LCKS status bit
is 0. The message buffer unlock is triggered when the application writes 1 to this bit and the message buffer is
locked, i.e. the LCKS status bit is 1.
0 No effect
1 Trigger message buffer lock/unlock
Note: If the application writes 1 to this bit and 0 to the EDT bit, the write access to all other bits is ignored.

MBIE Message Buffer Interrupt Enable. This control bit defines whether the message buffer will generate an interrupt
request when its MBIF flag is set.
0 Interrupt request generation disabled
1 Interrupt request generation enabled

Message Buffer Status

DUP Data Updated. This status bit applies only to receive message buffers. It is always 0 for transmit message buffers.
This bit provides information whether the frame header in the message buffer header field and the message
buffer data field were updated. See Section 30.6.6.3.3, “Message Buffer Status Update” for a detailed description
of the update condtions.
0 Frame Header and Message buffer data field not updated.
1 Frame Header and Message buffer data field updated.

Table 30-77. MBCCSRn Field Descriptions (Sheet 2 of 3)

Field Description

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-75
 Preliminary

30.5.2.66 Message Buffer Cycle Counter Filter Registers (MBCCFRn)

This register contains message buffer configuration data for the transmission mode, the channel
assignment, and for the cycle counter filtering. For detailed information on cycle counter filtering, refer to
Section 30.6.7.1, “Message Buffer Cycle Counter Filtering.”

DVAL Data Valid. The semantic of this status bit depends on the message buffer type and transfer direction.
 • Receive Message Buffer: Indicates whether the message buffer data field contains valid frame data. See

Section 30.6.6.3.3, “Message Buffer Status Update” for a detailed update description of the update conditions.
0 message buffer data field contains no valid frame data
1 message buffer data field contains valid frame data
 • Single Transmit Message Buffer: Indicates whether the message is transferred again due to the state

transmission mode of the message buffer.
0 Message transferred for the first time.
1 Message will be transferred again.
 • Double Transmit Message Buffer: For the commit side it is always 0. For the transmit side it indicates whether

the message is transferred again due to the state transmission mode of the message buffer.
0 Message transferred for the first time.
1 Message will be transferred again.

EDS Enable/Disable Status. This status bit indicates whether the message buffer is enabled or disabled.
0 Message buffer is disabled.
1 Message buffer is enabled.

LCKS Lock Status. This status bit indicates the current lock status of the message buffer.
0 Message buffer is not locked by the application.
1 Message buffer is locked by the application.

MBIF Message Buffer Interrupt Flag. The semantic of this flag depends on the message buffer transfer direction.
 • Receive Message Buffer: This flag is set when the slot status in the message buffer header field was updated

and this slot was not an empty dynamic slot. See Section 30.6.6.3.3, “Message Buffer Status Update” for a
detailed description of the update conditions.

0 slot status not updated
1 slot status updated and slot was not an empty dynamic slot
 • Transmit Message Buffer: This flag is set when the slot status in the message buffer header field was updated.

Additionally this flag is set immediately when a transmit message buffer was enabled.
0 slot status not updated
1 slot status updated / message buffer just enabled

Base + 0x0102 (MBCCFR0)
Base + 0x010A (MBCCFR1)
...
Base + 0x02FA (MBCCFR63)

Write: POC:config or MB_DIS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MTM CHA CHB CCFE CCFMSK CCFVAL

W

Reset - - - - - - - - - - - - - - - -

Figure 30-96. Message Buffer Cycle Counter Filter Registers (MBCCFRn)

Table 30-77. MBCCSRn Field Descriptions (Sheet 3 of 3)

Field Description

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-76 Freescale Semiconductor
 Preliminary

.

NOTE
If at least one message buffer assigned to a certain slot is assigned to both
channels, then all message buffers assigned to this slot have to be assigned
to both channels. Otherwise, the message buffer configuration is illegal and
the result of the message buffer search is not defined.

30.5.2.67 Message Buffer Frame ID Registers (MBFIDRn)

Table 30-78. MBCCFRn Field Descriptions

Field Description

MTM Message Buffer Transmission Mode. This control bit applies only to transmit message buffers and defines the
transmission mode.
0 Event transmission mode
1 State transmission mode

CHA
CHB

Channel Assignment. These control bits define the channel assignment and control the receive and transmit
behavior of the message buffer according to Table 30-79.

CCFE Cycle Counter Filtering Enable. This control bit is used to enable and disable the cycle counter filtering.
0 Cycle counter filtering disabled
1 Cycle counter filtering enabled

CCFMSK Cycle Counter Filtering Mask. This field defines the filter mask for the cycle counter filtering.

CCFVAL Cycle Counter Filtering Value. This field defines the filter value for the cycle counter filtering.

Table 30-79. Channel Assignment Description

CHA CHB
Transmit Message Buffer Receive Message Buffer

static segment dynamic segment static segment dynamic segment

1 1 transmit on both channel A
and channel B

transmit on channel A only store first valid frame
received on either
channel A or channel B

store first valid frame
received on channel A,
ignore channel B

0 1 transmit on channel B transmit on channel B store first valid frame
received on channel B

store first valid frame
received on channel B

1 0 transmit on channel A transmit on channel A store first valid frame
received on channel A

store first valid frame
received on channel A

0 0 no frame transmission no frame transmission no frame stored no frame stored

Base + 0x0104 (MBFIDR0)
Base + 0x010C (MBFIDR1)
...
Base + 0x02FC (MBFIDR63)

Write: POC:config or MB_DIS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
FID

W

Reset 0 0 0 0 0 - - - - - - - - - - -

Figure 30-97. Message Buffer Frame ID Registers (MBFIDRn)

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-77
 Preliminary

30.5.2.68 Message Buffer Index Registers (MBIDXRn)

Table 30-80. MBFIDRn Field Descriptions

Field Description

FID Frame ID — The semantic of this field depends on the message buffer transfer type.
 • Receive Message Buffer: This field is used as a filter value to determine if the message buffer is used for

reception of a message received in a slot with the slot ID equal to FID.
 • Transmit Message Buffer: This field is used to determine the slot in which the message in this message buffer

should be transmitted.

Base + 0x0106 (MBIDXR0)
Base + 0x010E (MBIDXR1)
...
Base + 0x02FE (MBIDXR63)

Write: POC:config or MB_DIS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0
MBIDX

W

Reset 0 0 0 0 0 0 0 0 0 - - - - - - -

Figure 30-98. Message Buffer Index Registers (MBIDXRn)

Table 30-81. MBIDXRn Field Descriptions

Field Description

MBIDX Message Buffer Index. This field provides the index of the message buffer header field of the physical message
buffer that is currently associated with this message buffer.
The application writes the index of the initially associated message buffer header field into this register. The
FlexRay block updates this register after frame reception or transmission.

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-78 Freescale Semiconductor
 Preliminary

30.6 Functional Description
This section provides a detailed description of the functionality implemented in the FlexRay block.

30.6.1 Message Buffer Concept

The FlexRay block uses a data structure called message buffer to store frame data, configuration, control,
and status data. Each message buffer consists of two parts, the message buffer control data and the physical
message buffer. The message buffer control data are located in dedicated registers. The structure of the
message buffer control data depends on the message buffer type and is described in Section 30.6.3,
“Message Buffer Types”. The physical message buffer is located in the FRM and is described in
Section 30.6.2, “Physical Message Buffer”.

30.6.2 Physical Message Buffer

All FlexRay messages and related frame and slot status information of received frames and of frames to
be transmitted to the FlexRay bus are stored in data structures called physical message buffers. The
physical message buffers are located in the FRM.The structure of a physical message buffer is depicted in
Figure 30-99.

A physical message buffer consists of two fields, the message buffer header field and the message buffer
data field. The message buffer header field contains the frame header, the data field offset, and the slot
status.The message buffer data field contains the frame data.

The connection between the two fields is established by the data field offset.

Figure 30-99. Physical Message Buffer Structure

30.6.2.1 Message Buffer Header Field

The message buffer header field is a contiguous region in the FRM and occupies ten bytes. It contains the
frame header, the data field offset, and the slot status. Its structure is shown in Figure 30-99. The physical
start address SADR_MBHF of the message buffer header field must be 16-bit aligned.

30.6.2.1.1 Frame Header

The frame header occupies the first six bytes in the message buffer header field. It contains all FlexRay
frame header related information according to the FlexRay Communications System Protocol

Data Field Offset

Frame Data

Message Buffer Header Field

Message Buffer Data Field

Slot StatusFrame Header

SADR_MBDF

SADR_MBHF

X
B

A
R

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-79
 Preliminary

Specification, Version 2.1 Rev A. A detailed description of the usage and the content of the frame header
is provided in Section 30.6.5.2.1, “Frame Header Section Description”.

30.6.2.1.2 Data Field Offset

The data field offset follows the frame header in the message buffer data field and occupies two bytes. It
contains the offset of the corresponding message buffer data field with respect to the FlexRay block FRM
base address as provided by SYS_MEM_BASE_ADDR field in the System Memory Base Address High
Register (SYMBADHR) and System Memory Base Address Low Register (SYMBADLR)”. The data
field offset is used to determine the start address SADR_MBDF of the corresponding message buffer data field
in the FRM according to Equation 30-2.

SADR_MBDF = [Data Field Offset] + SYS_MEM_BASE_ADDR Eqn. 30-2

30.6.2.1.3 Slot Status

The slot status occupies the last two bytes of the message buffer header field. It provides the slot and frame
status related information according to the FlexRay Communications System Protocol Specification,
Version 2.1 Rev A. A detailed description of the content and usage of the slot status is provided in
Section 30.6.5.2.3, “Slot Status Description”.

30.6.2.2 Message Buffer Data Field

The message buffer data field is a contiguous area of 2-byte entities. This field contains the frame payload
data, or a part of it, of the frame to be transmitted to or received from the FlexRay bus. The minimum
length of this field depends on the specific message buffer configuration and is specified in the message
buffer descriptions given in Section 30.6.3, “Message Buffer Types”.

30.6.3 Message Buffer Types

The FlexRay block provides three different types of message buffers.

• Individual Message Buffers

• Receive Shadow Buffers

• Receive FIFO Buffers

For each message buffer type the structure of the physical message buffer is identical. The message buffer
types differ only in the structure and content of message buffer control data, which control the related
physical message buffer. The message buffer control data are described in the following sections.

30.6.3.1 Individual Message Buffers

The individual message buffers are used for all types of frame transmission and for dedicated frame
reception based on individual filter settings for each message buffer. The FlexRay block supports three
types of individual message buffers, which are described in Section 30.6.6, “Individual Message Buffer
Functional Description”.

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-80 Freescale Semiconductor
 Preliminary

Each individual message buffer consists of two parts, the physical message buffer, which is located in the
FRM, and the message buffer control data, which are located in dedicated registers. The structure of an
individual message buffer is given in Figure 30-100.

Each individual message buffer has a message buffer number n assigned, which determines the set of
message buffer control registers associated to this individual message buffer. The individual message
buffer with message buffer number n is controlled by the registers MBCCSRn, MBCCFRn, MBFIDRn,
and MBIDXRn.

The connection between the message buffer control registers and the physical message buffer is
established by the message buffer index field MBIDX in the Message Buffer Index Registers (MBIDXRn).
The start address SADR_MBHF of the related message buffer header field in the FRM is determined
according to Equation 30-3.

SADR_MBHF = (MBIDXRn[MBIDX] * 10) + SYS_MEM_BASE_ADDR Eqn. 30-3

Figure 30-100. Individual Message Buffer Structure

30.6.3.1.1 Individual Message Buffer Segments

The set of the individual message buffers can be split up into two message buffer segments using the
Message Buffer Segment Size and Utilization Register (MBSSUTR). All individual message buffers with
a message buffer number n <= MBSSUTR.LAST_MB_SEG1 belong to the first message buffer segment.
All individual message buffers with a message buffer number n > MBSSUTR.LAST_MB_SEG1 belong
to the second message buffer segment. The following rules apply to the length of the message buffer data
field:

• all physical message buffers associated to individual message buffers that belong to the same
message buffer segment must have message buffer data fields of the same length

• the minimum length of the message buffer data field for individual message buffers in the first
message buffer segment is 2 * MBDSR.MBSEG1DS bytes

• the minimum length of the message buffer data field for individual message buffers assigned to the
second segment is 2 * MBDSR.MBSEG2DS bytes.

MBFIDRn

Message Buffer Control Registers

MBCCSRn MBCCFRn MBIDXRn

(min) MBDSR[MBSEG1DS] * 2 bytes / MBDSR[MBSEG2DS] * 2 bytes

Data Field Offset

Frame Data

Message Buffer Header Field

Message Buffer Data Field

Slot StatusFrame Header

SADR_MBDF

SADR_MBHF

X
B

A
R

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-81
 Preliminary

30.6.3.2 Receive Shadow Buffers

The receive shadow buffers are required for the frame reception process for individual message buffers.
The FlexRay block provides four receive shadow buffers, one receive shadow buffer per channel and per
message buffer segment.

Each receive shadow buffer consists of two parts, the physical message buffer located in the FRM and the
receive shadow buffer control registers located in dedicated registers. The structure of a receive shadow
buffer is shown in Figure 30-101. The four internal shadow buffer control registers can be accessed by the
Receive Shadow Buffer Index Register (RSBIR).

The connection between the receive shadow buffer control register and the physical message buffer for the
selected receive shadow buffer is established by the receive shadow buffer index field RSBIDX in the
Receive Shadow Buffer Index Register (RSBIR). The start address SADR_MBHF of the related message
buffer header field in the FRM is determined according to Equation 30-4.

SADR_MBHF = (RSBIR[RSBIDX] * 10) + SYS_MEM_BASE_ADDR Eqn. 30-4

The length required for the message buffer data field depends on the message buffer segment that the
receive shadow buffer is assigned to. For the receive shadow buffers assigned to the first message buffer
segment, the length must be the same as for the individual message buffers assigned to the first message
buffer segment. For the receive shadow buffers assigned to the second message buffer segment, the length
must be the same as for the individual message buffers assigned to the second message buffer segment.
The receive shadow buffer assignment is described in Receive Shadow Buffer Index Register (RSBIR).

Figure 30-101. Receive Shadow Buffer Structure

30.6.3.3 Receive FIFO

The receive FIFO implements a frame reception system based on the FIFO concept. The FlexRay block
provides two independent receive FIFOs, one per channel.

A receive FIFO consists of a set of physical message buffers in the FRM and a set of receive FIFO control
registers located in dedicated registers. The structure of a receive FIFO is given in Figure 30-102.

RSBIDX[3]
RSBIDX[2]

RSBIDX[1]
RSBIDX[0]

Receive Shadow Buffer Control Register

(min) MBDSR[MBSEG1DS] * 2 bytes / MBDSR[MBSEG2DS] * 2 bytes

Data Field Offset

Frame Data

Message Buffer Header Field

Message Buffer Data Field

Slot StatusFrame Header

SADR_MBDF

SADR_MBHF

X
B

A
R

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-82 Freescale Semiconductor
 Preliminary

The connection between the receive FIFO control registers and the set of physical message buffers is
established by the start index field SIDX in the Receive FIFO Start Index Register (RFSIR), the FIFO
depth field FIFO_DEPTH in the Receive FIFO Depth and Size Register (RFDSR), and the read index field
RDIDX Receive FIFO A Read Index Register (RFARIR) / Receive FIFO B Read Index Register
(RFBRIR). The start address SADR_MBHF_1 of the first message buffer header field that belongs to the
receive FIFO in the FRM is determined according to Equation 30-5.

SADR_MBHF[1] = (RFSIR[SIDX] * 10) + SYS_MEM_BASE_ADDR Eqn. 30-5

The start address SADR_MBHF[n] of the last message buffer header field that belongs to the receive FIFO
in the FRM is determined according to Equation 30-6.

SADR_MBHF[n] = ((RFSIR[SIDX] + RFDSR[FIFO_DEPTH]) * 10) + SYS_MEM_BASE_ADDR Eqn. 30-6

NOTE
All message buffer header fields assigned to a receive FIFO must be a
contiguous region.

Figure 30-102. Receive FIFO Structure

RFBRIRRFDSR[B] RFSIR[B]
RFARIRRFDSR[A] RFSIR[A]

Frame Header[1] Slot Status[1]Data Field Offset[1]

Receive FIFO Control Register

Message Buffer Header Fields

Message Buffer Data Fields

Frame Header[n] Slot Status[n]Data Field Offset[n]

(min) RFDSR[ENTRY_SIZE] * 2 bytes

R
F

D
S

R
[F

IF
O

_D
E

P
T

H
]

+

Frame Header[i] Slot Status[i]Data Field Offset[i]

Frame Data[n]

SADR_MBDF[n]

Frame Data[i]

SADR_MBDF[i]

Frame Data[1]

SADR_MBDF[1]

R
F

D
S

R
[F

IF
O

_D
E

P
T

H
]

SADR_MBHF[n]

SADR_MBHF[i]

SADR_MBHF[1]

X
B

A
R

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-83
 Preliminary

30.6.3.4 Message Buffer Configuration and Control Data

This section describes the configuration and control data for each message buffer type.

30.6.3.4.1 Individual Message Buffer Configuration Data

Before an individual message buffer can be used for transmission or reception, it must be configured.
There is a set of common configuration parameters that applies to all individual message buffers and a set
of configuration parameters that applies to each message buffer individually.

Common Configuration Data

The set of common configuration data for individual message buffers is located in the following registers.

• Message Buffer Data Size Register (MBDSR)
The MBSEG2DS and MBSEG1DS fields define the minimum length of the message buffer data
field with respect to the message buffer segment.

• Message Buffer Segment Size and Utilization Register (MBSSUTR)
The LAST_MB_SEG1 and LAST_MB_UTIL fields define the segmentation of the individual
message buffers and the number of individual message buffers that are used. For more details, see
Section 30.6.3.1.1, “Individual Message Buffer Segments”

Specific Configuration Data

The set of message buffer specific configuration data for individual message buffers is located in the
following registers.

• Message Buffer Configuration, Control, Status Registers (MBCCSRn)
The MCM, MBT, MTD bits configure the message buffer type.

• Message Buffer Cycle Counter Filter Registers (MBCCFRn)
The MTM, CHA, CHB bits configure the transmission mode and the channel assignment. The
CCFE, CCFMSK, and CCFVAL bits and fields configure the cycle counter filter.

• Message Buffer Frame ID Registers (MBFIDRn)
For a transmit message buffer, the FID field is used to determine the slot in which the message in
this message buffer will be transmitted.

• Message Buffer Index Registers (MBIDXRn)
This MBIDX field provides the index of the message buffer header field of the physical message
buffer that is currently associated with this message buffer.

30.6.3.5 Individual Message Buffer Control Data

During normal operation, each individual message buffer can be controlled by the control and trigger bits
CMT, LCKT, EDT, and MBIE in the Message Buffer Configuration, Control, Status Registers
(MBCCSRn).

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-84 Freescale Semiconductor
 Preliminary

30.6.3.6 Receive Shadow Buffer Configuration Data

Before frame reception into the individual message buffers can be performed, the receive shadow buffers
must be configured. The configuration data are provided by the Receive Shadow Buffer Index Register
(RSBIR). For each receive shadow buffer, the application provides the message buffer header index. When
the protocol is in the POC:normal active or POC:normal passive state, the receive shadow buffers are
under full FlexRay block control.

30.6.3.7 Receive FIFO Control and Configuration Data

This section describes the configuration and control data for the two receive FIFOs.

30.6.3.7.1 Receive FIFO Configuration Data

The FlexRay block provides two completely independent receive FIFOs, one per channel. Each FIFO has
its own set of configuration data. The configuration data are located in the following registers:

• Receive FIFO Start Index Register (RFSIR)

• Receive FIFO Depth and Size Register (RFDSR)

• Receive FIFO Message ID Acceptance Filter Value Register (RFMIDAFVR)

• Receive FIFO Message ID Acceptance Filter Mask Register (RFMIAFMR)

• Receive FIFO Frame ID Rejection Filter Value Register (RFFIDRFVR)

• Receive FIFO Frame ID Rejection Filter Mask Register (RFFIDRFMR)

• Receive FIFO Range Filter Configuration Register (RFRFCFR)

30.6.3.7.2 Receive FIFO Control Data

The application can access the receive FIFO at any time using the values provided in the Receive FIFO A
Read Index Register (RFARIR) and Receive FIFO B Read Index Register (RFBRIR). To update the
Receive FIFO A Read Index Register (RFARIR), the application must write 1 to the FIFO A Not Empty
Interrupt Flag FNEAIF in the Global Interrupt Flag and Enable Register (GIFER). To update the Receive
FIFO B Read Index Register (RFBRIR) the application must write 1 to the FIFO B Not Empty Interrupt
Flag FNEBIF in the Global Interrupt Flag and Enable Register (GIFER). As long as the FIFO is not empty,
each update increments the related read index. If the read index has reached the last FIFO entry, it wraps
back to the FIFO start index.

30.6.4 FlexRay Memory Layout

The FlexRay block supports a wide range of possible layouts for the FRM. Figure 30-103 shows an
example layout. The following set of rules applies to the layout of the FRM:

• The FRM is a contiguous region.

• The FRM size is maximum 64 Kbytes.

• The FRM starts at a 16 byte boundary.

The FRM contains three areas: the message buffer header area, the message buffer data area, and the sync
frame table area. The areas are described in this section.

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-85
 Preliminary

Figure 30-103. Example of FRM Layout

30.6.4.1 Message Buffer Header Area

The message buffer header area contains all message buffer header fields of the physical message buffers
for all message buffer types. The following rules apply to the message buffer header fields for the three
type of message buffers.

1. The start address SADR_MBHF of each message buffer header field for individual message
buffers and receive shadow buffers must fulfill Equation 30-7.

SADR_MBHF = (i * 10) + SYS_MEM_BASE_ADDR; (0 <= i < 128) Eqn. 30-7

2. The start address SADR_MBHF of each message buffer header field for the receive FIFO must
fulfill Equation 30-8.

SADR_MBHF = (i * 10) + SYS_MEM_BASE_ADDR; (0 <= i < 1024) Eqn. 30-8

3. The message buffer header fields for a receive FIFO have to be a contiguous area.

30.6.4.2 Message Buffer Data Area

The message buffer data area contains all the message buffer data fields of the physical message buffers.
Each message buffer data field must start at a 16-bit boundary.

M
es

sa
ge

 B
uf

fe
r

H
ea

de
r

A
re

a

F
R

M

Message Buffer Data Area

Sync Frame Table Area

Data Field OffsetFrame Header Slot Status

Data Field OffsetFrame Header Slot Status
Message Buffer Header Fields

Individual Message Buffers
Receive Shadow Buffers

Data Field OffsetFrame Header Slot Status

Data Field OffsetFrame Header Slot Status

Message Buffer Header Fields
Receive FIFO A

Data Field OffsetFrame Header Slot Status

Data Field OffsetFrame Header Slot Status

Message Buffer Header Fields
Receive FIFO B

Data Field OffsetFrame Header Slot Status

10 bytesSYS_MEM_BASE_ADDR

System Memory

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-86 Freescale Semiconductor
 Preliminary

30.6.4.3 Sync Frame Table Area

The sync frame table area is used to provide a copy of the internal sync frame tables for application access.
Refer to Section 30.6.12, “Sync Frame ID and Sync Frame Deviation Tables” for the description of the
sync frame table area.

30.6.5 Physical Message Buffer Description

This section provides a detailed description of the usage and the content of the two parts of a physical
message buffer, the message buffer header field and the message buffer data field.

30.6.5.1 Message Buffer Protection and Data Consistency

The physical message buffers are located in the FRM. The FlexRay block provides no means to protect the
FRM from uncontrolled or illegal host or other client write access. To ensure data consistency of the
physical message buffers, the application must follow the write access scheme that is given in the
description of each of the physical message buffer fields.

30.6.5.2 Message Buffer Header Field Description

This section provides a detailed description of the usage and content of the message buffer header field. A
description of the structure of the message buffer header fields is given in Section 30.6.2.1, “Message
Buffer Header Field”. Each message buffer header field consists of three sections: the frame header
section, the data field offset, and the slot status section. For a detailed description of the Data Field Offset,
see Section 30.6.2.1.2, “Data Field Offset”.

30.6.5.2.1 Frame Header Section Description

Frame Header Section Content

The semantic and content of the frame header section depends on the message buffer type.

For individual receive message buffers and receive FIFOs, the frame header receives the frame header data
of the first valid frame received on the assigned channels. If a receive message buffer is assigned to both
channels, the first valid frame received on either channel A or channel B is stored.

For receive shadow buffers, the frame header receives the frame header data of the current frame received
regardless of whether the frame is valid or not.

For single and double transmit message buffers, the application writes the frame header of the frame to be
transmitted into this location. The frame header will be read out when the frame is transferred to the
FlexRay bus.

The structure of the frame header in the message buffer header field is given in Figure 30-104. A detailed
description of the frame header fields is given in Table 30-83.

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-87
 Preliminary

Figure 30-104. Frame Header Structure

Frame Header Section Access

The frame header is located in the FRM. To ensure data consistency, the application must follow the write
access scheme described below.

For receive message buffers, receive shadow buffers, and receive FIFOs, the application must not write to
the frame header field.

For transmit message buffers, the application must follow the write access restrictions given in
Table 30-82. This table shows the condition under which the application can write to the frame header
entries. In general, the application can modify all frame header entries when the protocol is in the
POC:config state or when the message buffer is disabled. For message buffers assigned to the dynamic
segment, the application can modify all frame header entries except the frame ID when the message buffer
is locked.

The frame header entries NUF, SYF, SUF, and CYCCNT are not used for frame transmission. These values
are generated internally before frame transmission depending on the current transmission state and
configuration.

For transmit message buffers assigned to the static segment, the PLDLEN value must be equal to the value
of the payload_length_static field in the Protocol Configuration Register 19 (PCR19). If this is not
fulfilled, the static payload length error flag SPL_EF in the CHI Error Flag Register (CHIERFR) is set
when the message buffer is under transmission. The PE generates a syntactically and semantically correct
frame with payload_length_static payload words and the payload length field in the frame header set to
payload_length_static.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0x0 R* PPI NUF SYF SUF FID
0x2 CYCCNT PLDLEN
0x4 HDCRC

= not used for TX message buffers, not updated for RX message buffers

Table 30-82. Frame Header Write Access Constraints

Field

TX

Single Buffered Double Buffered

Static
Segment

Dynamic
Segment

Static Segment Dynamic Segment

Commit Side Transmit Side Commit Side Transmit Side

FID POC:config or MB_DIS

R*, PPI
NUF, SYF

SUF
CYCCNT
PLDLEN
HDCRD

POC:config
or

MB_DIS

POC:config
or

MB_DIS
or

MB_LCK

POC:config
or

MB_DIS

POC:config
or

MB_DIS
or

MB_LCK

POC:config
or

MB_DIS

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-88 Freescale Semiconductor
 Preliminary

For transmit message buffers assigned to the dynamic segment, the PLDLEN value must be less than or
equal to the value of the max_payload_length_dynamic field in the Protocol Configuration Register 24
(PCR24). If this is not fulfilled, the dynamic payload length error flag DPL_EF in the CHI Error Flag
Register (CHIERFR) is set when the message buffer is under transmission. The PE generates a
syntactically and semantically correct dynamic frame with PLDLEN payload words and the payload
length field in the frame header set to PLDLEN.

Table 30-83. Frame Header Field Descriptions

Field Description

R* Reserved Bit. This bit corresponds to the Reserved bit in the FlexRay frame header.
 • For receive and FIFO message buffers, this is a status bit and represents the value of the Reserved bit in the

frame received on the FlexRay bus in the corresponding slot.
 • For transmit message buffers, this is a control bit. The FlexRay block transmits this within the frame header.
Note: For protocol compliant operation, this control bit must be set to 0 for transmit message buffers.

PPI Payload Preamble Indicator. This bit corresponds to the Payload Preamble Indicator in the FlexRay frame header.
 • For receive and FIFO message buffers, this is a status bit and represents the value of the Payload Preamble

Indicator of the first valid frame received on the FlexRay in the slot indicated by the CYCCNT field.
 • For transmit message buffers, this is a control bit. The FlexRay block uses this value to set the Payload

Preamble Indicator in the frame header of the frame to transmit.
0 No network management vector or message ID in frame payload data
1 Static Segment: Frame payload data contains network management vector

Dynamic Segment: Frame payload data contains message ID

NUF Null Frame Indicator. This bit corresponds to the Null Frame Indicator in the FlexRay frame header.
 • For receive message buffers and receive FIFOs, this is a status bit and represents the value of the Null Frame

Indicator of the first valid frame received on the FlexRay bus in the slot indicated by the CYCCNT field.
 • For transmit message buffers, the value of this bit is ignored. The FlexRay block determines internally whether

a null frame or non-null frame must be transmitted and sets the Null Frame Indicator accordingly.
0 Null frame received
1 Normal frame received

SYF Sync Frame Indicator. This bit corresponds to the Sync Frame Indicator in the FlexRay frame header.
 • For receive message buffers and receive FIFOs, this is a status bit and represents the value of the Sync Frame

Indicator of the first valid frame received on the FlexRay bus in the slot indicated by the CYCCNT field.
 • For transmit message buffers, the value of this bit is ignored. The FlexRay block determines internally whether

a sync frame must be transmitted and sets the Sync Frame Indicator accordingly.

SUF Startup Frame Indicator. This bit corresponds to the Startup Frame Indicator in the FlexRay frame header.
 • For receive message buffers and receive FIFOs, this is a status bit and represents the value of the Startup

Frame Indicator of the first valid frame received on the FlexRay bus in the slot indicated by the CYCCNT field
 • For transmit message buffers, the value of this bit is ignored. The FlexRay block determines internally whether

a startup frame must be transmitted and sets the Startup Frame Indicator accordingly.

FID Frame ID.
 • For receive message buffers and receive FIFOs, this field provides the value of the Frame ID field of the first

valid frame received on the FlexRay bus in the slot indicated by the CYCCNT field.
 • For transmit message buffers, this field provides the value that will be transmitted in the Frame ID field of the

FlexRay frame.
Note: For transmit message buffers, the application must program this field to the same value as in the

corresponding Message Buffer Frame ID Registers (MBFIDRn). If the FlexRay block detects a mismatch
while transmitting the frame header, it will set the frame ID error flag FID_EF in the CHI Error Flag Register
(CHIERFR). The value of the FID field will be ignored and replaced by the value provided in the Message
Buffer Frame ID Registers (MBFIDRn).

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-89
 Preliminary

30.6.5.2.2 Data Field Offset Description

Data Field Offset Content

For a detailed description of the Data Field Offset, see Section 30.6.2.1.2, “Data Field Offset.”

Data Field Offset Access

The application shall program the Data Field Offset when configuring the message buffers either in the
POC:config state or when the message buffer is disabled.

30.6.5.2.3 Slot Status Description

The slot status is a read-only structure for the application and a write-only structure for the FlexRay block.
The meaning and content of the slot status in the message buffer header field depends on the message
buffer type.

Receive Message Buffer and Receive FIFO Slot Status Description

This section describes the slot status structure for the individual receive message buffers and receive
FIFOs. The content of the slot status structure for receive message buffers depends on the message buffer
type and on the channel assignment for individual receive message buffers as given by Table 30-84.

CYCCNT Cycle Count.
 • For receive message buffer and receive FIFOs, this field provides the number of the communication cycle in

which the frame stored in this message buffer was received.
 • For transmit message buffers, the value of this field is ignored. The FlexRay block will overwrite this value with

the current cycle count value when it transmits the frame.

PLDLEN Payload Length in 16-Bit Units.
 • For receive message buffers and receive FIFOs, this field provides the value of the payload length field of the

first valid frame received on the FlexRay bus in the slot indicated by the FID field.
 • For transmit message buffers assigned to the static segment, this value is ignored for the frame generation.

The FlexRay block uses the value in the PCR19.paylaod_length_static to set the value of the Payload length
field in the transmitted frame.

 • For transmit message buffers assigned to the dynamic segment, this value is used to set the value of the
Payload length field in the transmitted frame.

Note: The value of this field is given in numbers of 16-bit units

HDCRC Header CRC.
 • For receive and FIFO message buffers, this field provides the value of the Header CRC of the received frame.
 • For transmit message buffers, this field provides the Header CRC value as it was given by the application.The

FlexRay block transmits this value in the Header CRC field of the transmitted frame.

Table 30-83. Frame Header Field Descriptions (continued)

Field Description

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-90 Freescale Semiconductor
 Preliminary

The meaning of the bits in the slot status structure is explained in Table 30-85.

Figure 30-105. Receive Message Buffer Slot Status Structure (ChAB)

Figure 30-106. Receive Message Buffer Slot Status Structure (ChA)

Figure 30-107. Receive Message Buffer Slot Status Structure (ChB)

Table 30-84. Receive Message Buffer Slot Status Content

Receive Message Buffer Type Slot Status Content

Individual Receive Message Buffer assigned to both channels
MBCCSRn.CHA=1 and MBCCSRn.CHB=1

see Figure 30-105

Individual Receive Message Buffer assigned to channel A
MBCCSRn.CHA=1 and MBCCSRn.CHB=0

see Figure 30-106

Individual Receive Message Buffer assigned to channel B
MBCCSRn.CHA=0 and MBCCSRn.CHB=1

see Figure 30-107

Receive FIFO Channel A Message Buffer see Figure 30-106

Receive FIFO Channel B Message Buffer see Figure 30-107

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R VFB SYB NFB SUB SEB CEB BVB CH VFA SYA NFA SUA SEA CEA BVA 0

Reset – – – – – – – – – – – – – – – –

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 VFA SYA NFA SUA SEA CEA BVA 0

Reset – – – – – – – – – – – – – – – –

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R VFB SYB NFB SUB SEB CEB BVB 1 0 0 0 0 0 0 0 0

Reset – – – – – – – – – – – – – – – –

Table 30-85. Receive Message Buffer Slot Status Field Descriptions

Field Description

Common Message Buffer Status Bits

VFB Valid Frame on Channel B. Protocol related variable: vSS!ValidFrame channel B
0 vSS!ValidFrame = 0
1 vSS!ValidFrame = 1

SYB Sync Frame Indicator Channel B. Protocol related variable: vRF!Header!SyFIndicator channel B
0 vRF!Header!SyFIndicator = 0
1 vRF!Header!SyFIndicator = 1

NFB Null Frame Indicator Channel B. Protocol related variable: vRF!Header!NFIndicator channel B
0 vRF!Header!NFIndicator = 0
1 vRF!Header!NFIndicator = 1

SUB Startup Frame Indicator Channel B. Protocol related variable: vRF!Header!SuFIndicator channel B
0 vRF!Header!SuFIndicator = 0
1 vRF!Header!SuFIndicator = 1

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-91
 Preliminary

Transmit Message Buffer Slot Status Description

This section describes the slot status structure for transmit message buffers. Only the TCA and TCB status
bits are directly related to the transmission process. All other status bits in this structure are related to a
receive process that may have occurred. The content of the slot status structure for transmit message
buffers depends on the channel assignment as given by Table 30-86.

SEB Syntax Error on Channel B. Protocol related variable: vSS!SyntaxError channel B
0 vSS!SyntaxError = 0
1 vSS!SyntaxError = 1

CEB Content Error on Channel B. Protocol related variable: vSS!ContentError channel B
0 vSS!ContentError = 0
1 vSS!ContentError = 1

BVB Boundary Violation on Channel B. Protocol related variable: vSS!BViolation channel B
0 vSS!BViolation = 0
1 vSS!BViolation = 1

CH Channel First Valid Received. This status bit applies only to receive message buffers assigned to the static
segment and to both channels. It indicates the channel that has received the first valid frame in the slot. This flag
is set to 0 if no valid frame was received at all in the subscribed slot.
0 first valid frame received on channel A, or no valid frame received at all
0 first valid frame received on channel B

VFA Valid Frame on Channel A. protocol related variable: vSS!ValidFrame channel A
0 vSS!ValidFrame = 0
1 vSS!ValidFrame = 1

SYA Sync Frame Indicator Channel A. Protocol related variable: vRF!Header!SyFIndicator channel A
0 vRF!Header!SyFIndicator = 0
1 vRF!Header!SyFIndicator = 1

NFA Null Frame Indicator Channel A. Protocol related variable: vRF!Header!NFIndicator channel A
0 vRF!Header!NFIndicator = 0
1 vRF!Header!NFIndicator = 1

SUA Startup Frame Indicator Channel A. Protocol related variable: vRF!Header!SuFIndicator channel A
0 vRF!Header!SuFIndicator = 0
1 vRF!Header!SuFIndicator = 1

SEA Syntax Error on Channel A — protocol related variable: vSS!SyntaxError channel A
0 vSS!SyntaxError = 0
1 vSS!SyntaxError = 1

CEA Content Error on Channel A — protocol related variable: vSS!ContentError channel A
0 vSS!ContentError = 0
1 vSS!ContentError = 1

BVA Boundary Violation on Channel A — protocol related variable: vSS!BViolation channel A
0 vSS!BViolation = 0
1 vSS!BViolation = 1

Table 30-85. Receive Message Buffer Slot Status Field Descriptions (continued)

Field Description

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-92 Freescale Semiconductor
 Preliminary

The meaning of the bits in the slot status structure is described in Table 30-85.

Figure 30-108. Transmit Message Buffer Slot Status Structure (ChAB)

Figure 30-109. Transmit Message Buffer Slot Status Structure (ChA)

Figure 30-110. Transmit Message Buffer Slot Status Structure (ChB)

Table 30-86. Transmit Message Buffer Slot Status Content

Transmit Message Buffer Type Slot Status Content

Individual Transmit Message Buffer assigned to both channels
MBCCSRn.CHA=1 and MBCCSRn.CHB=1

see Figure 30-108

Individual Transmit Message Buffer assigned to channel A
MBCCSRn.CHA=1 and MBCCSRn.CHB=0

see Figure 30-109

Individual Transmit Message Buffer assigned to channel B
MBCCSRn.CHA=0 and MBCCSRn.CHB=1

see Figure 30-110

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R VFB SYB NFB SUB SEB CEB BVB TCB VFA SYA NFA SUA SEA CEA BVA TCA

Reset – – – – – – – – – – – – – – – –

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 VFA SYA NFA SUA SEA CEA BVA TCA

Reset – – – – – – – – – – – – – – – –

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R VFB SYB NFB SUB SEB CEB BVB TCB 0 0 0 0 0 0 0 0

Reset – – – – – – – – – – – – – – – –

Table 30-87. Transmit Message Buffer Slot Status Structure Field Descriptions

Field Description

VFB Valid Frame on Channel B — protocol related variable: vSS!ValidFrame channel B
0 vSS!ValidFrame = 0
1 vSS!ValidFrame = 1

SYB Sync Frame Indicator Channel B — protocol related variable: vRF!Header!SyFIndicator channel B
0 vRF!Header!SyFIndicator = 0
1 vRF!Header!SyFIndicator = 1

NFB Null Frame Indicator Channel B — protocol related variable: vRF!Header!NFIndicator channel B
0 vRF!Header!NFIndicator = 0
1 vRF!Header!NFIndicator = 1

SUB Startup Frame Indicator Channel B — protocol related variable: vRF!Header!SuFIndicator channel B
0 vRF!Header!SuFIndicator = 0
1 vRF!Header!SuFIndicator = 1

SEB Syntax Error on Channel B — protocol related variable: vSS!SyntaxError channel B
0 vSS!SyntaxError = 0
1 vSS!SyntaxError = 1

CEB Content Error on Channel B — protocol related variable: vSS!ContentError channel B
0 vSS!ContentError = 0
1 vSS!ContentError = 1

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-93
 Preliminary

30.6.5.3 Message Buffer Data Field Description

The message buffer data field is used to store the frame payload data, or a part of it, of the frame to be
transmitted to or received from the FlexRay bus. The minimum required length of this field depends on
the message buffer type that the physical message buffer is assigned to and is given in Table 30-88. The
structure of the message buffer data field is given in Figure 30-111.

BVB Boundary Violation on Channel B — protocol related variable: vSS!BViolation channel B
0 vSS!BViolation = 0
1 vSS!BViolation = 1

TCB Transmission Conflict on Channel B — protocol related variable: vSS!TxConflict channel B
0 vSS!TxConflict = 0
1 vSS!TxConflict = 1

VFA Valid Frame on Channel A — protocol related variable: vSS!ValidFrame channel A
0 vSS!ValidFrame = 0
1 vSS!ValidFrame = 1

SYA Sync Frame Indicator Channel A — protocol related variable: vRF!Header!SyFIndicator channel A
0 vRF!Header!SyFIndicator = 0
1 vRF!Header!SyFIndicator = 1

NFA Null Frame Indicator Channel A — protocol related variable: vRF!Header!NFIndicator channel A
0 vRF!Header!NFIndicator = 0
1 vRF!Header!NFIndicator = 1

SUA Startup Frame Indicator Channel A — protocol related variable: vRF!Header!SuFIndicator channel A
0 vRF!Header!SuFIndicator = 0
1 vRF!Header!SuFIndicator = 1

SEA Syntax Error on Channel A — protocol related variable: vSS!SyntaxError channel A
0 vSS!SyntaxError = 0
1 vSS!SyntaxError = 1

CEA Content Error on Channel A — protocol related variable: vSS!ContentError channel A
0 vSS!ContentError = 0
1 vSS!ContentError = 1

BVA Boundary Violation on Channel A — protocol related variable: vSS!BViolation channel A
0 vSS!BViolation = 0
1 vSS!BViolation = 1

TCA Transmission Conflict on Channel A — protocol related variable: vSS!TxConflict channel A
0 vSS!TxConflict = 0
1 vSS!TxConflict = 1

Table 30-88. Message Buffer Data Field Minimum Length

physical message buffer
assigned to

minimum length defined by

Individual Message Buffer in Segment 1 MBDSR.MBSEG1DS

Receive Shadow Buffer in Segment 1 MBDSR.MBSEG1DS

Individual Message Buffer in Segment 2 MBDSR.MBSEG2DS

Receive Shadow Buffer in Segment 2 MBDSR.MBSEG2DS

Receive FIFO for channel A RFDSR.ENTRY_SIZE (RFSR.SEL = 0)

Table 30-87. Transmit Message Buffer Slot Status Structure Field Descriptions (continued)

Field Description

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-94 Freescale Semiconductor
 Preliminary

NOTE
The FlexRay block will not access any locations outside the message buffer
data field boundaries given by Table 30-88.

Figure 30-111. Message Buffer Data Field Structure

The message buffer data field is located in the FRM; thus, the FlexRay block has no means to control
application write access to the field. To ensure data consistency, the application must follow a write and
read access scheme.

30.6.5.3.1 Message Buffer Data Field Read Access

For transmit message buffers, the FlexRay block will not modify the content of the Message Buffer Data
Field. Thus the application can read back the data at any time without any impact on data consistency.

For receive message buffers the application must lock the related receive message buffer and retrieve the
message buffer header index from the Message Buffer Index Registers (MBIDXRn). While the message
buffer is locked, the FlexRay block will not update the Message Buffer Data Field.

For receive FIFOs, the application can read the message buffer indicated by the Receive FIFO A Read
Index Register (RFARIR) or the Receive FIFO B Read Index Register (RFBRIR) when the related receive
FIFO non-empty interrupt flag FNEAIF or FNEBIF is set in the Global Interrupt Flag and Enable Register
(GIFER). While the non-empty interrupt flag is set, the FlexRay block will not update the Message Buffer
Data Field related to message buffer indicated by Receive FIFO A Read Index Register (RFARIR) or the
Receive FIFO B Read Index Register (RFBRIR).

30.6.5.3.2 Message Buffer Data Field Write Access

For receive message buffers, receive shadow buffers, and receive FIFOs, the application must not write to
the message buffer data field.

For transmit message buffers, the application must follow the write access restrictions given in
Table 30-89.

Receive FIFO for channel B RFDSR.ENTRY_SIZE (RFSR.SEL = 1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0x0 DATA0 / MID0 / NMV0 DATA1 / MID1 / NMV1

0x2 DATA2 / NMV2 DATA3 / NMV3

...

0xN-2 DATA N-2 DATA N-1

Table 30-88. Message Buffer Data Field Minimum Length

physical message buffer
assigned to

minimum length defined by

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-95
 Preliminary

30.6.6 Individual Message Buffer Functional Description

The FlexRay block provides three basic types of individual message buffers:

1. Single Transmit Message Buffers

2. Double Transmit Message Buffers

3. Receive Message Buffers

Before an individual message buffer can be used, it must be configured by the application. After the initial
configuration, the message buffer can be reconfigured later. The set of the configuration data for individual
message buffers is given in Section 30.6.3.4.1, “Individual Message Buffer Configuration Data”.

30.6.6.1 Individual Message Buffer Configuration

The individual message buffer configuration consists of two steps. The first step is the allocation of the
required amount of memory for the FRM. The second step is the programming of the message buffer
configuration registers, which is described in this section.

30.6.6.1.1 Common Configuration Data

One part of the message buffer configuration data is common to all individual message buffers and the
receive shadow buffers. These data can only be set when the protocol is in the POC:config state.

The application configures the number of utilized individual message buffers by writing the message
buffer number of the last utilized message buffer into the LAST_MB_UTIL field in the Message Buffer
Segment Size and Utilization Register (MBSSUTR).

Table 30-89. Frame Data Write Access Constraints

Field single buffered
double buffered

commit side transmit side

DATA, MID, NMV POC:config or MB_DIS
or MB_LCK

POC:config or MB_DIS
or MB_LCK

POC:config or MB_DIS

Table 30-90. Frame Data Field Descriptions

Field Description

DATA[0:N-1] Message Data — Provides the message data received or to be transmitted.
For receive message buffer and receive FIFOs, this field provides the message data received for this message
buffer.
For transmit message buffers, the field provides the message data to be transmitted.

MID[0:1] Message Identifier — If the payload preamble bit PPI is set in the message buffer frame header, the MID field
holds the message ID of a dynamic frame located in the message buffer. The receive FIFO filter uses the received
message ID for message ID filtering.

NMV[0:11] Network Management Vector — If the payload preamble bit PPI is set in the message buffer frame header, the
network management vector field holds the network management vector of a static frame located in the message
buffer.
Note: The MID and NMV bytes replace the corresponding DATA bytes.

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-96 Freescale Semiconductor
 Preliminary

The application configures the size of the two segments of individual message buffers by writing the
message buffer number of the last message buffer in the first segment into the LAST_MB_SEG1 field in
the Message Buffer Segment Size and Utilization Register (MBSSUTR)

The application configures the length of the message buffer data fields for both of the message buffer
segments by writing to the MBSEG2DS and MBSEG1DS fields in the Message Buffer Data Size Register
(MBDSR).

Depending on the current receive functionality of the FlexRay block, the application must configure the
receive shadow buffers. For each segment and for each channel with at least one individual receive
message buffer assigned, the application must configure the related receive shadow buffer using the
Receive Shadow Buffer Index Register (RSBIR).

30.6.6.1.2 Specific Configuration Data

The second part of the message buffer configuration data is specific for each message buffer.

These data can be changed only when either

• the protocol is in the POC:config state or

• the message buffer is disabled, i.e. MBCCSRn.EDS = 0

The individual message buffer type is defined by the MTD and MBT bits in the Message Buffer
Configuration, Control, Status Registers (MBCCSRn) as given in Table 30-91.

The message buffer specific configuration data are

1. MCM, MBT, MTD bits in Message Buffer Configuration, Control, Status Registers (MBCCSRn)

2. all fields and bits in Message Buffer Cycle Counter Filter Registers (MBCCFRn)

3. all fields and bits in Message Buffer Frame ID Registers (MBFIDRn)

4. all fields and bits in Message Buffer Index Registers (MBIDXRn)

The meaning of the specific configuration data depends on the message buffer type, as given in the detailed
message buffer type descriptions Section 30.6.6.2, “Single Transmit Message Buffers”, Section 30.6.6.3,
“Receive Message Buffers”, and Section 30.6.6.4, “Double Transmit Message Buffer”.

30.6.6.2 Single Transmit Message Buffers

The section provides a detailed description of the functionality of single buffered transmit message buffers.

A single transmit message buffer is used by the application to provide message data to the FlexRay block
that will be transmitted over the FlexRay Bus. The FlexRay block uses the transmit message buffers to

Table 30-91. Individual Message Buffer Types

MBCCSRn.MTD MBCCSRn.MBT Individual Message Buffer Description

0 0 Receive Message Buffer

0 1 Reserved

1 0 Single Transmit Message Buffer

1 1 Double Transmit Message Buffer

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-97
 Preliminary

provide information about the transmission process and status information about the slot in which message
was transmitted.

The individual message buffer with message buffer number n is configured to be a single transmit message
buffer by the following settings:

• MBCCSRn.MBT = 0 (single buffered message buffer)

• MBCCSRn.MTD = 1 (transmit message buffer)

30.6.6.2.1 Access Regions

To certain message buffer fields, both the application and the FlexRay block have access. To ensure data
consistency, a message buffer locking scheme is implemented, which is used to control the access to the
data, control, and status bits of a message buffer. The access regions for single transmit message buffers
are depicted in Figure 30-112. A description of the regions is given in Table 30-92. If an region is active
as indicated in Table 30-93, the access scheme given for that region applies to the message buffer.

Figure 30-112. Single Transmit Message Buffer Access Regions

The trigger bits MBCCSRn.EDT and MBCCSRn.LCKT, and the interrupt enable bit MBCCSRn.MBIE
are not under access control and can be accessed from the application at any time. The status bits

Table 30-92. Single Transmit Message Buffer Access Regions Description

Region
Access from

Region used for
Application Module

CFG read/write - Message Buffer Configuration

MSG read/write - Message Data and Slot Status Access

NF - read-only Message Header Access for Null Frame Transmission

TX - read/write Message Transmission and Slot Status Update

CM - read-only Message Buffer Validation

SR - read-only Message Buffer Search

Message Buffer Data Field: DATA[0-N]

Message Buffer Header Field: Frame Header

MBCCSRn.CMT

Message Buffer Header Field: Slot Status

Message Buffer Header Field: Data Field Offset

MBCCFRn.MTM/CHA/CHB/CCF*

MBFIDRn.FID

MBIDXRn.MBIDX

MBCCSRn.MBT/MTD

TX

NF

CMT

SR

CFG

MSG

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-98 Freescale Semiconductor
 Preliminary

MBCCSRn.EDS and MBCCSRn.LCKS are not under access control and can be accessed from the
FlexRay block at any time.

The interrupt flag MBCCSnR.MBIF is not under access control and can be accessed from the application
and the FlexRay block at any time. FlexRay block clear access has higher priority.

The FlexRay block restricts its access to the regions depending on the current state of the message buffer.
The application must adhere to these restrictions in order to ensure data consistency. The transmit message
buffer states are given in Figure 30-113. A description of the states is given in Table 30-93, which also
provides the access scheme for the access regions.

The status bits MBCCSRn.EDS and MBCCSRn.LCKS provide the application with the required message
buffer status information. The internal status information is not visible to the application.

30.6.6.2.2 Message Buffer States

This section describes the transmit message buffer states and provides a state diagram.

Figure 30-113. Single Transmit Message Buffer States

Table 30-93. Single Transmit Message Buffer State Description (Sheet 1 of 2)

State
MBCCSRn Access Region

Description
EDS LCKS Appl. Module

Idle 1 0 – CM,
SR

Idle - Message Buffer is idle.
Included in message buffer search.

HDis 0 0 CFG – Disabled - Message Buffer under configuration.
Excluded from message buffer search.

HDisLck 0 1 CFG – Disabled and Locked - Message Buffer under configuration.
Excluded from message buffer search.

HLck 1 1 MSG SR Locked - Applications access to data, control, and status.
Included in message buffer search.

HLckCCSa

HL

HLck

HDisLck

HDis Idle

CCTx
HE

HLckCCMa

SA

CCSa

CCMa

SA MA

TX

RESET_STATE

DSS

DSS

CCNf
SSS

STS

HLckCCNf

STS

SSS STS

HU

HD

HL

HU

HL

HU

HL

HU

HL

HU

HE

HD

STS

CCSuSU

SSSDSS

DSS

MA

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-99
 Preliminary

30.6.6.2.3 Message Buffer Transitions

Application Transitions

The application transitions can be triggered by the application using the commands described in
Table 30-94. The application issues the commands by writing to the Message Buffer Configuration,
Control, Status Registers (MBCCSRn). Only one command can be issued with one write access. Each
command is executed immediately. If the command is ignored, it must be issued again.

The enable and disable commands issued by writing 1 to the trigger bit MBCCSRn.EDT. The transition
that will be triggered by each of these command depends on the current value of the status bit
MBCCSRn.EDS. If the command triggers the disable transition HD and the message buffer is in one of
the states CCSa, HLckCCSa, CCMa, HLckCCMa, CCNf, HLckCCNf, or CCTx, the disable transition has
no effect (command is ignored) and the message buffer state is not changed. No notification is given to the
application.

The lock and unlock commands issued by writing 1 to the trigger bit MBCCSRn.LCKT. The transition that
will be triggered by each of these commands depends on the current value of the status bit
MBCCSRn.LCKS. If the command triggers the lock transition HL and the message buffer is in the state
CCTx, the lock transition has no effect (command is ignored) and message buffer state is not changed. In
this case, the message buffer lock error flag LCK_EF in the CHI Error Flag Register (CHIERFR) is set.

CCSa 1 0 – – Slot Assigned - Message buffer assigned to next static slot.
Ready for Null Frame transmission.

HLckCCSa 1 1 MSG – Locked and Slot Assigned - Applications access to data, control,
and status.Message buffer assigned to next static slot

CCNf 1 0 – NF Null Frame Transmission
Header is used for null frame transmission.

HLckCCNf 1 1 MSG NF Locked and Null Frame Transmission - Applications access to
data, control, and status. Header is used for null frame transmission.

CCMa 1 0 – CM Message Available - Message buffer is assigned to next slot and
cycle counter filter matches.

HLckCCMa 1 1 MSG – Locked and Message Available - Applications access to data,
control, and status. Message buffer is assigned to next slot and cycle
counter filter matches.

CCTx 1 0 – TX Message Transmission - Message buffer data transmit. Payload
data from buffer transmitted

CCSu 1 0 – TX Status Update - Message buffer status update. Update of status
flags, the slot status field, and the header index.

Table 30-94. Single Transmit Message Buffer Application Transitions

Transition Command Condition Description

HE
MBCCSRn.EDT:= 1

MBCCSRn.EDS = 0 Application triggers message buffer enable.

HD MBCCSRn.EDS = 1 Application triggers message buffer disable.

Table 30-93. Single Transmit Message Buffer State Description (Sheet 2 of 2)

State
MBCCSRn Access Region

Description
EDS LCKS Appl. Module

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-100 Freescale Semiconductor
 Preliminary

Module Transitions

The module transitions that can be triggered by the FlexRay block are described in Table 30-95. Each
transition will be triggered for certain message buffers when the related condition is fulfilled.

Transition Priorities

The application can trigger only one transition at a time. There is no need to specify priorities among them.

As shown in the first part of Table 30-96, the module transitions have a higher priority than the application
transitions. For all states except the CCMa state, both a lock/unlock transition HL/HD and a module
transition can be executed at the same time. The result state is reached by first applying the application
transition and subsequently the module transition to the intermediately reached state. For example, if the
message buffer is in the HLck state and the application unlocks the message buffer by the HU transition
and the module triggers the slot assigned transition SA, the intermediate state is Idle and the resulting state
is CCSa.

The priorities among the module transitions is given in the second part of Table 30-96.

HL
MBCCSRn.LCKT:= 1

MBCCSRn.LCKS = 0 Application triggers message buffer lock.

HU MBCCSRn.LCKS = 1 Application triggers message buffer unlock.

Table 30-95. Single Transmit Message Buffer Module Transitions

Transition Condition Description

SA slot match and
static slot

Slot Assigned - Message buffer is assigned to next static slot.

MA slot match and
CycleCounter match

Message Available - Message buffer is assigned to next slot and cycle counter
filter matches.

TX slot start and
MBCCSRn.CMT = 1

Transmission Slot Start - Slot Start and commit bit CMT is set.
In case of a dynamic slot, pLatestTx is not exceeded.

SU status updated Status Updated - Slot Status field and message buffer status flags updated.
Interrupt flag set.

STS static slot start Static Slot Start - Start of static slot.

DSS
dynamic slot start or

symbol window start or
NIT start

Dynamic Slot or Segment Start. - Start of dynamic slot or symbol window or
NIT.

SSS
slot start or

symbol window start or
NIT start

Slot or Segment Start - Start of static slot or dynamic slot or symbol window or
NIT.

Table 30-96. Single Transmit Message Buffer Transition Priorities

State Priorities Description

module vs. application

Idle, HLck SA > HD
MA > HD

Slot Assigned > Message Buffer Disable
Message Available > Message Buffer Disable

CCMa TX > HL Transmission Start > Message Buffer Lock

Table 30-94. Single Transmit Message Buffer Application Transitions

Transition Command Condition Description

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-101
 Preliminary

30.6.6.2.4 Transmit Message Setup

To transmit a message over the FlexRay bus, the application writes the message data into the message
buffer data field and sets the commit bit CMT in the Message Buffer Configuration, Control, Status
Registers (MBCCSRn). The physical access to the message buffer data field is described in
Section 30.6.3.1, “Individual Message Buffers”.

As indicated by Table 30-93, the application shall write to the message buffer data field and change the
commit bit CMT only if the transmit message buffer is in one of the states HDis, HDisLck, HLck,
HLckCCSa, HLckCCMa, or HLckCCMa. The application can change the state of a message buffer if it
issues the appropriate commands shown in Table 30-94. The state change is indicated through the
MBCCSRn.EDS and MBCCSRn.LCKS status bits.

If the transmit message buffer enters one of the states HDis, HDisLck, HLck, HLckCCSa, HLckCCMa, or
HLckCCMa the MBCCSRn.DVAL flag is negated.

30.6.6.2.5 Message Transmission

As a result of the message buffer search described in Section 30.6.7, “Individual Message Buffer Search”,
the FlexRay block triggers the message available transition MA for up to two transmit message buffers.
This changes the message buffer state from Idle to CCMa and the message buffers can be used for message
transmission in the next slot.

The FlexRay block transmits a message from a message buffer if both of the following two conditions are
fulfilled at the start of the transmission slot:

1. the message buffer is in the message available state CCMa

2. the message data are still valid, i.e. MBCCSRn.CMT = 1

In this case, the FlexRay block triggers the TX transition and changes the message buffer state to CCTx.
A transmit message buffer timing and state change diagram for message transmission is given in
Figure 30-114. In this example, the message buffer with message buffer number n is Idle at the start of the
search slot, matches the slot and cycle number of the next slot, and message buffer data are valid, i.e.
MBCCSRn.CMT = 1.

module internal

Idle, HLck MA > SA Message Available > Slot Assigned

CCMa TX > STS
TX > DSS

Transmission Slot Start > Static Slot Start
Transmission Slot Start > Dynamic Slot Start

Table 30-96. Single Transmit Message Buffer Transition Priorities

State Priorities Description

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-102 Freescale Semiconductor
 Preliminary

Figure 30-114. Message Transmission Timing

Figure 30-115. Message Transmission from HLck state with unlock

The amount of message data read from the FRM and transferred to the FlexRay bus is determined by the
following three items

1. the message buffer segment that the message buffer is assigned to, as defined by the Message
Buffer Segment Size and Utilization Register (MBSSUTR).

2. the message buffer data field size, as defined by the related field of the Message Buffer Data Size
Register (MBDSR)

3. the value of the PLDLEN field in the message buffer header field, as described in
Section 30.6.5.2.1, “Frame Header Section Description”

If a message buffer is assigned to message buffer segment 1, and PLDLEN > MBSEG1DS, then
2 * MBSEG1DS bytes will be read from the message buffer data field and zero padding is used for the
remaining bytes for the FlexRay bus transfer. If PLDLEN <= MBSEG1DS, the FlexRay block reads and
transfers 2*PLDLEN bytes. The same holds for segment 2 and MBSEG2DS.

30.6.6.2.6 Null Frame Transmission

A static slot with slot number S is assigned to the FlexRay block for channel A, if at least one transmit
message buffer is configured with the MBFIDRn.FID set to S and MBCCFRn.CHA set to 1. A Null Frame
is transmitted in the static slot S on channel A, if this slot is assigned to the FlexRay block for channel A,
and all transmit message buffers with MBFIDRn.FID = s and MBCCFRn.CHA = 1 are either not
committed, i.e MBCCSRn.CMT = 0, or locked by the application, i.e. MBCCSRn.LCKS = 1, or the cycle
counter filter is enabled and does not match.

Additionally, the application can clear the commit bit of a message buffer that is in the CCMa state, which
is called uncommit or transmit abort. This message buffer will be used for null frame transmission.

As a result of the message buffer search described in Section 30.6.7, “Individual Message Buffer Search”,
the FlexRay block triggers the slot assigned transition SA for up to two transmit message buffers if at least

search[s+1]
MT st

art

MA

slot s

TX SU

CCMa CCTx

slot s+1

Idle

MT st
art

Idle

slot s+2

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

MT st
art

message transmit

SSS

CCSu

search[s+1]
MT st

art

MT st
art

MA

slot s

TX SSS

HLckCCMa CCTx

slot s+1

HLck

MT st
art

Idle

slot s+2

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

HU

CCMa

message transmit

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-103
 Preliminary

one of the conditions mentioned above is fulfilled for these message buffers. The transition SA changes
the message buffer states from either Idle to CCSa or from HLck to HLckCCSa. In each case, these
message buffers will be used for null frame transmission in the next slot. A message buffer timing and state
change diagram for null frame transmission from Idle state is given in Figure 30-116.

Figure 30-116. Null Frame Transmission from Idle state

A message buffer timing and state change diagram for null frame transmission from HLck state is given
in Figure 30-117.

Figure 30-117. Null Frame Transmission from HLck state

If a transmit message buffer is in the CCSa or HLckCCSa state at the start of the transmission slot, a null
frame is transmitted in any case, even if the message buffer is unlocked or committed before the
transmission slot starts. A transmit message buffer timing and state change diagram for null frame
transmission for this case is given in Figure 30-118.

Figure 30-118. Null Frame Transmission from HLck state with unlock

Since the null frame transmission will not use the message buffer data, the application can lock/unlock the
message buffer during null frame transmission. A transmit message buffer timing and state change
diagram for null frame transmission for this case is given in Figure 30-119.

search[s+1]
MT st

art

MT st
art

SA

slot s

STS SSS

CCSa CCNf

slot s+1

Idle

MT st
art

Idle

slot s+2

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

null frame transmit

search[s+1]
MT st

art

MT st
art

SA

slot s

STS SSS

HLckCCSa HLckCCNf

slot s+1

HLck

MT st
art

HLck

slot s+2

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

null frame transmit

search[s+1]
MT st

art

MT st
art

SA

slot s

STS SSS

HLckCCSa CCNf

slot s+1

HLck

MT st
art

Idle

slot s+2

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt
HU

CCSa

null frame transmit

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-104 Freescale Semiconductor
 Preliminary

Figure 30-119. Null Frame Transmission from Idle state with locking

30.6.6.2.7 Message Buffer Status Update

After the end of each slot, the PE generates the slot status vector. Depending on the this status, the
transmitted frame type, and the amount of transmitted data, the message buffer status is updated.

Message Buffer Status Update after Complete Message Transmission

The term complete message transmission refers to the fact that all payload data stored in the message
buffer were send to FlexRay bus. In this case, the FlexRay block updates the slot status field of the message
buffer and triggers the status updated transition SU. With the SU transition, the FlexRay block sets the
message buffer interrupt flag MBCCSn.MBIF to indicate the successful message transmission.

Depending on the transmission mode flag MBCCFRn.MTM, the FlexRay block changes the commit flag
MBCCSRn.CMT and the valid flag MBCCSRn.DVAL. If the MBCCFRn.MTM flag is negated, the
message buffer is in the event transmission mode. In this case, each committed message is transmitted only
once. The commit flag MBCCSRn.CMT is cleared with the SU transition. If the MBCCFRn.MTM flag is
asserted, the message buffer is in the state transmission mode. In this case, each committed message is
transmitted as long as the application provides new data or locks the message buffers. The FlexRay block
will not clear the MBCCSRn.CMT flag at the end of transmission and will set the valid flag
MBCCSRn.DVAL to indicate that the message will be transmitted again.

Message Buffer Status Update after Incomplete Message Transmission

The term incomplete message transmission refers to the fact that not all payload data that should be
transmitted were send to FlexRay bus. This may be caused by the following regular conditions in the
dynamic segment:

1. The transmission slot starts in a minislot with a minislot number greater than pLatestTx.

2. The transmission slot did not exist in the dynamic segment at all.

Additionally, an incomplete message transmission can be caused by internal communication errors. If
those error occur, the Protocol Engine Communication Failure Interrupt Flag PECF_IF is set in the
Protocol Interrupt Flag Register 1 (PIFR1).

In any of these two cases, the status of the message buffer is not changed at all with the SU transition. The
slot status field is not updated, the status and control flags are not changed, and the interrupt flag is not set.

search[s+1]
MT st

art

MT st
art

SA

slot s

STS SSS

slot s+1

Idle

MT st
art

HLck

slot s+2

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

null frame transmit

HL

CCSa CCNf HLckCCNf

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-105
 Preliminary

Message Buffer Status Update after Null Frame Transmission

After the transmission of a null frame, the status of the message buffer that was used for the null frame
transmission is not changed at all. The slot status field is not updated, the status and control flags are not
changed, and the interrupt flag is not set.

30.6.6.3 Receive Message Buffers

The section provides a detailed description of the functionality of the receive message buffers.

A receive message buffer is used to receive a message from the FlexRay Bus based on individual filter
criteria. The FlexRay block uses the receive message buffer to provide the following data to the application

1. message data received

2. information about the reception process

3. status information about the slot in which the message was received

A individual message buffer with message buffer number n is configured as a receive message buffer by
the following configuration settings

• MBCCSRn.MBT = 0 (single buffered message buffer)

• MBCCSRn.MTD = 0 (receive message buffer)

To certain message buffer fields, both the application and the FlexRay block have access. To ensure data
consistency, a message buffer locking scheme is implemented that is used to control the access to the data,
control, and status bits of a message buffer. The access regions for receive message buffers are depicted in
Figure 30-120. A description of the regions is given in Table 30-97. If an region is active as indicated in
Table 30-98, the access scheme given for that region applies to the message buffer.

Figure 30-120. Receive Message Buffer Access Regions

Message Buffer Data Field: DATA[0-N]

Message Buffer Header Field: Frame Header

MBCCSRn.DVAL/DUP

Message Buffer Header Field: Slot Status

Message Buffer Header Field: Data Field Offset

MBCCFRn.CHA/CHB/CCF*

MBFIDRn.FID

MBIDXRn.MBIDX

MBCCSRn.MTD

RX

SR

CFG

MSG

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-106 Freescale Semiconductor
 Preliminary

The trigger bits MBCCSRn.EDT and MBCCSRn.LCKT and the interrupt enable bit MBCCSRn.MBIE are
not under access control and can be accessed from the application at any time. The status bits
MBCCSRn.EDS and MBCCSRn.LCKS are not under access control and can be accessed from the
FlexRay block at any time.

The interrupt flag MBCCSRn.MBIF is not under access control and can be accessed from the application
and the FlexRay block at any time. FlexRay block set access has higher priority.

The FlexRay block restricts its access to the regions depending on the current state of the message buffer.
The application must adhere to these restrictions in order to ensure data consistency. The receive message
buffer states are given in Figure 30-121. A description of the message buffer states is given in Table 30-93,
which also provides the access scheme for the access regions.

The status bits MBCCSRn.EDS and MBCCSRn.LCKS provide the application with the required status
information. The internal status information is not visible to the application.

Figure 30-121. Receive Message Buffer States

Table 30-97. Receive Message Buffer Access Region Description

Region
Access from

Region used for
Application Module

CFG read/write - Message Buffer Configuration, Message Data and Status Access

MSG read/write - Message Data, Header, and Status Access

RX - write-only Message Reception and Status Update

SR - read-only Message Buffer Search Data

Table 30-98. Receive Message Buffer States and Access (Sheet 1 of 2)

State
MBCCSRn Access from

Description
EDS LCKS Appl. Module

Idle 1 0 – SR Idle - Message Buffer is idle.
Included in message buffer search.

HDis 0 0 CFG – Disabled - Message Buffer under configuration.
Excluded from message buffer search.

RESET_STATE

HLck

HDisLck

HDis Idle

HLckCCBs

SU

CCBs

BS

SLS

SNS

SNS

HL

HU

HE

HD

HL
HE

HD

HU

HL

HU

CCSu

BS

CCRx
HL

HU

HLckCCRxSLS

SSS

SSS

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-107
 Preliminary

30.6.6.3.1 Message Buffer Transitions

Application Transitions

The application transitions that can be triggered by the application using the commands described in
Table 30-99. The application issues the commands by writing to the Message Buffer Configuration,
Control, Status Registers (MBCCSRn). Only one command can be issued with one write access. Each
command is executed immediately. If the command is ignored, it must be issued again.

The enable and disable commands issued by writing 1 to the trigger bit MBCCSRn.EDT. The transition
that will be triggered by each of these command depends on the current value of the status bit
MBCCSRn.EDS. If the command triggers the disable transition HD and the message buffer is in one of
the states CCBs, HLckCCBs, or CCRx, the disable transition has no effect (command is ignored) and the
message buffer state is not changed. No notification is given to the application.

The lock and unlock commands issued by writing 1 to the trigger bit MBCCSRn.LCKT. The transition that
will be triggered by each of these commands depends on the current value of the status bit
MBCCSRn.LCKS. If the command triggers the lock transition HL while the message buffer is in the state
CCRx, the lock transition has no effect (command is ignored) and message buffer state is not changed. In
this case, the message buffer lock error flag LCK_EF in the CHI Error Flag Register (CHIERFR) is set.

HDisLck 0 1 CFG – Disabled and Locked - Message Buffer under configuration.
Excluded from message buffer search.

HLck 1 1 MSG – Locked - Applications access to data, control, and status.
Included in message buffer search.

CCBs 1 0 – – Buffer Subscribed - Message buffer subscribed for reception. Filter
matches next (slot, cycle, channel) tuple.

HLckCCBs 1 1 MSG – Locked and Buffer Subscribed - Applications access to data,
control, and status. Message buffer subscribed for reception.

CCRx 1 0 – – Message Receive - Message data received into related shadow
buffer.

HLckCCRx 1 1 MSG – Locked and Message Receive - Applications access to data,
control, and status. Message data received into related shadow
buffer.

CCSu 1 0 – RX Status Update - Message buffer status update. Update of status
flags, the slot status field, and the header index.

Table 30-99. Receive Message Buffer Application Transitions

Transition Host Command Condition Description

HE
MBCCSRn.EDT:= 1

MBCCSRn.EDS = 0 Application triggers message buffer enable.

HD MBCCSRn.EDS = 1 Application triggers message buffer disable.

HL
MBCCSRn.LCKT:= 1

MBCCSRn.LCKS = 0 Application triggers message buffer lock.

HU MBCCSRn.LCKS = 1 Application triggers message buffer unlock.

Table 30-98. Receive Message Buffer States and Access (Sheet 2 of 2)

State
MBCCSRn Access from

Description
EDS LCKS Appl. Module

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-108 Freescale Semiconductor
 Preliminary

Module Transitions

The module transitions that can be triggered by the FlexRay block are described in Table 30-100. Each
transition will be triggered for certain message buffers when the related condition is fulfilled.

Transition Priorities

The application can trigger only one transition at a time. There is no need to specify priorities among them.

As shown in Table 30-101, the module transitions have a higher priority than the application transitions.
For all states except the CCRx state, a module transition and the application lock/unlock transition HL/HU
and can be executed at the same time. The result state is reached by first applying the module transition
and subsequently the application transition to the intermediately reached state. For example, if the message
buffer is in the buffer subscribed state CCBs and the module triggers the slot start transition SLS at the
same time as the application locks the message buffer by the HL transition, the intermediate state is CCRx
and the resulting state is locked buffer subscribed state HLckCCRx.

30.6.6.3.2 Message Reception

As a result of the message buffer search, the FlexRay block changes the state of up to two enabled receive
message buffers from either idle state Idle or locked state HLck to the either subscribed state CCBs or
locked buffer subscribed state HLckCCBs by triggering the buffer subscribed transition BS.

If the receive message buffers for the next slot are assigned to both channels, then at most one receive
message buffer is changed to a buffer subscribed state.

If more than one matching message buffers assigned to a certain channel, then only the message buffer
with the lowest message buffer number is in one of the states mentioned above.

Table 30-100. Receive Message Buffer Module Transitions

Transition Condition Description

BS slot match and
CycleCounter match

Buffer Subscribed - The message buffer filter matches next slot and cycle.

SLS slot start Slot Start - Start of either Static Slot or Dynamic Slot.

SNS symbol window start or
NIT start

Symbol Window or NIT Start - Start of either Symbol Window or NIT.

SSS slot start or
symbol window start or

NIT start

Slot or Segment Start - Start of either Static Slot, Dynamic Slot, Symbol
Window, or NIT.

SU status updated Status Updated - Slot Status field, message buffer status flags, header index
updated. Interrupt flag set.

Table 30-101. Receive Message Buffer Transition Priorities

State Priorities Description

module vs. application

Idle BS > HD Buffer Subscribed > Message Buffer Disable

HLck BS > HD Buffer Subscribed > Message Buffer Disable

CCRx SSS > HL Slot or Segment Start > Message Buffer Lock

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-109
 Preliminary

With the start of the next static or dynamic slot the module trigger the slot start transition SLS. This
changes the state of the subscribed receive message buffers from either CCBs to CCRx or from
HLckCCBs to HLckCCRx, respectively.

During the reception slot, the received frame data are written into the shadow buffers. For details on
receive shadow buffers, see Section 30.6.6.3.5, “Receive Shadow Buffers Concept”. The data and status
of the receive message buffers that are the CCRx or HLckCCRx are not modified in the reception slot.

30.6.6.3.3 Message Buffer Status Update

With the start of the next static or dynamic slot or with the start of the symbol window or NIT, the module
trigger the slot or segment start transition SSS. This transition changes the state of the receiving receive
message buffers from either CCRx to CCSu or from HLckCCRx to HLck, respectively.

If a message buffer was in the locked state HLckCCRx, no update will be performed. The received data
are lost. This is indicated by setting the Frame Lost Channel A/B Error Flag FRLA_EF/FRLB_EF in the
CHI Error Flag Register (CHIERFR).

If a message buffer was in the CCRx state it is now in the CCSu state. After the evaluation of the slot status
provided by the PE the message buffer is updated. The message buffer update depends on the slot status
bits and the segment the message buffer is assigned to. This is described in Table 30-102.

Table 30-102. Receive Message Buffer Update

vSS!ValidFrame vRF!Header!NFIndicator Update description

1 1 Valid non-null frame received.
- Message Buffer Data Field updated.
- Frame Header Field updated.
- Slot Status Field updated.
- DUP:= 1
- DVAL:= 1
- MBIF:= 1

1 0 Valid null frame received.
- Message Buffer Data Field not updated.
- Frame Header Field not updated.
- Slot Status Field updated.
- DUP:= 0
- DVAL not changed
- MBIF:= 1

0 x No valid frame received.
- Message Buffer Data Field not updated.
- Frame Header Field not updated.
- Slot Status Field updated.
- DUP:= 0
- DVAL not changed.
- MBIF:= 1, if the slot was not an empty dynamic slot.
Note: An empty dynamic slot is indicated by the following frame and slot

status bit values:
vSS!ValidFrame = 0 and vSS!SyntaxError = 0 and
vSS!ContentError = 0 and vSS!BViolation = 0.

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-110 Freescale Semiconductor
 Preliminary

NOTE
If the number of the last slot in the current communication cycle on a given
channel is n, then all receive message buffers assigned to this channel with
MBFIDRn.FID > n will not be updated at all.

When the receive message buffer update has finished the status updated transition SU is triggered, which
changes the buffer state from CCSu to Idle. An example receive message buffer timing and state change
diagram for a normal frame reception is given in Figure 30-122.

Figure 30-122. Message Reception Timing

The amount of message data written into the message buffer data field of the receive shadow buffer is
determined by the following two items:

1. the message buffer segment that the message buffer is assigned to, as defined by the Message
Buffer Segment Size and Utilization Register (MBSSUTR).

2. the message buffer data field size, as defined by the related field of the Message Buffer Data Size
Register (MBDSR)

3. the number of bytes received over the FlexRay bus

If the message buffer is assigned to the message buffer segment 1, and the number of received bytes is
greater than 2*MBDSR.MBSEG1DS, the FlexRay block writes only 2*MBDSR.MBSEG1DS bytes into
the message buffer data field of the receive shadow buffer. If the number of received bytes is less than
2*MBDSR.MBSEG1DS, the FlexRay block writes only the received number of bytes and will not change
the trailing bytes in the message buffer data field of the receive shadow buffer. The same holds for the
message buffer segment 2 with MBDSR.MBSEG2DS.

30.6.6.3.4 Received Message Access

To access the message data received over the FlexRay bus, the application reads the message data stored
in the message buffer data field of the corresponding receive message buffer. The access to the message
buffer data field is described in Section 30.6.3.1, “Individual Message Buffers”.

The application can read the message buffer data field if the receive message buffer is one of the states
HDis, HDisLck, or HLck. If the message buffer is in one of these states, the FlexRay block will not change
the content of the message buffer.

30.6.6.3.5 Receive Shadow Buffers Concept

The receive shadow buffer concept applies only to individual receive message buffers. The intention of
this concept is to ensure that only syntactically and semantically valid received non-null frames are

search[s+1]
MT st

art

BS

slot s

SLS SU

CCBs CCRx

slot s+1

Idle

MT st
art

Idle

slot s+2

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

MT st
art

message receive to receive shadow buffer

SSS

CCSu

sl
ot

 s
ta

rt

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-111
 Preliminary

presented to the application in a receive message buffer. The basic structure of a receive shadow buffer is
described in Section 30.6.3.2, “Receive Shadow Buffers”.

The receive shadow buffers temporarily store the received frame header and message data. After the slot
boundary the slot status information is generated. If the slot status information indicates the reception of
the valid non-null frame (see Table 30-102), the FlexRay block writes the slot status into the slot status
field of the receive shadow buffer and exchanges the content of the Message Buffer Index Registers
(MBIDXRn) with the content of the corresponding internal shadow buffer index register. In all other cases,
the FlexRay block writes the slot status into the identified receive message buffer, depending on the slot
status and the FlexRay segment the message buffer is assigned to.

The shadow buffer concept, with its index exchange, results in the fact that the FRM located message
buffer associated to an individual receive message buffer changes after successful reception of a valid
frame. This means that the message buffer area in the FRM accessed by the application for reading the
received message is different from the initial setting of the message buffer. Therefore, the application must
not rely on the index information written initially into the Message Buffer Index Registers (MBIDXRn).
Instead, the index of the message buffer header field must be fetched from the Message Buffer Index
Registers (MBIDXRn).

30.6.6.4 Double Transmit Message Buffer

The section provides a detailed description of the functionality of the double transmit message buffers.

Double transmit message buffers are used by the application to provide the FlexRay block with the
message data to be transmitted over the FlexRay Bus. The FlexRay block uses this message buffer to
provide information to the application about the transmission process, and status information about the slot
in which message data was transmitted.

In contrast to the single transmit message buffers, the application can provide new transmission data while
the transmission of the previously provided message data is running. This scheme is called double
buffering and can be considered as a FIFO of depth 2.

Double transmit message buffers are implemented by combining two individual message buffers that form
the two sides of an double transmit message buffer. One side is called the commit side and will be accessed
by the application to provide the message data. The other side is called the transmit side and is used by the
FlexRay block to transmit the message data to the FlexRay bus. The two sides are located in adjacent
individual message buffers. The message buffer that implements the commit side has an even message
buffer number 2n. The transmit side message buffer follows the commit side message buffer and has the
message buffer number 2n+1. The basic structure and data flow of a double transmit message buffer is
given in Figure 30-123.

Figure 30-123. Double Transmit Buffer Structure and Data Flow

Commit Side Transmit Side

Application FlexRay Bus

MB# 2n MB# 2n+1

Internal Message
Transfer

message data message data message data

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-112 Freescale Semiconductor
 Preliminary

NOTE
Both the commit and the transmit side must be configured with identical
values except for the Message Buffer Index Registers (MBIDXRn).

30.6.6.4.1 Access Regions

To certain message buffer fields, both the application and the FlexRay block have access. To ensure data
consistency, a message buffer locking scheme is implemented, which controls the exclusive access to the
data, control, and status bits of the message buffer.

The access scheme for double transmit message buffers is depicted in Figure 30-124. The given regions
represent fields that can be accessed from both the application and the FlexRay block and, thus, require
access restrictions. A description of the regions is given in Table 30-103.

Figure 30-124. Double Transmit Message Buffer Access Regions Layout

Table 30-103. Double Transmit Message Buffer Access Regions Description

Access Description

Region
Type

Application Module

Commit Side

CFG read/write - Message Buffer Configuration

MSG read/write - Message Buffer Data and Control access

ITX - read/write Internal Message Transfer.

SS - write-only Slot Status Update

Transmit Side

CFG read/write - Message Buffer Configuration

SR - read-only Message Buffer Search

TX - read-only Internal Message Transfer, Message Transmission

Message Buffer Data Field: DATA[0-N]

Message Buffer Header Field: Frame Header

MBCCSR[2n]n.CMT

Message Buffer Header Field: Slot Status

Message Buffer Header Field: Data Field Offset

MBCCFR[2n].MTM/CHA/CHB/CCF*

MBFIDR[2n].FID

MBIDXR[2n].MBIDX

MBCCSR[2n].MBT/MTD

Message Buffer Data Field: DATA[0-N]

Message Buffer Header Field: Frame Header

MBCCSR[2n+1].CMT

Message Buffer Header Field: Slot Status

Message Buffer Header Field: Data Field Offset

MBCCFR[2n+1].MTM/CHA/CHB/CCF*

MBFIDR[2n+1].FID

MBIDXR[2n+1].MBIDX

MBCCSR[2n+1].MBT/MTD

Commit Side Transmit Side

CFG

MSG

CFG

ITX

SS SS

SR

TX

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-113
 Preliminary

The trigger bits MBCCSRn.EDT and MBCCSRn.LCKT, and the interrupt enable bit MBCCSRn.MBIE
are not under access control and can be accessed from the application at any time. The status bits
MBCCSRn.EDS and MBCCSRn.LCKS are not under access control and can be accessed from the
FlexRay block at any time.

The interrupt flag MBCCSnR.MBIF is not under access control and can be accessed from the application
and the FlexRay block at any time. FlexRay block set access has higher priority.

The FlexRay block restricts its access to the regions, depending on the current state of the corresponding
part of the double transmit message buffer. The application must adhere to these restrictions in order to
ensure data consistency. The states for the commit side of a double transmit message buffer are given in
Figure 30-125. A description of the states is given in Table 30-105. The states for the transmit side of a
double transmit message buffer are given in Figure 30-126. A description of the states is given in
Table 30-105. The description tables also provide the access scheme for the access regions.

The status bits MBCCSRn.EDS and MBCCSRn.LCKS provide the application with the required message
buffer status information. The internal status information is not visible to the application.

30.6.6.4.2 Message Buffer States

This section describes the transmit message buffer states and provides a state diagram.

Figure 30-125. Double Transmit Message Buffer State Diagram (Commit Side)

A description of the states of the commit side of a double transmit message buffer is given in Table 30-104.

SS - write-only Slot Status Update

Table 30-104. Double Transmit Message Buffer State Description (Sheet 1 of 2)(Commit Side)

State
MBCCSR[2n] Access Region

Description
EDS LCKS Appl. Module

common states

Table 30-103. Double Transmit Message Buffer Access Regions Description

Access Description

Region
Type

Application Module

HLck

HDisLck

HDis Idle

CCITx

IS

IE

RESET_STATE

HE

HD

HL

HU

HE

HD

HL

HU

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-114 Freescale Semiconductor
 Preliminary

Figure 30-126. Double Transmit Message Buffer State Diagram (Transmit Side)

A description of the states of the transmit side of a double transmit message buffer is given in
Table 30-105.

HDis 0 0 CFG – Disabled - Message Buffer under configuration.
Commit Side can not be used for internal message transfer.

CCITx 1 0 – ITX Internal Message Transfer - Message Buffer Data transferred from
commit side to transmit side.

commit side specific states

Idle 1 0 – ITX,
SS

Idle - Message Buffer Commit Side is idle.
Commit Side can be used for internal message transfer.

HDisLck 0 1 CFG
SS

Disabled and Locked - Message Buffer under configuration.
Commit Side can not be used for internal message transfer.

HLck 1 1 MSG
SS

Locked - Applications access to data, control, and status.
Commit Side can not be used for internal message transfer.

Table 30-105. Double Transmit Message Buffer State Description (Transmit Side) (Sheet 1 of 2)

State
MBCCSRn Access Region

Description
EDS LCKS Appl. Module

common states

HDis 0 0 CFG – Disabled - Message Buffer under configuration.
Excluded from message buffer search.

CCITx 1 0 – TX Internal Message Transfer - Message Buffer Data transferred from
commit side to transmit side.

transmit side specific states

Table 30-104. Double Transmit Message Buffer State Description (Sheet 2 of 2)(Commit Side)

State
MBCCSR[2n] Access Region

Description
EDS LCKS Appl. Module

CCSaCCITxCCITx

HDis Idle

CCTx

CCMaCCITx

CCSa

CCMa

SA MA

TX

RESET_STATE

DSS

CCNf
SSS

STS

CCNfCCITx

IS

IE

IS

IE

IS

IE

HE

HD

STS

CCSuSU

SSSDSS

IS

IE

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-115
 Preliminary

30.6.6.4.3 Message Buffer Transitions

Application Transitions

The application transitions that can be triggered by the application using the commands described in
Table 30-106. The application issues the commands by writing to the Message Buffer Configuration,
Control, Status Registers (MBCCSRn). Only one command can be issued with one write access. Each
command is executed immediately. If the command is ignored, it must be issued again.

The enable and disable commands can be issued on the transmit side only. Any enable or disable command
issued on the commit side will be ignored without notification. The transitions that will be triggered
depends on the value of the EDS bit. The enable and disable commands will affect both the commit side
and the transmit side at the same time. If the application triggers the disable transition HD while the
transmit side is in one of the states CCSa, CCSaCCITx, CCNf, CCNfCCITx, CCMa, CCMaCCITx, CCTx,
or CCSu, the disable transition has no effect (command is ignored) and the message buffer state is not
changed. No notification is given to the application.

The lock and unlock commands can be issued on the commit side only. Any lock or unlock command
issued on the transmit side will be ignored and the double transmit buffer lock error flag DBL_EF in the
CHI Error Flag Register (CHIERFR) will be set. The transitions that will be triggered depends on the
current value of the LCKS bit. The lock and unlock commands will only affect the commit side. If the
application triggers the lock transition HL while the commit side is in the state CCITx, the message buffer

Idle 1 0 – SR Idle - Message Buffer Transmit Side is idle.
Transmit Side is included in message buffer search.

CCSa 1 0 – – Slot Assigned - Message buffer assigned to next static slot.
Ready for Null Frame transmission.

CCSaCCITx 1 0 – TX Slot Assigned and Internal Message Transfer - Message buffer
assigned to next static slot and Message Buffer Data transferred
from commit side to transmit side.

CCNf 1 0 – TX Null Frame Transmission
Header is used for null frame transmission.

CCNfCCITx 1 0 – TX Null Frame Transmission and Internal Message Transfer -
Header is used for null frame transmission and Message Buffer Data
transferred from commit side to transmit side.

CCMa 1 0 – – Message Available - Message buffer is assigned to next slot and
cycle counter filter matches.

CCMaCCITx 1 0 – – Message Available and Internal Message Transfer - Message
buffer is assigned to next slot and cycle counter filter matches and
Message Buffer Data transferred from commit side to transmit side.

CCTx 1 0 – TX Message Transmission - Message buffer data transmit. Payload
data from buffer transmitted

CCSu 1 0 – SS Status Update - Message buffer status update. Update of status
flags, the slot status field, and the header index.
Note: The slot status field of the commit side is updated too, even if
the application has locked the commit side.

Table 30-105. Double Transmit Message Buffer State Description (Transmit Side) (Sheet 2 of 2)

State
MBCCSRn Access Region

Description
EDS LCKS Appl. Module

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-116 Freescale Semiconductor
 Preliminary

state will not be changed and the message buffer lock error flag LCK_EF in the CHI Error Flag Register
(CHIERFR) will be set.

Module Transitions

The module transitions that can be triggered by the FlexRay block are described in Table 30-107. The
transitions C1 and C2 apply to both sides of the message buffer and are applied at the same time. All other
FlexRay block transitions apply to the transmit side only.

Transition Priorities

The application can trigger only one transition at a time. There is no need to specify priorities among them.

As shown in the first part of Table 30-108, the module transitions have a higher priority than the
application transitions. The priorities among the FlexRay block transitions and the related states are given
in the second part of Table 30-108. These priorities apply only to the transmit side. The internal message
transmit start transition IS has tho lowest priority.

Table 30-106. Double Transmit Message Buffer Host Transitions

Transition Host Command Condition Description

HE
MBCCSR[2n+1].EDT:= 1

MBCCSR[2n+1].EDS = 0 Application triggers message buffer enable.

HD MBCCSR[2n+1].EDS = 1 Application triggers message buffer disable.

HL
MBCCSR[2n].LCKT:= 1

MBCCSR[2n].LCKS = 0 Application triggers message buffer lock.

HU MBCCSR[2n].LCKS = 1 Application triggers message buffer unlock.

Table 30-107. Double Transmit Message Buffer Module Transitions

Transition Condition Description

common transitions

IS
see Section 30.6.6.4.5,

“Internal Message
Transfer

Internal Message Transfer Start - Start transfer of message data from commit
side to transmit side.

IE Internal Message Transfer End - Stop transfer of message data from commit
side to transmit side.
Note: The internal message transfer is stopped before the slot or segment start.

transmit side specific transitions

SA slot match and
static slot

Slot Assigned - Message buffer is assigned to next static slot.

MA slot match and
CycleCounter match

Message Available - Message buffer is assigned to next slot and cycle counter
filter matches.

TX slot start and
MBCCSR[2n+1].CMT = 1

Transmission Slot Start - Slot Start and commit bit CMT is set.
In case of a dynamic slot, pLatestTx is not exceeded.

SU status updated Status Updated - Slot Status field and message buffer status flags updated.
Interrupt flag set.

STS static slot start Static Slot Start - Start of static slot.

DSS
dynamic slot start or

symbol window start or
NIT start

Dynamic Slot or Segment Start. - Start of dynamic slot or symbol window or
NIT.

SSS
slot start or

symbol window start or
NIT start

Slot or Segment Start - Start of static slot or dynamic slot or symbol window or
NIT.

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-117
 Preliminary

30.6.6.4.4 Message Preparation

The application provides the message data through the commit side. The transmission itself is executed
from the transmit side. The transfer of the message data from the commit side to the transmit side is done
by the Internal Message Transfer, which is described in Section 30.6.6.4.5, “Internal Message Transfer

To transmit a message over the FlexRay bus, the application writes the message data into the message
buffer data field of the commit side and sets the commit bit CMT in the Message Buffer Configuration,
Control, Status Registers (MBCCSRn). The physical access to the message buffer data field is described
in Section 30.6.3.1, “Individual Message Buffers”.

As indicated by Table 30-104, the application shall write to the message buffer data field and change the
commit bit CMT only if the transmit message buffer is in one of the states HDis, HDisLck, or HLck. The
application can change the state of a message buffer if it issues the appropriate commands shown in
Table 30-106. The state change is indicated through the MBCCSRn.EDS and MBCCSRn.LCKS status
bits.

30.6.6.4.5 Internal Message Transfer

The internal message transfer transfers the message data from the commit side to the transmit side. The
internal message transfer is implemented as the swapping of the content of the Message Buffer Index
Registers (MBIDXRn) of the commit side and the transmit side. After the swapping, the commit side CMT
bit is cleared, the commit side interrupt flag MBIF is set, the transmit side CMT bit is set, and the transmit
side DVAL bit is cleared.

The conditions and the point in time when the internal message transfer is started are controlled by the
message buffer commit mode bit MCM in the Message Buffer Configuration, Control, Status Registers
(MBCCSRn). The MCM bit configures the message buffer for either the streaming commit mode or the
immediate commit mode. A detailed description is given in Streaming Commit Mode and Immediate
Commit Mode. The Internal Message Transfer is triggered with the transition IS. Both sides of the message
buffer enter one of the CCITx states. The internal message transfer is finished with the transition IE.

Streaming Commit Mode

The intention of the streaming commit mode is to ensure that each committed message is transmitted at
least once. The FlexRay block will not start the Internal Message Transfer for a message buffer as long as
the message data on the transmit side is not transmitted at least once.

Table 30-108. Double Transmit Message Buffer Transition Priorities

State Priority Description

module vs. application

Idle IS > HD
IS > HL

Internal Message Transfer Start > Message Buffer Disable
Internal Message Transfer Start > Message Buffer Lock

module internal

Idle MA > SA Message Available > Slot Assigned

CCMa TX > STS
TX > DSS

Transmission Slot Start > Static Slot Start
Transmission Slot Start > Dynamic Slot Start

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-118 Freescale Semiconductor
 Preliminary

The streaming commit mode is configured by clearing the message buffer commit mode bit MCM in the
Message Buffer Configuration, Control, Status Registers (MBCCSRn).

In this mode, the internal message transfer from the commit side to the transmit side is started for a double
transmit message buffer when all of the following conditions are fulfilled

1. the commit side is in the Idle state

2. the commit site message data are valid, i.e. MBCCSR[2n].CMT = 1

3. the transmit side is in one of the states Idle, CCSa, or CCMa

4. the transmit side contains either no valid message data, i.e. MBCCSR[2n+1].CMT = 0 or
the message data were transmitted at least once, i.e. MBCCSR[2n+1].DVAL = 1

An example of a streaming commit mode state change diagram is given in Figure 30-127. In this example,
both the commit and the transmit side do not contain valid message data and the application provides two
messages. The message buffer does not match the next slot.

Figure 30-127. Internal Message Transfer in Streaming Commit Mode

Immediate Commit Mode

The intention of the immediate commit mode is to transmit the latest data provided by the application. This
implies that it is not guaranteed that each provided message will be transmitted at least once.

The immediate commit mode is configured by setting the message buffer commit mode bit MCM in the
Message Buffer Configuration, Control, Status Registers (MBCCSRn).

In this mode, the internal message transfer from the commit side to the transmit side is started for one
double transmit message buffer when all of the following conditions are fulfilled

1. the commit side is in the Idle state

2. the commit site message data are valid, i.e. MBCCSR[2n].CMT = 1

3. the transmit side is in one of the states Idle, CCSa, or CCMa

It is not checked whether the transmit side contains no valid message data or valid message data were
transmitted at least once. If message data are valid and not transmitted, they may be overwritten.

An example of a streaming commit mode state change diagram is given in Figure 30-128. In this example,
both the commit and the transmit side do not contain valid message data, and the application provides two
messages and the first message is gets overwritten. The message buffer does not match the next slot.

Idle

C
om

m
it

Tr
an

sm
it

Idle

HL

HLck

S
id

e
S

id
e

slot s slot s+1 slot s+2
search[s+1]sl

ot
 s

ta
rt

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

HU

CCITx Idle

IS

CCITx

IE

Idle

HL

HLck

HU

Idle

Idle

no internal message transfer,
until message transmitted

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-119
 Preliminary

Figure 30-128. Internal Message Transfer in Immediate Commit Mode

30.6.6.4.6 Message Transmission

For double transmit message buffers, the message buffer search checks only the transmit side part. The
internal scheduling ensures, that the internal message transfer is stopped on the message buffer search start.
Thus, the transmit side of message buffer, that is not in its transmission or status update slot, is always in
the Idle state.

The message transmit behavior and transmission state changes of the transmit side of a double transmit
message buffer are the same as for single buffered transmit buffers, except that the transmit side of double
buffers can not be locked by the application, i.e. the HU and HL transition do not exist. Therefore, refer to
Section 30.6.6.2.5, “Message Transmission”

30.6.6.4.7 Message Buffer Status Update

The message buffer status update behavior of the transmit side of a double transmit message buffer is the
same as for single transmit message buffers which is described in Section 30.6.6.2.7, “Message Buffer
Status Update”.

Additionally, the slot status field of the commit side is update after the update of the slot status field of the
transmit side, even if the commit side is locked by the application. This is implemented to provide the slot
status of the most recent transmission slot.

30.6.7 Individual Message Buffer Search

This section provides a detailed description of the message buffer search algorithm.

The message buffer search determines for each enabled channel if a slot s in a communication cycle c is
assigned for frame or null frame transmission or if it is subscribed for frame reception on that channel.

The message buffer search is a sequential algorithm which is invoked at the following protocol related
events:

1. NIT start

2. slot start in the static segment

3. minislot start in the dynamic segment

Idle

C
om

m
it

Tr
an

sm
it

Idle

HL

HLck

S
id

e
S

id
e

slot s slot s+1 slot s+2
search[s+1]sl

ot
 s

ta
rt

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

HU

CCITx Idle

IS

CCITx

IE

Idle

HL

HLck

HU

Idle

CCITx Idle

IS

CCITx

IE

Idle

Idle

internal message transfer
overwrites non-transmitted message

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-120 Freescale Semiconductor
 Preliminary

The message buffer search within the NIT searches for message buffers assigned or subscribed to slot 1.
The message buffer search within slot n searches for message buffers assigned or subscribed to slot n+1.

In general, the message buffer search for the next slot n considers only message buffers which are

1. enabled, i.e. MBCCSRn.EDS = 1, and

2. matches the next slot n, i.e. MBFIDRn.FID = n, and

3. are the transmit side buffer in case of a double transmit message buffer.

On top of that, for the static segment only those message buffers are considered, that match the condition
of at least one row of Table 30-109. For the dynamic segment only those message buffers are considered,
that match the condition of at least one row of Table 30-110. These message buffers are called matching
message buffers.

For each enabled channel the message buffer search may identify multiple matching message buffers.
Among all matching message buffers the message buffers with highest priority according to Table 30-109
for the static segment and according to Table 30-110 for the dynamic segment are selected.

If there are multiple message buffer with highest priority, the message buffer with the lowest message
buffer number is selected. All message buffer which have the highest priority must have a consistent
channel assignment as specified in Section 30.6.7.2, “Message Buffer Channel Assignment Consistency”.

Depending on the message buffer channel assignment the same message buffer can be found for both
channel A and channel B. In this case, this message buffer is used as described in Section 30.6.3.1,
“Individual Message Buffers”.

Table 30-109. Message Buffer Search Priority (static segment)

Priority MTD LCKS CMT CCFM1

1 Cycle Counter Filter Match, see Section 30.6.7.1, “Message Buffer Cycle Counter Filtering”

Description Transition

(highest) 0 1 0 1 1 transmit buffer, matches cycle count, not locked and committed MA

1
1 - 0 1 transmit buffer, matches cycle count, not committed SA

1 1 - 1 transmit buffer, matches cycle count, locked SA

2 1 - - - transmit buffer SA

3 0 0 n/a 1 receive buffer, matches cycle count, not locked SB

(lowest) 4 0 1 n/a 1 receive buffer, matches cycle count, locked SB

Table 30-110. Message Buffer Search Priority (dynamic segment)

Priority MTD LCKS CMT CCFM1

1 Cycle Counter Filter Match, see Section 30.6.7.1, “Message Buffer Cycle Counter Filtering”

Description Transition

(highest) 0 1 0 1 1 transmit buffer, matches cycle count, not locked and committed MA

1 0 0 n/a 1 receive buffer, matches cycle count, not locked SB

(lowest) 2 0 1 n/a 1 receive buffer, matches cycle count, locked SB

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-121
 Preliminary

30.6.7.1 Message Buffer Cycle Counter Filtering

The message buffer cycle counter filter is a value-mask filter defined by the CCFE, CCFMSK, and
CCFVAL fields in the Message Buffer Cycle Counter Filter Registers (MBCCFRn). This filter determines
a set of communication cycles in which the message buffer is considered for message reception or message
transmission. If the cycle counter filter is disabled, i.e. CCFE = 0, this set of cycles consists of all
communication cycles.

If the cycle counter filter of a message buffer does not match a certain communication cycle number, this
message buffer is not considered for message transmission or reception in that communication cycle. In
case of a transmit message buffer assigned to a slot in the static segment, though, this buffer is added to
the matching message buffers to indicate the slot assignment and to trigger the null frame transmission.

The cycle counter filter of a message buffer matches the communication cycle with the number CYCCNT
if at least one of the following conditions evaluates to true:

Eqn. 30-9

Eqn. 30-10

30.6.7.2 Message Buffer Channel Assignment Consistency

The message buffer channel assignment given by the CHA and CHB bits in the Message Buffer Cycle
Counter Filter Registers (MBCCFRn) defines the channels on which the message buffer will receive or
transmit. The message buffer with number n transmits or receives on channel A if MBCCFRn[CHA] = 1
and transmits or receives on channel B if MBCCFRn[CHB] = 1.

To ensure correct message buffer operation, all message buffers assigned to the same slot and with the
same priority must have a consistent channel assignment. That means they must be either assigned to one
channel only, or must be assigned to both channels. The behavior of the message buffer search is not
defined, if both types of channel assignments occur for one slot and priority. An inconsistent channel
assignment for message buffer 0 and message buffer 1 is depicted in Figure 30-129.

Figure 30-129. Inconsistent Channel Assignment

30.6.7.3 Node Related Slot Multiplexing

The term Node Related Slot Multiplexing applies to the dynamic segment only and refers to the
functionality if there are transmit as well as receive message buffers are configured for the same slot.

According to Table 30-110 the transmit buffer is only found if the cycle counter filter matches, and the
buffer is not locked and committed. In all other cases, the receive buffer will be found. Thus, if the block
has no data to transmit in a dynamic slot, it is able to receive frames on that slot.

MBCCFRn CCFE[] 0=

CYCCNT MBCCFRn CCFMSK[]∧ MBCCFRn CCFVAL[] MBCCFRn CCFMSK[]∧=

MB0 MBCCFR0[CHA] = 1, MBCCFR0[CHB] = 0

MB1 dual channel assignment

single channel assignmentMBFIDR0[FID] = 10

MBFIDR1[FID] = 10 MBCCFR1[CHA] = 1, MBCCFR1[CHB] = 1

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-122 Freescale Semiconductor
 Preliminary

30.6.7.4 Message Buffer Search Error

If the message buffer search is running while the next message buffer search start event appears, the
message buffer search is stopped and the Message Buffer Search Error Flag MSB_EF is set in the CHI
Error Flag Register (CHIERFR). This appears only if the CHI frequency is too low to search through all
message buffers within the NIT or a minislot. The message buffer result is not defined in this case. For
more details see Section 30.7.3, “Number of Usable Message Buffers”.

30.6.8 Individual Message Buffer Reconfiguration

The initial configuration of each individual message buffer can be changed even when the protocol is not
in the POC:config state. This is referred to as individual message buffer reconfiguration. The
configuration bits and fields that can be changed are given in the section on Specific Configuration Data.
The common configuration data given in the section on Specific Configuration Data can not be
reconfigured when the protocol is out of the POC:config state.

30.6.8.1 Reconfiguration Schemes

Depending on the target and destination basic state of the message buffer that is to be reconfigured, there
are three reconfiguration schemes.

30.6.8.1.1 Basic Type Not Changed (RC1)

A reconfiguration will not change the basic type of the individual message buffer, if both the message
buffer transfer direction bit MBCCSn.MTD and the message buffer type bit MBCCSn.MBT are not
changed. This type of reconfiguration is denoted by RC1 in Figure 30-130. Single transmit and receive
message buffers can be RC1-reconfigured when in the HDis or HDisLck state. Double transmit message
buffers can be RC1-reconfigured if both the transmit side and the commit side are in the HDis state.

30.6.8.1.2 Buffer Type Not Changed (RC2)

A reconfiguration will not change the buffer type of the individual message buffer if the message buffer
buffer type bit MBCCSRn.MBT is not changed. This type of reconfiguration is denoted by RC2 in
Figure 30-130. It applies only to single transmit and receive message buffers. Single transmit and receive
message buffers can be RC2-reconfigured when in the HDis or HDisLck state.

30.6.8.1.3 Buffer Type Changed (RC3)

A reconfiguration will change the buffer type of the individual message buffer if the message buffer type
bit MBCCSRn.MBT is changed. This type of reconfiguration is denoted by RC3 in Figure 30-130. The
RC3 reconfiguration splits one double buffer into two single buffers or combines two single buffer into
one double buffer. In the later case, the two single message buffers must have consecutive message buffer
numbers and the smaller one must be even. Message Buffers can be RC3 reconfigured if they are in the
HDis state.

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-123
 Preliminary

Figure 30-130. Message Buffer Reconfiguration Scheme

30.6.9 Receive FIFO

This section provides a detailed description of the two receive FIFOs.

30.6.9.1 Overview

The receive FIFOs implement the queued receive buffer defined by the FlexRay Communications System
Protocol Specification, Version 2.1 Rev A. One receive FIFO is assigned to channel A, the other receive
FIFO is assigned to channel B. Both FIFOs work completely independent from each other.

The message buffer structure of each FIFO is described in Section 30.6.3.3, “Receive FIFO”. The area in
the FRM for each of the two receive FIFOs is characterized by:

• The index of the first FIFO entry given by Receive FIFO Start Index Register (RFSIR)

• The number of FIFO entries and the length of each FIFO entry as given by Receive FIFO Depth
and Size Register (RFDSR)

30.6.9.2 Receive FIFO Configuration

The receive FIFO control and configuration data are given in Section 30.6.3.7, “Receive FIFO Control and
Configuration Data”. The configuration of the receive FIFOs consists of two steps.

The first step is the allocation of the required amount of FRM for the FlexRay window. This includes the
allocation of the message buffer header area and the allocation of the message buffer data fields. For more
details see Section 30.6.4, “FlexRay Memory Layout”.

The second step is the programming of the configuration data register while the PE is in POC:config.

The following steps configure the layout of the FIFO.

• The number of the first message buffer header index that belongs to the FIFO is written into the
Receive FIFO Start Index Register (RFSIR).

• The depth of the FIFO is written into the FIFO_DEPTH field in the Receive FIFO Depth and Size
Register (RFDSR).

• The length of the message buffer data field for the FIFO is written into the ENTRY_SIZE field in
the Receive FIFO Depth and Size Register (RFDSR).

single RX single TX

double TX (commit side)

double TX (transmit side)

RC1RC1

RC1

RC2

RC3RC3

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-124 Freescale Semiconductor
 Preliminary

NOTE
To ensure, that the read index RDIDX always points to a message buffer that
contains valid data, the receive FIFO must have at least 2 entries.

The FIFO filters are configured through the fifo filter registers.

30.6.9.3 Receive FIFO Reception

The frame reception to the receive FIFO is enabled, if for a certain slots no message buffer is assigned or
subscribed. In this case the FIFO filter path shown in Figure 30-131 is activated.

When the receive FIFO filter path indicates that the received frame must be appended to the FIFO, the
FlexRay block writes the received frame header and slot status into the message buffer header field
indicated by the internal FIFO header write index. The payload data are written in the message buffer data
field. If the status of the received frame indicates a valid frame, the internal FIFO header write index is
updated and the fifo not-empty interrupt flag FNEAIF/FNEBIF in the Global Interrupt Flag and Enable
Register (GIFER) is set.

30.6.9.4 Receive FIFO Message Access

If the fifo not-empty interrupt flag FNEAIF/FNEBIF in the Global Interrupt Flag and Enable Register
(GIFER) is set, the receive FIFO contains valid received messages, which can be accessed by the
application.

The receive FIFO does not require locking to access the message buffers. To access the message the
application first reads the receive FIFO read index RDIDX from the Receive FIFO A Read Index Register
(RFARIR) or Receive FIFO B Read Index Register (RFBRIR), respectively. This index points to the
message buffer header field of the next message buffer that contains valid data. The application can access
the message data as described in Section 30.6.3.3, “Receive FIFO”. When the application has read all
message buffer data and status information, it writes 1 to the fifo not-empty interrupt flags FNEAIF or
FNEBIF. This clears the interrupt flag and updates the RDIDX field in the Receive FIFO A Read Index
Register (RFARIR) or Receive FIFO B Read Index Register (RFBRIR), respectively.When the RDIDX
value has reached the last message buffer header field that belongs to the fifo, it wraps around to the index
of the first message buffer header field that belongs to the fifo. This value is provided by the SIDX field
in the Receive FIFO Start Index Register (RFSIR).

30.6.9.5 Receive FIFO filtering

The receive FIFO filtering is activated after all enabled individual receive message buffers have been
searched without success for a message buffer to receive the current frame.

The FlexRay block provides three sets of FIFO filters. The FIFO filters are applied to valid non-null frames
only. The FIFO will not receive invalid or null-frames. For each FIFO filter, the pass criteria is specified
in the related section given below. Only frames that have passed all filters will be appended to the FIFO.
The FIFO filter path is depicted in Figure 30-131.

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-125
 Preliminary

Figure 30-131. Received Frame FIFO Filter Path

A received frame passes the FIFO filtering if it has passed all three type of filter.

30.6.9.5.1 RX FIFO Frame ID Value-Mask Rejection Filter

The frame ID value-mask rejection filter is a value-mask filter and is defined by the fields in the Receive
FIFO Frame ID Rejection Filter Value Register (RFFIDRFVR) and the Receive FIFO Frame ID Rejection
Filter Mask Register (RFFIDRFMR). Each received frame with a frame ID FID that does not match the
value-mask filter value passes the filter, i.e. is not rejected.

Consequently, a received valid frame with the frame ID FID passes the RX FIFO Frame ID Value-Mask
Rejection Filter if Equation 30-11 is fulfilled.

Eqn. 30-11

valid frame received (vRF)

individual message buffer found

no

store into message buffer (vRF)

Frame ID Value-Mask rejection filter

passed

ignore frame

else

Frame ID Range rejection filter

Frame ID Range acceptance filter

frame received in dynamic segment
no

Message ID acceptance filter

no

FIFO full

null frame (vRF!Header!NFIndicator=0)

yes

yes

no

passed

else

passed

else

yes

message ID (vRF!Header!PPIndicator=1)

yes

passed

append to FIFO (vRF)
no

yes

set fifo overflow interrupt flag

else

FID RFFIDRFMR FIDRFMSK[]∧ RFFIDRFVR FIDRFVAL[] RFFIDRFMR FIDRFMSK[∧≠

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-126 Freescale Semiconductor
 Preliminary

The RX FIFO Frame ID Value-Mask Rejection Filter can be configured to pass all frames by the following
settings.

• RFFIDRFVR.FIDRFVAL:= 0x000 and RFFIDRFMR.FIDRFMSK:= 0x7FF

Using the settings above, only the frame with frame ID 0 will be rejected, which is an invalid frame. All
other frames will pass.

The RX FIFO Frame ID Value-Mask Rejection Filter can be configured to reject all frames by the
following settings.

• RFFIDRFMR.FIDRFMSK:= 0x000

Using the settings above, Equation 30-11 can never be fulfilled (0!= 0) and thus all frames are rejected; no
frame will pass. This is the reset value for the RX FIFO.

30.6.9.5.2 RX FIFO Frame ID Range Rejection Filter

Each of the four RX FIFO Frame ID Range filters can be configured as a rejection filter. The filters are
configured by the Receive FIFO Range Filter Configuration Register (RFRFCFR) and controlled by the
Receive FIFO Range Filter Control Register (RFRFCTR). The RX FIFO Frame ID range filters apply to
all received valid frames. A received frame with the frame ID FID passes the RX FIFO Frame ID Range
rejection filters if either no rejection filter is enabled, or, for all of the enabled RX FIFO Frame ID Range
rejection filters, i.e. RFRFCTR.FiMD = 1 and RFRFCTR.FiEN = 1, Equation 30-12 is fulfilled.

Eqn. 30-12

Consequently, all frames with a frame ID that fulfills Equation 30-13 for at least one of the enabled
rejection filters will be rejected and thus not pass.

Eqn. 30-13

30.6.9.5.3 RX FIFO Frame ID Range Acceptance filter

Each of the four RX FIFO Frame ID Range filters can be configured as an acceptance filter. The filters are
configured by the Receive FIFO Range Filter Configuration Register (RFRFCFR) and controlled by the
Receive FIFO Range Filter Control Register (RFRFCTR). The RX FIFO Frame ID range filters apply to
all received valid frames. A received frame with the frame ID FID passes the RX FIFO Frame ID Range
acceptance filters if either no acceptance filter is enabled, or, for at least one of the enabled RX FIFO Frame
ID Range acceptance filters, i.e. RFRFCTR.FiMD = 0 and RFRFCTR.FiEN = 1, Equation 30-14 is
fulfilled.

Eqn. 30-14

30.6.9.5.4 RX FIFO Message ID Acceptance Filter

The RX FIFO Message ID Acceptance Filter is a value-mask filter and is defined by the Receive FIFO
Message ID Acceptance Filter Value Register (RFMIDAFVR) and the Receive FIFO Message ID
Acceptance Filter Mask Register (RFMIAFMR). This filter applies only to valid frames received in the
dynamic segment with the payload preamble indicator bit PPI set to 1. All other frames will pass this filter.

FID RFRFCFRSEL SIDIBD 0=[]<) or RFRFCFRSEL SIDIBD 1=[] FID<()

RFRFCFRSEL SIDIBD 0=[] FID RFRFCFRSEL SIDIBD 1=[]≤ ≤

 RFRFCFRSEL SIDIBD 0=[] FID RFRFCFRSEL SIDIBD 1=[]≤ ≤

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-127
 Preliminary

A received valid frame in the dynamic segment with the payload preamble indicator bit PPI set to 1 and
with the message ID MID (the first two bytes of the payload) will pass the RX FIFO Message ID
Acceptance Filter if Equation 30-15 is fulfilled.

Eqn. 30-15

The RX FIFO Message ID Acceptance Filter can be configured to accept all frames by setting

• RFMIDAFMR.MIDAFMSK:= 0x000

Using the settings above, Equation 30-15 is always fulfilled and all frames will pass.

30.6.10 Channel Device Modes

This section describes the two FlexRay channel device modes that are supported by the FlexRay block.

30.6.10.1 Dual Channel Device Mode

In the dual channel device mode, both FlexRay ports are connected to physical FlexRay bus lines. The
FlexRay port consisting of FR_A_RX, FR_A_TX, and FR_A_TX_EN is connected to the physical bus
channel A and the FlexRay port consisting of FR_B_RX, FR_B_TX, and FR_A_TX_EN is connected to
the physical bus channel B. The dual channel system is shown in Figure 30-132.

Figure 30-132. Dual Channel Device Mode

30.6.10.2 Single Channel Device Mode

The single channel device mode supports devices that have only one FlexRay port available. This FlexRay
port consists of the signals FR_A_RX, FR_A_TX, and FR_A_TX_EN and can be connected to either the
physical bus channel A (shown in Figure 30-133) or the physical bus channel B (shown in Figure 30-134).

MID RFMIDAFMR MIDAFMSK[]∧ RFMIDAFMR MIDAFVAL[] RFMIDAFMR MIDAFMSK[]∧=

CHI PE

cfg(A)

reg(A)

cCrcInit[A]

cCrcInit[B]

cfg(B)

reg(B)

channel 0

channel 1

FlexRay Channel A
FlexRay Bus Driver

Channel A

FR_A_RX

FR_A_TX

FR_A_TX_

FlexRay Channel B
FlexRay Bus Driver

Channel B

FR_B_RX

FR_B_TX

FR_B_TX_

FLEXRAY

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-128 Freescale Semiconductor
 Preliminary

If the device is configured as a single channel device by setting MCR.SCD to 1, only the internal channel
A and the FlexRay Port A is used. Depending on the setting of MCR.CHA and MCR.CHB, the internal
channel A behaves either as a FlexRay Channel A or FlexRay Channel B. The bit MCR.CHA must be set,
if the FlexRay Port A is connected to a FlexRay Channel A. The bit MCR.CHB must be set if the FlexRay
Port A is connected to a FlexRay Channel B. The two FlexRay channels differ only in the initial value for
the frame CRC cCrcInit. For a single channel device, the application can access and configure only the
registers related to internal channel A.

Figure 30-133. Single Channel Device Mode (Channel A)

Figure 30-134. Single Channel Device Mode (Channel B)

CHI PE

cfg(A)

reg(A)

cCrcInit[A]

cCrcInit[B]

cfg(B)

reg(B)

channel A

channel B

FlexRay Channel A
FlexRay Bus Driver

Channel A

FR_A_RX

FR_A_TX

FR_A_TX_

FR_B_RX

FR_B_TX

FR_B_TX_

FLEXRAY

CHI PE

cfg(A)

reg(A)

cCrcInit[B]

cfg(B)

reg(B)

channel A

channel B

FlexRay Channel B

Init Value for Frame CRC is cCrcInit[B]cCrcInit[A]

FlexRay Bus Driver
Channel A

FR_A_RX

FR_A_TX

FR_A_TX_

FR_B_RX

FR_B_TX

FR_B_TX_

FLEXRAY

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-129
 Preliminary

30.6.11 External Clock Synchronization

The application of the external rate and offset correction is triggered when the application writes to the
EOC_AP and ERC_AP fields in the Protocol Operation Control Register (POCR). The PE applies the
external correction values in the next even-odd cycle pair as shown in Figure 30-135 and Figure 30-136.

NOTE
The values provided in the EOC_AP and ERC_AP fields are the values that
were written from the application most recently. If these value were already
applied, they will not be applied in the current cycle pair again.

If the offset correction applied in the NIT of cycle 2n+1 shall be affect by the external offset correction,
the EOC_AP field must be written to after the start of cycle 2n and before the end of the static segment of
cycle 2n+1. If this field is written to after the end of the static segment of cycle 2n+1, it is not guaranteed
that the external correction value is applied in cycle 2n+1. If the value is not applied in cycle 2n+1, then
the value will be applied in the cycle 2n+3. Refer to Figure 30-135 for timing details.

Figure 30-135. External Offset Correction Write and Application Timing

If the rate correction for the cycle pair [2n+2, 2n+3] shall be affect by the external offset correction, the
ERC_AP field must be written to after the start of cycle 2n and before the end of the static segment start
of cycle 2n+1. If this field is written to after the end of the static segment of cycle 2n+1, it is not guaranteed
that the external correction value is applied in cycle pair [2n+2, 2n+3]. If the value is not applied for cycle
pair [2n+2, 2n+3], then the value will be applied for cycle pair [2n+4, 2n+5]. Refer to Figure 30-136 for
details.

Figure 30-136. External Rate Correction Write and Application Timing

30.6.12 Sync Frame ID and Sync Frame Deviation Tables

The FlexRay protocol requires the provision of a snapshot of the Synchronization Frame ID tables for the
even and odd communication cycle for both channels. The FlexRay block provides the means to write a
copy of these internal tables into the FRM and ensures application access to consistent tables by means of
table locking. Once the application has locked the table successfully, the FlexRay block will not overwrite
these tables and the application can read a consistent snapshot.

static segment NIT static segment NIT

EOC_AP write window EOC_AP application

cycle 2n cycle 2n+1

static segment NIT

ERC_AP write window ERC_AP application

cycle 2n

static segment NIT

cycle 2n+1

static segment NIT

cycle 2n+2

static segment NIT

cycle 2n+3

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-130 Freescale Semiconductor
 Preliminary

NOTE
Only synchronization frames that have passed the synchronization frame
filters are considered for clock synchronization and appear in the sync frame
tables.

30.6.12.1 Sync Frame ID Table Content

The Sync Frame ID Table is a snapshot of the protocol related variables vsSyncIdListA and vsSyncIdListB
for each even and odd communication cycle. This table provides a list of the frame IDs of the
synchronization frames received on the corresponding channel and cycle that are used for the clock
synchronization.

30.6.12.2 Sync Frame Deviation Table Content

The Sync Frame Deviation Table is a snapshot of the protocol related variable zsDev(id)(oe)(ch)!Value.
Each Sync Frame Deviation Table entry provides the deviation value for the sync frame, with the frame
ID presented in the corresponding entry in the Sync Frame ID Table.

Figure 30-137. Sync Table Memory Layout

SFTOR SFTOR + 180

Sync Frame ID ChA 1
Sync Frame ID ChA 2
Sync Frame ID ChA 3
Sync Frame ID ChA 4
Sync Frame ID ChA 5
Sync Frame ID ChA 6
Sync Frame ID ChA 7
Sync Frame ID ChA 8
Sync Frame ID ChA 9
Sync Frame ID ChA 10
Sync Frame ID ChA 11
Sync Frame ID ChA 12
Sync Frame ID ChA 13
Sync Frame ID ChA 14
Sync Frame ID ChA 15

Sync Deviation ChA 1
Sync Deviation ChA 2
Sync Deviation ChA 3
Sync Deviation ChA 4
Sync Deviation ChA 5
Sync Deviation ChA 6
Sync Deviation ChA 7
Sync Deviation ChA 8
Sync Deviation ChA 9
Sync Deviation ChA 10
Sync Deviation ChA 11
Sync Deviation ChA 12
Sync Deviation ChA 13
Sync Deviation ChA 14
Sync Deviation ChA 15

SFTOR + 60 SFTOR +120

Sync Frame ID ChA 1
Sync Frame ID ChA 2
Sync Frame ID ChA 3
Sync Frame ID ChA 4
Sync Frame ID ChA 5
Sync Frame ID ChA 6
Sync Frame ID ChA 7
Sync Frame ID ChA 8
Sync Frame ID ChA 9
Sync Frame ID ChA 10
Sync Frame ID ChA 11
Sync Frame ID ChA 12
Sync Frame ID ChA 13
Sync Frame ID ChA 14
Sync Frame ID ChA 15

Sync Deviation ChA 1
Sync Deviation ChA 2
Sync Deviation ChA 3
Sync Deviation ChA 4
Sync Deviation ChA 5
Sync Deviation ChA 6
Sync Deviation ChA 7
Sync Deviation ChA 8
Sync Deviation ChA 9
Sync Deviation ChA 10
Sync Deviation ChA 11
Sync Deviation ChA 12
Sync Deviation ChA 13
Sync Deviation ChA 14
Sync Deviation ChA 15

Offset + $00
Offset + $02
Offset + $04
Offset + $06
Offset + $08
Offset + $0A
Offset + $0C
Offset + $0E
Offset + $10
Offset + $12
Offset + $14
Offset + $16
Offset + $18
Offset + $1A
Offset + $1C

Sync Frame ID ChB 1
Sync Frame ID ChB 2
Sync Frame ID ChB 3
Sync Frame ID ChB 4
Sync Frame ID ChB 5
Sync Frame ID ChB 6
Sync Frame ID ChB 7
Sync Frame ID ChB 8
Sync Frame ID ChB 9
Sync Frame ID ChB 10
Sync Frame ID ChB 11
Sync Frame ID ChB 12
Sync Frame ID ChB 13
Sync Frame ID ChB 14
Sync Frame ID ChB 15

Sync Deviation ChB 1
Sync Deviation ChB 2
Sync Deviation ChB 3
Sync Deviation ChB 4
Sync Deviation ChB 5
Sync Deviation ChB 6
Sync Deviation ChB 7
Sync Deviation ChB 8
Sync Deviation ChB 9
Sync Deviation ChB 10
Sync Deviation ChB 11
Sync Deviation ChB 12
Sync Deviation ChB 13
Sync Deviation ChB 14
Sync Deviation ChB 15

Sync Frame ID ChB 1
Sync Frame ID ChB 2
Sync Frame ID ChB 3
Sync Frame ID ChB 4
Sync Frame ID ChB 5
Sync Frame ID ChB 6
Sync Frame ID ChB 7
Sync Frame ID ChB 8
Sync Frame ID ChB 9
Sync Frame ID ChB 10
Sync Frame ID ChB 11
Sync Frame ID ChB 12
Sync Frame ID ChB 13
Sync Frame ID ChB 14
Sync Frame ID ChB 15

Sync Deviation ChB 1
Sync Deviation ChB 2
Sync Deviation ChB 3
Sync Deviation ChB 4
Sync Deviation ChB 5
Sync Deviation ChB 6
Sync Deviation ChB 7
Sync Deviation ChB 8
Sync Deviation ChB 9
Sync Deviation ChB 10
Sync Deviation ChB 11
Sync Deviation ChB 12
Sync Deviation ChB 13
Sync Deviation ChB 14
Sync Deviation ChB 15

Offset + $1E
Offset + $20
Offset + $22
Offset + $24
Offset + $26
Offset + $28
Offset + $2A
Offset + $2C
Offset + $2E
Offset + $30
Offset + $32
Offset + $34
Offset + $36
Offset + $38
Offset + $3A

SFCNTR
SFEVA
SFEVB

SFCNTR
SFODA
SFODB

EVEN ODD EVEN ODD

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-131
 Preliminary

30.6.12.3 Sync Frame ID and Sync Frame Deviation Table Setup

The FlexRay block writes a copy of the internal synchronization frame ID and deviation tables into the
FRM if requested by the application. The application must provide the appropriate amount of FRM for the
tables. The memory layout of the tables is given in Figure 30-137. Each table occupies 120 16-bit entries.

While the protocol is in POC:config state, the application must program the offsets for the tables into the
Sync Frame Table Offset Register (SFTOR).

30.6.12.4 Sync Frame ID and Sync Frame Deviation Table Generation

The application controls the generation process of the Sync Frame ID and Sync Frame Deviation Tables
into the FRM using the Sync Frame Table Configuration, Control, Status Register (SFTCCSR). A
summary of the copy modes is given in Table 30-111.

The Sync Frame Table generation process is described in the following for the even cycle. The same
sequence applies to the odd cycle.

If the application has enabled the sync frame table generation by setting SFTCCSR.SIDEN to 1, the
FlexRay block starts the update of the even cycle related tables after the start of the NIT of the next even
cycle. The FlexRay block checks if the application has locked the tables by reading the SFTCCSR.ELKS
lock status bit. If this bit is set, the FlexRay block will not update the table in this cycle. If this bit is cleared,
the FlexRay block locks this table and starts the table update. To indicate that these tables are currently
updated and may contain inconsistent data, the FlexRay block clears the even table valid status bit
SFTCCSR.EVAL. Once all table entries related to the even cycle have been transferred into the FRM, the
FlexRay block sets the even table valid bit SFTCCSR.EVAL and the Even Cycle Table Written Interrupt
Flag EVT_IF in the Protocol Interrupt Flag Register 1 (PIFR1). If the interrupt enable flag EVT_IE is set,
an interrupt request is generated.

To read the generated tables, the application must lock the tables to prevent the FlexRay block from
updating these tables. The locking is initiated by writing a 1 to the even table lock trigger
SFTCCSR.ELKT. When the even table is not currently updated by the FlexRay block, the lock is granted
and the even table lock status bit SFTCCSR.ELKS is set. This indicates that the application has
successfully locked the even sync tables and the corresponding status information fields SFRA, SFRB in

Table 30-111. Sync Frame Table Generation Modes

SFTCCSR
Description

OPT SDVEN SIDEN

0 0 0 No Sync Frame Table copy

0 0 1 Sync Frame ID Tables will be copied continuously

0 1 0 Reserved

0 1 1 Sync Frame ID Tables and Sync Frame Deviation Tables will be copied continuously

1 0 0 No Sync Frame Table copy

1 0 1 Sync Frame ID Tables for next even-odd-cycle pair will be copied

0 1 0 Reserved

1 1 1 Sync Frame ID Tables and Sync Frame Deviation Tables for next even-odd-cycle pair will be
copied

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-132 Freescale Semiconductor
 Preliminary

the Sync Frame Counter Register (SFCNTR). The value in the SFTCCSR.CYCNUM field provides the
number of the cycle that this table is related to.

The number of available table entries per channel is provided in the SFCNTR.SFEVA and
SFCNTR.SFEVB fields. The application can now start to read the sync table data from the locations given
in Figure 30-137.

After reading all the data from the locked tables, the application must unlock the table by writing to the
even table lock trigger SFTCCSR.ELKT again. The even table lock status bit SFTCCSR.ELKS is reset
immediately.

If the sync frame table generation is disabled, the table valid bits SFTCCSR.EVAL and SFTCCSR.EVAL
are reset when the counter values in the Sync Frame Counter Register (SFCNTR) are updated. This is done
because the tables stored in the FRM are no longer related to the values in the Sync Frame Counter Register
(SFCNTR).

Figure 30-138. Sync Frame Table Trigger and Generation Timing

30.6.12.5 Sync Frame Table Access

The sync frame tables will be transferred into the FRM during the table write windows shown in
Figure 30-138. During the table write, the application can not lock the table that is currently written. If the
application locks the table outside of the table write window, the lock is granted immediately.

30.6.12.5.1 Sync Frame Table Locking and Unlocking

The application locks the even/odd sync frame table by writing 1 to the lock trigger bit ELKT/OLKT in
the Sync Frame Table Configuration, Control, Status Register (SFTCCSR). If the affected table is not
currently written to the FRM, the lock is granted immediately, and the lock status bit ELKS/OLKS is set.
If the affected table is currently written to the FRM, the lock is not granted. In this case, the application
must issue the lock request again until the lock is granted.

The application unlocks the even/odd sync frame table by writing 1 to the lock trigger bit ELKT/OLKT.
The lock status bit ELKS/OLKS is cleared immediately.

30.6.13 MTS Generation

The FlexRay block provides a flexible means to request the transmission of the Media Access Test Symbol
MTS in the symbol window on channel A or channel B.

The application can configure the set of communication cycles in which the MTS will be transmitted over
the FlexRay bus by programming the CYCCNTMSK and CYCCNTVAL fields in the MTS A
Configuration Register (MTSACFR) and MTS B Configuration Register (MTSBCFR).

SFTCCSR.[OPT,SIDEN,SDVEN] write window
even table write

static segment NIT static segment NIT static segment NIT

cycle 2n-1 cycle 2n cycle 2n+1

odd table write

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-133
 Preliminary

The application enables or disables the generation of the MTS on either channel by setting or clearing the
MTE control bit in the MTS A Configuration Register (MTSACFR) or MTS B Configuration Register
(MTSBCFR). If an MTS is to be transmitted in a certain communication cycle, the application must set
the MTE control bit during the static segment of the preceding communication cycle.

The MTS is transmitted over channel A in the communication cycle with number CYCCNT, if
Equation 30-17, Equation 30-18, and Equation 30-18 are fulfilled.

Eqn. 30-16

Eqn. 30-17

Eqn. 30-18

The MTS is transmitted over channel B in the communication cycle with number CYCCNT, if
Equation 30-16, Equation 30-19, and Equation 30-20 are fulfilled.

Eqn. 30-19

Eqn. 30-20

30.6.14 Sync Frame and Startup Frame Transmission

The transmission of sync frames and startup frames is controlled by the following register fields:

• PCR18.key_slot_id: provides the number of the slot for sync or startup frame transmission

• PCR11.key_slot_used_for_sync: indicates sync frame transmission

• PCR11.key_slot_used_for_startup: indicates startup frame transmission

• PCR12.key_slot_header_crc: provides header crc for sync frame or startup frame

• Message Buffer with message buffer number n=PCR18.key_slot_id

The generation of the sync or startup frames depends on the current protocol state. In the POC:startup
state, the generation is independent of the message buffer setup; in the POC:normal active state, the
generation is affected by the current message buffer setup.

30.6.14.1 Sync Frame and Startup Frame Transmission in POC:startup

In the POC:startup state, the sync and startup frame transmission is independent of the message buffer
setup. If at least one of the indication bits PCR11.key_slot_used_for_sync or
PCR11.key_slot_used_for_startup is set, a Null Frame will be transmitted in the slot with slot number
PCR18.key_slot_id. The header CRC for this Null Frame is taken from PCR12.key_slot_header_crc. The
settings of the sync and startup frame indicators are taken from PCR11.key_slot_used_for_sync and
PCR11.key_slot_used_for_startup.

30.6.14.2 Sync Frame and Startup Frame Transmission in POC:normal active

In the POC:normal active state, the sync and startup frame transmission depends on the message buffer
setup. If at least one of the indication bits PCR11.key_slot_used_for_sync or

PSR0 PROTSTATE[] POC:normal active=

MTSACRF MTE[] 1=

CYCCNT MTSACFR CYCCNTMSK[]∧ MTSACFR CYCCNTVAL[] MTSACFR CYCCNTMSK[]∧=

MTSBCRF MTE[] 1=

CYCCNT MTSBCFR CYCCNTMSK[]∧ MTSBCFR CYCCNTVAL[] MTSBCFR CYCCNTMSK[∧=

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-134 Freescale Semiconductor
 Preliminary

PCR11.key_slot_used_for_startup is set, or if a transmit message buffer with MBFIDRn.FID ==
PCR18.key_slot_id is configured and enabled, a Null Frame or Data Frame will be transmitted in the slot
with slot number PCR18.key_slot_id. The header CRC for this frame is taken from
PCR12.key_slot_header_crc, the settings of the sync and startup frame indicators are taken from
PCR11.key_slot_used_for_sync and PCR11.key_slot_used_for_startup. A data frame will be transmitted
if the message buffer is unlocked and committed and the cycle counter filter matches the current cycle.

30.6.15 Sync Frame Filtering

Each received synchronization frame must pass the Sync Frame Acceptance Filter and the Sync Frame
Rejection Filter before it is considered for clock synchronization. If the synchronization frame filtering is
globally disabled, i.e. the SFFE control bit in the Module Configuration Register (MCR) is cleared, all
received synchronization frames are considered for clock synchronization. If a received synchronization
frame did not pass at least one of the two filters, this frame is processed as a normal frame and is not
considered for clock synchronization.

30.6.15.1 Sync Frame Acceptance Filtering

The synchronization frame acceptance filter is implemented as a value-mask filter. The value is configured
in the Sync Frame ID Acceptance Filter Value Register (SFIDAFVR) and the mask is configured in the
Sync Frame ID Acceptance Filter Mask Register (SFIDAFMR). A received synchronization frame with
the frame ID FID passes the sync frame acceptance filter, if Equation 30-21 or Equation 30-22evaluates to
true.

Eqn. 30-21

Eqn. 30-22

NOTE
Sync frames are transmitted in the static segment only. Thus FID <= 1023.

30.6.15.2 Sync Frame Rejection Filtering

The synchronization frame rejection filter is a comparator. The compare value is defined by the Sync
Frame ID Rejection Filter Register (SFIDRFR). A received synchronization frame with the frame ID FID
passes the sync frame rejection filter if Equation 30-23 or Equation 30-24 evaluates to true.

Eqn. 30-23

Eqn. 30-24

NOTE
Sync frames are transmitted in the static segment only. Thus FID <= 1023.

MCR SFFE[] 0=

FID 9:0[] SFIDAFMR FMSK 9:0[][]∧ SFIDAFVR FVAL 9:0[][] SFIDAFMR FMSK 9:0[][∧=

MCR SFFE[] 0=

FID 9:0[] SFIDRFR SYNFRID 9:0[][]≠

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-135
 Preliminary

30.6.16 Strobe Signal Support

The FlexRay block provides a number of strobe signals for observing internal protocol timing related
signals in the protocol engine. The signals are listed and described in Table 30-13.

30.6.16.1 Strobe Signal Assignment

Each of the strobe signals listed in Table 30-13 can be assigned to one of the four strobe ports using the
Strobe Signal Control Register (STBSCR). To assign multiple strobe signals, the application must write
multiple times to the Strobe Signal Control Register (STBSCR) with appropriate settings.

To read out the current settings for a strobe signal with number N, the application must execute the
following sequence.

1. Write to STBSCR with WMD = 1 and SEL = N. (updates SEL field only)

2. Read STBCSR.
The SEL field provides N and the ENB and STBPSEL fields provides the settings for signal N.

30.6.16.2 Strobe Signal Timing

This section provides detailed timing information of the strobe signals with respect to the protocol engine
clock.

The strobe signals display internal PE signals. Due to the internal architecture of the PE, some signals are
generated several PE clock cycles before the actual action is performed on the FlexRay Bus. These signals
are listed in Table 30-13 with a negative clock offset. An example waveform is given in Figure 30-139.

Figure 30-139. Strobe Signal Timing (type = pulse, clk_offset = -2)

Other signals refer to events that occurred on the FlexRay Bus some cycles before the strobe signal is
changed. These signals are listed in Table 30-13 with a positive clock offset. An example waveform is
given in Figure 30-140.

PE Clock

Strobe Signal

FlexRay Bus Event

-2

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-136 Freescale Semiconductor
 Preliminary

Figure 30-140. Strobe Signal Timing (type = pulse, clk_offset = +4)

30.6.17 Timer Support

The FlexRay block provides two timers, which run on the FlexRay time base. Each timer generates a
maskable interrupt when it reaches a configured point in time. Timer T1 is an absolute timer. Timer T2 can
be configured to be an absolute or a relative timer. Both timers can be configured to be repetitive. In the
non-repetitive mode, timer stops if it expires. In repetitive mode, timer is restarted when it expires.

Both timers are active only when the protocol is in POC:normal active or POC:normal passive state. If
the protocol is not in one of these modes, the timers are stopped. The application must restart the timers
when the protocol has reached the POC:normal active or POC:normal passive state.

30.6.17.1 Absolute Timer T1

The absolute timer T1 has the protocol cycle count and the macrotick count as the time base. The timer 1
interrupt flag TI1_IF in the Protocol Interrupt Flag Register 0 (PIFR0) is set at the macrotick start event,
if Equation 30-25 and Equation 30-26 are fulfilled

Eqn. 30-25

Eqn. 30-26

If the timer 1 interrupt enable bit TI1_IE in the Protocol Interrupt Enable Register 0 (PIER0) is asserted,
an interrupt request is generated.

The status bit T1ST is set when the timer is triggered, and is cleared when the timer expires and is
non-repetitive. If the timer expires but is repetitive, the T1ST bit is not cleared and the timer is restarted
immediately. The T1ST is cleared when the timer is stopped.

30.6.17.2 Absolute / Relative Timer T2

The timer T2 can be configured to be an absolute or relative timer by setting the T2_CFG control bit in the
Timer Configuration and Control Register (TICCR). The status bit T2ST is set when the timer is triggered,
and is cleared when the timer expires and is non-repetitive. If the timer expires but is repetitive, the T2ST
bit is not cleared and the timer is restarted immediately. The T2ST is cleared when the timer is stopped.

30.6.17.2.1 Absolute Timer T2

If timer T2 is configured as an absolute timer, it has the same functionality timer T1 but the configuration
from Timer 2 Configuration Register 0 (TI2CR0) and Timer 2 Configuration Register 1 (TI2CR1) is used.

PE Clock

Strobe Signal

FlexRay Bus Event
+4

CYCCTR.CYCCNT & T1CYSR.T1_CYC_MSK == T1CYSR.T1_CYC_VAL & T1CYSR.T1_CYC_MSK

MTCTR.MTCT == TI1MTOR.T1_MTOFFSET

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-137
 Preliminary

On expiration of timer T2, the interrupt flag TI2_IF in the Protocol Interrupt Flag Register 0 (PIFR0) is
set. If the timer 1 interrupt enable bit TI1_IE in the Protocol Interrupt Enable Register 0 (PIER0) is
asserted, an interrupt request is generated.

30.6.17.2.2 Relative Timer T2

If the timer T2 is configured as a relative timer, the interrupt flag TI2_IF in the Protocol Interrupt Flag
Register 0 (PIFR0) is set, when the programmed amount of macroticks MT[31:0], defined by Timer 2
Configuration Register 0 (TI2CR0) and Timer 2 Configuration Register 1 (TI2CR1), has expired since the
trigger or restart of timer 2. The relative timer is implemented as a down counter and expires when it has
reached 0. At the macrotick start event, the value of MT[31:0] is checked and then decremented. Thus, if
the timer is started with MT[31:0] == 0, it expires at the next macrotick start.

30.6.18 Slot Status Monitoring

The FlexRay block provides several means for slot status monitoring. All slot status monitors use the same
slot status vector provided by the PE. The PE provides a slot status vector for each static slot, for each
dynamic slot, for the symbol window, and for the NIT, on a per channel base. The content of the slot status
vector is described in Table 30-112. The PE provides the slot status vector within the first macrotick after
the end of the related slot/window/NIT, as shown in Figure 30-141.

Figure 30-141. Slot Status Vector Update

NOTE
The slot status for the NIT of cycle n is provided after the start of cycle n+1.

cy
cl

e
st

ar
t

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

sy
m

bo
l w

in
do

w
 s

ta
rt

M
T

st
at

us
(N

IT
)

M
T

st
at

us
(s

lo
t 1

)

st
at

us
(s

lo
t k

)
M

T

st
at

us
(s

lo
t n

)
M

T

N
IT

 s
ta

rt
st

at
us

(s
ym

.w
in

)
M

T

cy
cl

e
st

ar
t

st
at

us
(N

IT
)

communication cycle

static segment dynamic segment symbol window NIT

slot 1

M
T

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-138 Freescale Semiconductor
 Preliminary

30.6.18.1 Channel Status Error Counter Registers

The two channel status error counter registers, Channel A Status Error Counter Register (CASERCR) and
Channel B Status Error Counter Register (CBSERCR), incremented by one, if at least one of four slot
status error bits, vSS!SyntaxError, vSS!ContentError, vSS!BViolation, or vSS!TxConflict is set to 1. The
status vectors for all slots in the static and dynamic segment, in the symbol window, and in the NIT are
taken into account. The counters wrap round after they have reached the maximum value.

Table 30-112. Slot Status Content

Status Content

 static /
dynamic

Slot

slot related status
vSS!ValidFrame - valid frame received
vSS!SyntaxError - syntax error occurred while receiving
vSS!ContentError - content error occurred while receiving
vSS!BViolation - boundary violation while receiving
for slots in which the module transmits:
vSS!TxConflict - reception ongoing while transmission starts
for slots in which the module does not transmit:
vSS!TxConflict - reception ongoing while transmission starts
first valid - channel that has received the first valid frame
received frame related status
extracted from
a) header of valid frame, if vSS!ValidFrame = 1
b) last received header, if vSS!ValidFrame = 0
c) set to 0, if nothing was received
vRF!Header!NFIndicator - Null Frame Indicator (0 for null frame)
vRF!Header!SuFIndicator - Startup Frame Indicator
vRF!Header!SyFIndicator - Sync Frame Indicator

Symbol
Window

window related status
vSS!ValidFrame - always 0
vSS!ContentError - content error occurred while receiving
vSS!SyntaxError - syntax error occurred while receiving
vSS!BViolation - boundary violation while receiving
vSS!TxConflict - reception ongoing while transmission starts
received symbol related status
vSS!ValidMTS - valid Media Test Access Symbol received
received frame related status
see static/dynamic slot

NIT NIT related status
vSS!ValidFrame - always 0
vSS!ContentError - content error occurred while receiving
vSS!SyntaxError - syntax error occurred while receiving
vSS!BViolation - boundary violation while receiving
vSS!TxConflict - always 0
received frame related status
see static/dynamic slot

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-139
 Preliminary

30.6.18.2 Protocol Status Registers

The Protocol Status Register 2 (PSR2) provides slot status information about the Network Idle Time NIT
and the Symbol Window. The Protocol Status Register 3 (PSR3) provides aggregated slot status
information.

30.6.18.3 Slot Status Registers

The eight slot status registers, Slot Status Registers (SSR0–SSR7), can be used to observe the status of
static slots, dynamic slots, the symbol window, or the NIT without individual message buffers. These
registers provide all slot status related and received frame / symbol related status information, as given in
Table 30-112, except of the first valid indicator for non-transmission slots.

30.6.18.4 Slot Status Counter Registers

The FlexRay block provides four slot status error counter registers, Slot Status Counter Registers
(SSCR0–SSCR3). Each of these slot status counter registers is updated with the value of an internal slot
status counter at the start of a communication cycle. The internal slot status counter is incremented if its
increment condition, defined by the Slot Status Counter Condition Register (SSCCR), matches the status
vector provided by the PE. All static slots, the symbol window, and the NIT status are taken into account.
Dynamic slots are excluded. The internal slot status counting and update timing is shown in Figure 30-142.

Figure 30-142. Slot Status Counting and SSCRn Update

The PE provides the status of the NIT in the first slot of the next cycle. Due to these facts, the SSCRn
register reflects, in cycle n, the status of the NIT of cycle n-2, and the status of all static slots and the
symbol window of cycle n-1.

The increment condition for each slot status counter consists of two parts, the frame related condition part
and the slot related condition part. The internal slot status counter SSCRn_INT is incremented if at least
one of the conditions is fulfilled:

1. frame related condition:

cy
cl

e
st

ar
t

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

sy
m

bo
l w

in
do

w
 s

ta
rt

M
T

st
at

us
(N

IT
)

M
T

st
at

us
(s

lo
t 1

)

st
at

us
(s

lo
t k

)
M

T

st
at

us
(s

lo
t n

)
M

T

N
IT

 s
ta

rt
st

at
us

(s
ym

.w
in

)
M

T

cy
cl

e
st

ar
t

st
at

us
(N

IT
)

communication cycle

static segment dynamic segment symbol window NIT

slot 1

M
T

incr. SSCRn_INT on error incr. SSCRn_INT on error

SSCRn:= SSCRn_INT

SSCRn_INT not updated

SSCRn:= SSCRn_INT

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-140 Freescale Semiconductor
 Preliminary

• (SSCCRn.VFR | SSCCRn.SYF | SSCCRn.NUF | SSCCRn.SUF) // count on frame condition
= 1;

and

• ((~SSCCRn.VFR | vSS!ValidFrame) & // valid frame restriction
(~SSCCRn.SYF | vRF!Header!SyFIndicator) & // sync frame indicator restriction
(~SSCCRn.NUF | ~vRF!Header!NFIndicator) & // null frame indicator restriction
(~SSCCRn.SUF | vRF!Header!SuFIndicator)) // startup frame indicator restriction
= 1;

NOTE
The indicator bits SYF, NUF, and SUF are valid only when a valid frame
was received. Thus it is required to set the VFR always, whenever count on
frame condition is used.

2. slot related condition:

• ((SSCCRn.STATUSMASK[3] & vSS!ContentError) | // increment on content error
(SSCCRn.STATUSMASK[2] & vSS!SyntaxError) | // increment on syntax error
(SSCCRn.STATUSMASK[1] & vSS!BViolation) | // increment on boundary violation
(SSCCRn.STATUSMASK[0] & vSS!TxConflict)) // increment on transmission conflict
= 1;

If the slot status counter is in single cycle mode, i.e. SSCCRn.MCY = 0, the internal slot status counter
SSCRn_INT is reset at each cycle start. If the slot status counter is in the multicycle mode, i.e.
SSCCRn.MCY = 1, the counter is not reset and incremented, until the maximum value is reached.

30.6.18.5 Message Buffer Slot Status Field

Each individual message buffer and each FIFO message buffer provides a slot status field, which provides
the information shown in Table 30-112 for the static/dynamic slot. The update conditions for the slot status
field depend on the message buffer type. Refer to the Message Buffer Update Sections in Section 30.6.6,
“Individual Message Buffer Functional Description”.

30.6.19 Interrupt Support

The FlexRay block provides 108 individual interrupt sources and five combined interrupt sources.

30.6.19.1 Individual Interrupt Sources

30.6.19.1.1 Message Buffer Interrupts

The FlexRay block provides 64 message buffer interrupt sources.

Each individual message buffer provides an interrupt flag MBCCSn.MBIF and an interrupt enable bit
MBCCSn.MBIE. The FlexRay block sets the interrupt flag when the slot status of the message buffer was
updated. If the interrupt enable bit is asserted, an interrupt request is generated.

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-141
 Preliminary

30.6.19.1.2 Receive FIFO Interrupts

The FlexRay block provides 2 Receive FIFO interrupt sources.

Each of the 2 Receive FIFO provides a Receive FIFO Not Empty Interrupt Flag. The FlexRay block sets
the Receive FIFO Not Empty Interrupt Flags (GIFER.FNEBIF, GIFER.FNEAIF) in the Global Interrupt
Flag and Enable Register (GIFER) if the corresponding Receive FIFO is not empty.

30.6.19.1.3 Wakeup Interrupt

The FlexRay block provides one interrupt source related to the wakeup.

The FlexRay block sets the Wakeup Interrupt Flag GIFER.WUPIF when it has received a wakeup symbol
on the FlexRay bus. The FlexRay block generates an interrupt request if the interrupt enable bit
GIFER.WUPIE is asserted.

30.6.19.1.4 Protocol Interrupts

The FlexRay block provides 25 interrupt sources for protocol related events. For details, see Protocol
Interrupt Flag Register 0 (PIFR0) and Protocol Interrupt Flag Register 1 (PIFR1). Each interrupt source
has its own interrupt enable bit.

30.6.19.1.5 CHI Error Interrupts

The FlexRay block provides 16 interrupt sources for CHI related error events. For details, see CHI Error
Flag Register (CHIERFR). There is one common interrupt enable bit GIFER.CHIIE for all CHI error
interrupt sources.

30.6.19.2 Combined Interrupt Sources

Each combined interrupt source generates an interrupt request only when at least one of the interrupt
sources that is combined generates an interrupt request.

30.6.19.2.1 Receive Message Buffer Interrupt

The combined receive message buffer interrupt request RBIRQ is generated when at least one of the
individual receive message buffers generates an interrupt request MBXIRQ[n] and the interrupt enable bit
GIFER.RBIE is set.

30.6.19.2.2 Transmit Message Buffer Interrupt

The combined transmit message buffer interrupt request TBIRQ is generated when at least one of the
individual transmit message buffers generates an interrupt request MBXIRQ[n] and the interrupt enable
bit GIFER.TBIE is asserted.

30.6.19.2.3 Protocol Interrupt

The combined protocol interrupt request PRTIRQ is generated when at least one of the individual protocol
interrupt sources generates an interrupt request and the interrupt enable bit GIFER.PRIE is set.

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-142 Freescale Semiconductor
 Preliminary

30.6.19.2.4 CHI Error Interrupt

The combined CHI error interrupt request CHIIRQ is generated when at least one of the individual chi
error interrupt sources generates an interrupt request and the interrupt enable bit GIFER.CHIE is set.

30.6.19.2.5 Module Interrupt

The combined module interrupt request MIRQ is generated if at least one of the combined interrupt
sources generates an interrupt request and the interrupt enable bit GIFER.MIE is set.

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-143
 Preliminary

Figure 30-143. Scheme of Cascaded Interrupt Request

Interrupt Sources Interrupt Signals

MBXIRQ[n-1:0]
MBCCSRn.MBIF

n

CHIXIRQ[15:0]
CHIER[15:0] 16

PRTXIRQ[31:16]
PIFR0[15:0] 16

PRTXIRQ[15:0]
PIFR1[15:0] 16

RBIRQ

CHIIRQ

PRTIRQ

GIFER.FNEAIF
FNEAIRQ

GIFER.WUPIF
WUPIRQ

GIFER.RBIE

MBCCSRn.MTD

Receive

Transmit

GIFER.PRIE

GIFER.WUPIE

GIFER.MIE

MBCCSRn.MBIE &

PIER0[15:0]

PIER1[15:0]

OR

&

&

&GIFER.CHIE

& &

n

& OR TBIRQ
GIFER.TBIE &

n

OR

OR &

&GIFER.FNEAIE

GIFER.FNEBIF
FNEBIRQ&GIFER.FNEBIE

&

&

n = # Message Buffers

OR

GIFER.RBIF

GIFER.TBIF

GIFER.PRIF

GIFER.CHIF

GIFER.MIF

MIRQ

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-144 Freescale Semiconductor
 Preliminary

Figure 30-144. Scheme of Combined Interrupt Flags

30.6.20 Lower Bit Rate Support

The FlexRay block supports a number of lower bit rates on the FlexRay bus channels. The lower bit rates
are implemented by modifying the duration of the microtick pdMicrotick, the number of samples per
microtick pSamplesPerMicrotick, the number of samples per bit cSamplesPerBit, and the strobe offset
cStrobeOffset. The application configures the FlexRay channel bit rate by setting the BITRATE field in the
Module Configuration Register (MCR). The protocol values are set internally. The available bit rates, the
related BITRATE field configuration settings and related protocol parameter values are shown in
Table 30-113.

Interrupt Sources Combined Interrupt Flags

MBCCSRn.MBIF
n

CHIER[15:0]

PIFR0[15:0]

PIFR1[15:0]

GIFER.FNEAIF

GIFER.WUPIF

CIFR.TBIF

CIFR.CHIF

CIFR.PRIF

MBCCSRn.MTD

Receive

Transmit

OR&

& OR CIFR.RBIFn

OR

OR

GIFER.FNEBIF

n = # Message Buffers

n

OR CIFR.MIF

CIFR.FNEAIF

CIFR.WUPIF

CIFR.FNEBIF

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-145
 Preliminary

NOTE
The bit rate of 8 Mbit/s is not defined by the FlexRay Communications
System Protocol Specification, Version 2.1 Rev A.

30.7 Application Information

30.7.1 Initialization Sequence

This section describes the required steps to initialize the FlexRay block. The first subsection describes the
steps required after a system reset, the second section describes the steps required after preceding
shutdown of the FlexRay block.

30.7.1.1 Module Initialization

This section describes the module related initialization steps after a system reset.

1. Configure FlexRay block.

a) configure the control bits in the Module Configuration Register (MCR)

b) configure the system memory base address in System Memory Base Address High Register
(SYMBADHR) and System Memory Base Address Low Register (SYMBADLR)

2. Enable the FlexRay block.

a) write 1 to the module enable bit MEN in the Module Configuration Register (MCR)

The FlexRay block now enters the Normal Mode. The application can commence with the protocol
initialization described in Section 30.7.1.2, “Protocol Initialization”.

Table 30-113. FlexRay Channel Bit Rate Control

FlexRay Channel
Bit Rate
[Mbit/s]

MCR.BITRATE

p
d

M
ic

ro
ti

ck

[n
s]

g
d

S
am

p
le

C
lo

ck
P

er
io

d

[n
s]

p
S

am
p

le
sP

er
M

ic
ro

ti
ck

cS
am

p
le

sP
er

B
it

cS
tr

o
b

eO
ff

se
t

10.0 000 25.0 12.5 2 8 5

8.0 011 25.0 12.5 2 10 6

5.0 001 25.0 25.0 1 8 5

2.5 010 50.0 50.0 1 8 5

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-146 Freescale Semiconductor
 Preliminary

30.7.1.2 Protocol Initialization

This section describes the protocol related initialization steps.

1. Configure the Protocol Engine.

a) issue CONFIG command via Protocol Operation Control Register (POCR)

b) wait for POC:config in Protocol Status Register 0 (PSR0)

c) configure the PCR0,..., PCR30 registers to set all protocol parameters

2. Configure the Message Buffers and FIFOs.

a) set the number of message buffers used and the message buffer segmentation in the Message
Buffer Segment Size and Utilization Register (MBSSUTR)

b) define the message buffer data size in the Message Buffer Data Size Register (MBDSR)

c) configure each message buffer by setting the configuration values in the Message Buffer
Configuration, Control, Status Registers (MBCCSRn), Message Buffer Cycle Counter Filter
Registers (MBCCFRn), Message Buffer Frame ID Registers (MBFIDRn), Message Buffer
Index Registers (MBIDXRn)

d) configure the receive FIFOs

e) issue CONFIG_COMPLETE command via Protocol Operation Control Register (POCR)

f) wait for POC:ready in Protocol Status Register 0 (PSR0)

After this sequence, the FlexRay block is configured as a FlexRay node and is ready to integrate into the
FlexRay cluster.

30.7.2 Shut Down Sequence

This section describes a secure shut down sequence to stop the FlexRay block gracefully. The main targets
of this sequence are

• finish all ongoing reception and transmission

• do not corrupt FlexRay bus and do not disturb ongoing FlexRay bus communication

For a graceful shutdown the application shall perform the following tasks:

1. Disable all enabled message buffers.

a) repeatedly write 1 to MBCCSRn[EDT] until MBCCSRn[EDS] == 0.

2. Stop Protocol Engine.

a) issue HALT command via Protocol Operation Control Register (POCR)

b) wait for POC:halt in Protocol Status Register 0 (PSR0)

30.7.3 Number of Usable Message Buffers

This section describes the relationship between the number of message buffers that can be utilized and the
required minimum CHI clock frequency. Additional constraints for the minimum CHI clock frequency are
given in Section 30.3, “Controller Host Interface Clocking”.

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-147
 Preliminary

The FlexRay block uses a sequential search algorithm to determine the individual message buffer assigned
or subscribed to the next slot. This search must be finished within one FlexRay slot. The shortest FlexRay
slot is an empty dynamic slot. An empty dynamic slot is a minislot and consists of gdMinislot macroticks
with a nominal duration of gdMacrotick. The minimum duration of a corrected macrotick is
gdMacrotickmin = 39 µμT. This results in a minimum slot length of

Eqn. 30-27

The search engine is located in the CHI and runs on the CHI clock. It evaluates one individual message
buffer per CHI clock cycle. For internal status update and double buffer commit operations, and as a result
of the clock domain crossing jitter, an additional amount of 10 CHI clock cycles is required to ensure
correct operation. For a given number of message buffers and for a given CHI clock frequency fchi, this
results in a search duration of

Eqn. 30-28

The message buffer search must be finished within one slot which requires that Equation 30-29 must be
fulfilled

Eqn. 30-29

This results in the formula given in Equation 30-30 which determines the required minimum CHI
frequency for a given number of message buffers that are utilized.

Eqn. 30-30

The minimum CHI frequency for a selected set of relevant protocol parameters is given in Table 30-114.

30.7.4 Protocol Control Command Execution

This section considers the issues of the protocol control command execution.

The application issues any of the protocol control commands listed in the POCCMD field of Table 30-16
by writing the command to the POCCMD field of the Protocol Operation Control Register (POCR). As a
result the FlexRay block sets the BSY bit while the command is transferred to the PE. When the PE has
accepted the command, the BSY flag is cleared. All commands are accepted by the PE.

The PE maintains a protocol command vector. For each command that was accepted by the PE, the PE sets
the corresponding command bit in the protocol command vector. If a command is issued while the
corresponding command bit is set, the command is not queued and is lost.

Table 30-114. Minimum fchi [MHz] Examples (64 Message Buffers)

pdMicrotick
[ns]

gdMinislot

2 3 4 5 6 7

25.0 37.94 25.30 18.98 15.18 12.65 10.84

50.0 18.98 12.65 9.45 7.59 6.33 5.43

Δslotmin 39 pdMicrotick gdMinislot⋅ ⋅=

Δsearch
1

fchi
-------- # MessageBuffers 10+()⋅=

Δsearch Δslotmin≤

fchi
MessageBuffers 10+

39 pdMicrotick gdMinislot⋅ ⋅
--≥

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-148 Freescale Semiconductor
 Preliminary

If the command execution block of the PE is idle, it selects the next accepted protocol command with the
highest priority from the current protocol command vector according to the protocol control command
priorities given in Table 30-115. If the current protocol state does not allow the execution of this protocol
command (see POC state changes in FlexRay Communications System Protocol Specification, Version 2.1
Rev A) the FlexRay block asserts the illegal protocol command interrupt flag IPC_IF in the Protocol
Interrupt Flag Register 1 (PIFR1). The protocol command is not executed in this case.

Some protocol commands may be interrupted by other commands or the detection of a fatal protocol error
as indicated by Table 30-115. If the application issues the RESET, FREEZE, or READY command, or if
the the PE detects a fatal protocol error, some commands already stored in the command vector will be
removed from this vector.

30.7.5 Protocol Reset Command

The section considers the issues of the protocol RESET command.

The application issues the protocol reset command by writing the RESET command code to the POCCMD
field of the Protocol Operation Control Register (POCR). As a result, the PE stops its operation
immediately, the FlexRay bus ports put into their idle state, and no more data or status information is sent
to the CHI. The lack of PE signals stops all message buffer operations in the CHI. In particular, the
message buffers that are currently under internal use remain internally locked. To overcome this message
buffer internal lock situation, the application must put the protocol into the POC:default config state. This
will release all internal message buffer locks.

Table 30-115. Protocol Control Command Priorities

Protocol Command Priority Interrupted By Cleared and Terminated By

RESET (highest) 1

noneFREEZE 2 RESET

READY 3 RESET

CONFIG_COMPLETE 3 RESET

ALL_SLOTS 4

RESET,
FREEZE,
READY,

CONFIG_COMPLET,
fatal protocol error

RESET, FREEZE, READY, CONFIG_COMPLETE,
fatal protocol error

ALLOW_COLDSTART 5 RESET

RUN 6 RESET, FREEZE,
fatal protocol error

WAKEUP 7 RESET, FREEZE,
fatal protocol error

DEFAULT_CONFIG 8 RESET, FREEZE,
fatal protocol error

CONFIG 9 RESET

HALT (lowest) 10 RESET, FREEZE, READY, CONFIG_COMPLETE,
fatal protocol error

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-149
 Preliminary

The following sequence must be executed by the application to put the protocol into the
POC:default config state.

1. Repeatedly send Protocol Command FREEZE via Protocol Operation Control Register (POCR),
until the freeze bit FRZ in Protocol Status Register 1 (PSR1) is set.

2. Repeatedly send Protocol Command DEFAULT_CONFIG via Protocol Operation Control
Register (POCR), until the freeze bit FRZ bit in Protocol Status Register 1 (PSR1) is cleared and
the PROTSTATE field in Protocol Status Register 0 (PSR0) is set to POC:default config.

30.7.6 Message Buffer Search on Simple Message Buffer Configuration

This sections describes the message buffer search behavior for a simplified message buffer configuration.
The receive FIFO behavior is not considered in this section.

30.7.6.1 Simple Message Buffer Configuration

A simple message buffer configuration is a configuration that has at most one transmit message buffer and
at most one receive message buffer assigned to a slot S. The simple configuration used in this section
utilizes two message buffers, one single buffered transmit message buffer and one receive message buffer.

The transmit message buffer has the message buffer number t and has following configuration

The availability of data in the transmit buffer is indicated by the commit bit MBCCSRt[CMT] and the lock
bit MBCCSRt[LCKS].

The receive message buffer has the message buffer number r and has following configuration

Table 30-116. Transmit Buffer Configuration

Register Field Value Description

MBCCSRt
MCM - used only for double buffers

MBT 0 single transmit buffer

MTD 1 transmit buffer

MBCCFRt

MTM 0 event transition mode

CHA 1 assigned to channel A

CHB 0 not assigned to channel B

CCFE 1 cycle counter filter enabled

CCFMSK 000011
cycle set = {4n} = {0,4,8,12,...}

CCFVAL 000000

MBFIDRt FID S assigned to slot S

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-150 Freescale Semiconductor
 Preliminary

Furthermore the assumption is that both message buffers are enabled (MBCCSRt[EDS] = 1 and
MBCCSRr[EDS] = 1)

NOTE
The cycle set {4n+2} = {2,6,10, ...} is assigned to the receive buffer only.

The cycle set {4n} = {0,4,8,12, ...} is assigned to both buffers.

30.7.6.2 Behavior in static segment

In this case, both message buffers are assigned to a slot S in the static segment.

The configuration of a transmit buffer for a static slot S assigns this slot to the node as a transmit slot. The
FlexRay protocol requires:

• When a slot occurs, if the slot is assigned to a node on a channel that node must transmit either a
normal frame or a null frame on that channel. Specifically, a null frame will be sent if there is no
data ready, or if there is no match on a transmit filter (cycle counter filtering, for example).

Regardless of the availability of data and the cycle counter filter, the node will transmit a frame in the static
slot S. In any case, the result of the message buffer search will be the transmit message buffer t. The receive
message buffer r will not be found, no reception is possible.

30.7.6.3 Behavior in dynamic segment

In this case, both message buffers are assigned to a slot S in the dynamic segment. The FlexRay protocol
requires:

• When a slot occurs, if a slot is assigned to a node on a channel that node only transmits a frame on
that channel if there is data ready and there is a match on relevant transmit filters (no null frames
are sent).

Table 30-117. Receive Buffer Configuration

Register Field Value Description

MBCCSRr
MCM - n/a

MBT - n/a

MTD 0 receive buffer

MBCCFr

MTM - n/a

CHA 1 assigned to channel A

CHB 0 not assigned to channel B

CCFE 1 cycle counter filter enabled

CCFMSK 000001
cycle set = {2n} = {0,2,4,6, ... }

CCFVAL 000000

MBFIDRr FID S subscribed slot

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 30-151
 Preliminary

The transmission of a frame in the dynamic segment is determined by the availability of data and the match
of the cycle counter filter of the transmit message buffer.

30.7.6.3.1 Transmit Data Not Available

If transmit data are not available, i.e. the transmit buffer is not committed MBCCSRt[CMT]=0 and/or
locked MBCCSRt[LCKS]=1,

c) for the cycles in the set {4n}, which is assigned to both buffers, the receive buffer will be found
and the node can receive data, and

d) for the cycles in the set {4n+2}, which is assigned to the receive buffer only, the receive buffer
will be found and the node can receive data.

The receive cycles are shown in Figure 30-145

Figure 30-145. Transmit Data Not Available

30.7.6.3.2 Transmit Data Available

If transmit data are available, i.e. the transmit buffer is committed MBCCSRt[CMT]=1 and not locked
MBCCSRt[LCKS]=0,

e) for the cycles in the set {4n}, which is assigned to both buffers, the transmit buffer will be found
and the node transmits data.

f) for the cycles in the set {4n+2}, which is assigned to the receive buffer only, the receive buffer
will be found and the node can receive data.

The receive and transmit cycles are shown in Figure 30-145

Figure 30-146. Transmit Data Not Available

0

RX

1 2

RX

3 4

RX

5 6

RX

7 59 60

RX

61 62

RX

8

RX

63

0

TX

1 2

RX

3 4

TX

5 6

RX

7 59 60

TX

61 62

RX

8

TX

63

FlexRay Communication Controller (FLEXRAY)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

30-152 Freescale Semiconductor
 Preliminary

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-1
 Preliminary

Chapter 31
Enhanced Queued Analog-to-Digital Converter (eQADC)

31.1 Introduction
The enhanced queued analog-to-digital converter (eQADC) provides accurate and fast conversions for a
range of applications. The eQADC provides a parallel interface to a single on-chip analog-to-digital
converter (ADC). The on-chip ADC is architected to allow access to all the analog channels.

The eQADC transfers commands from multiple command FIFOs (CFIFOs) to the on-chip ADC. The
block can also receive data from the on-chip ADC into multiple result FIFOs (RFIFOs), in parallel to and
independently of the CFIFOs. The eQADC supports software and external hardware triggers from other
blocks to initiate transfers of commands from the CFIFOs to the on-chip ADC. It also monitors the fullness
of CFIFOs and RFIFOs, and accordingly generates DMA or interrupt requests to control data movement
between the FIFOs and the system memory.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-2 Freescale Semiconductor
 Preliminary

31.1.1 Block Diagram

Figure 31-1 shows the primary components inside the eQADC.

Figure 31-1. eQADC Block Diagram

Figure 31-1shows the primary components inside the eQADC. The eQADC consists of the FIFO control
unit, which controls the CFIFOs and the RFIFOs, and the ADC control logic, which controls the on-chip
ADC. There are six CFIFOs and six RFIFOs, each with four entries.

The FIFO control unit performs the following functions:

• It prioritizes the CFIFOs to determine what CFIFOs will have their commands transferred.

• Supports software and hardware triggers to start command transfers from a particular CFIFO.

• Decodes result data from the on-chip ADC, and transfers data to the appropriate RFIFO.

The ADC control logic manages the execution of commands bound for the on-chip ADC. It interfaces with
the CFIFOs via one 2-entry command buffer (CBuffer) and with the RFIFOs via the result format and
calibration sub-block. The ADC control logic performs the following functions:

• Buffers command data for execution.

• Decodes command data and accordingly generates control signals for the on-chip ADC.

Command
buffer 0

AN8/ANW

AN9/ANX/TBIAS

AN10/ANY

AN11/ANZ

AN12/T50PVREF

REFBYPC/T75PVREF

AN7/T25PVREF_LOW

AN5/T25PVREF

AN5/T50PVREF

AN4/T100PVREF

AN3/T0PVREF

AN2/TBIAS

AN1/T50PVREF_LOW

AN0

MUX
40:1

MA0
MA1
MA2

VDDA
VSSA

VRH
VRL

User-Defined
Command

Queue

System
MemoryCFIFOn

ADC0

Result
format

and
calibration
submodule

Priority

ADC control
logic

FIFO control
unit

Decoder
BIAS
GEN

MUX
control
logic

User-Defined
Result
Queue

eDMA and
interrupt
requests

eDMA
transaction
done signals

eQADC

Channel
number

(32-bits)

RFIFOn
(16-bits)

n = 0, 1, 2, 3, 4, 5

Some signals at pins denoted by

NOTES:

REF
GEN

Pre-charge

 may be muxed on a single
package pin.

AN13/T25PVREF

AN14/T75PVREF

AN15,AN19–39

AN16/ANR
AN17/ANS

AN18/ANT

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-3
 Preliminary

• Formats and calibrates conversion result data coming from the on-chip ADC.

• Generates the internal multiplexer control signals and the select signals used by the external
multiplexers.

Figure 31-1 also depicts data flow through the eQADC. Commands are contained in system memory in an
user defined data structure. The most likely data structure to be used is a queue as depicted in the
Figure 31-11. Command data is moved from the command queue (CQueue) to the CFIFOs by either the
host CPU or by the DMAC. After a CFIFO is triggered and becomes the highest priority CFIFO using a
certain CBuffer, command data is transferred from the CFIFO to the ADC on chip. The ADC executes the
command, and the result is moved through the result format and calibration sub-block to the RFIFO
specified by a field in the command that initiated the conversion. When data is stored in an RFIFO, data
is moved from the RFIFO by the host CPU or by the DMAC to a data structure in system memory depicted
in the Figure 31-1 as a result queue (RQueue).

31.1.2 Features

The eQADC has these major features:

• One on-chip RSD cyclic ADC

— 12-bit AD resolution

— Targets up to 9-bit accuracy at 400 KSample/s (ADC_CLK=6 MHz) (the actual accuracy is
TBD, subject to the final characterization)

— Single-ended signal range from 0 to 5 V

— Sample times of 2 (default), 8, 64, or 128 ADC clock cycles

— Provides time stamp information when requested

— Parallel interface to eQADC CFIFOs and RFIFOs

— Supports both right-justified unsigned and signed formats for conversion results

— The REFBYPC is a stable reference voltage for the eQADC and is used to connect a 100 nF
bypass capacitor between the REFBYPC pin and VRL.

• Automatic application of ADC calibration constants

— Provision of reference voltages (25% VREF2 and 75% VREF) for ADC calibration purposes

• 40 input channels available to the on-chip ADC

• Priority-based CFIFOs

— Supports six CFIFOs with fixed priority. The lower the CFIFO number, the higher its priority.
When commands of distinct CFIFOs are bound for the same CBuffer, the higher priority
CFIFO is always served first.

— Supports software and several hardware trigger modes to arm a particular CFIFO

— Generates interrupt when command coherency is not achieved

• External hardware triggers

1. Command and result data can be stored in system memory in any user defined data structure. However, in this document it
will be assumed that the data structure of choice is a queue, since it is the most likely data structure to be used and because
queues are the only type of data structure supported by the DMAC.

2. VREF=VRH–VRL.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-4 Freescale Semiconductor
 Preliminary

— Supports rising-edge, falling-edge, high-level, and low-level triggers

— Supports configurable digital filter

NOTE
If a PIT trigger is selected as the source of the trigger, then the trigger pulse
width will be two PIT clocks long. The PIT clock may be the system clock
divided by 1, 2, 4, or 8 as selected by the SIU_SYSCLK[LPCLKDIV1]
register. Thus the eQADC digital filtering needs to be set appropriately.

• Supports seven external 8-to-1 muxes which can expand the input channel number from 40 to 68

• Upgrades the functionality provided by the QADC

31.1.3 Modes of Operation

31.1.4 Normal Mode

This is the default operational mode when the eQADC is not in background debug mode.

31.1.5 Debug Mode

Upon detection of a debug mode entry request, the eQADC enters debug mode if entry to this mode is
enabled. During debug mode, the eQADC will not transfer commands from any CFIFOs, no data will be
returned to any RFIFO, no hardware trigger event will be captured, and all eQADC registers can be
accessed as in normal mode. If there are commands in the on-chip CBuffers that were already under
execution at the time the debug mode entry request is detected, these commands will be completed but the
generated results, if any, will not be sent to the RFIFOs until debug mode is exited. Commands whose
execution has not started will not be executed until debug mode is exited. The clock associated with an
on-chip ADC stops during its low phase, after the ADC ceases executing commands. The time base
counter will stop only after the on-chip ADC ceases executing commands.

When exiting debug mode, the eQADC relies on the CFIFO operation modes and on the CFIFO status to
determine the next command entry to transfer.

The eQADC internal behavior after the debug mode entry request is detected differs depending on the
status of command transfers.

• No command transfer is in progress.

The eQADC immediately halts future command transfers from any CFIFO.

• Command transfer is in progress.

eQADC will complete the transfer and update CFIFO status before halting future command
transfers from any CFIFO.

If the command message transmission is aborted, the eQADC will complete the abort procedure
before halting future command transfers from any CFIFO. The message of the CFIFO that caused
the abort of the previous serial transmission will only be transmitted after debug mode is exited.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-5
 Preliminary

31.1.5.1 Stop Mode

Upon a stop mode entry request detection based on setting the SIU HLT bit for the eQADC, the eQADC
progressively halts its operations until it reaches a static, stable state from which it can recover when
returning to normal mode. The eQADC then asserts an acknowledge signal, indicating that it is static and
that the clock input can be stopped. The acknowledge signal is visible via the SIU HLT_ACK bit for the
eQADC.

If at the time the stop mode entry request is detected, there are commands in the ADC that were already
under execution, these commands will be completed but the generated results, if any, will not be sent to
the RFIFOs until stop mode is exited. Commands whose execution has not started will not be executed
until stop mode is exited.

After these remaining commands are executed, the clock input to the ADCs is stopped. The time base
counter will stop after all on-chip ADCs cease executing commands and then the stop acknowledge signal
is asserted. When exiting stop mode, the eQADC relies on the CFIFO operation modes and on the CFIFO
status to determine the next command entry to transfer.

The eQADC internal behavior after the stop mode entry request is detected differs depending on the status
of the command transfer.

• No command transfer is in progress

The eQADC immediately halts future command transfers from any CFIFO.

If a null message is being transmitted, eQADC will complete the transmission before halting future
command transfers. If valid data (conversion result or data read from an ADC register) is received
at the end of the transmission, it will not be sent to an RFIFO until stop mode is exited.

If the null message transmission is aborted, the eQADC will complete the abort procedure before
halting future command transfers from any CFIFO. The message of the CFIFO that caused the
abort of the previous serial transmission will only be transmitted after stop mode is exited.

• Command transfer is in progress.

The eQADC will complete the transfer and update CFIFO status before halting future command
transfers from any CFIFO.

If the command message transmission is aborted, the eQADC will complete the abort procedure
before halting future command transfers from any CFIFO. The message of the CFIFO that caused
the abort of the previous serial transmission will only be transmitted after stop mode is exited.

31.2 External Signal Description
Refer to Table 2-1 and Section 2.7, “Detailed External Signal Descriptions,” for detailed signal
descriptions.

31.3 Memory Map and Registers
This section provides a detailed description of all eQADC registers.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-6 Freescale Semiconductor
 Preliminary

31.3.1 Module Memory Map

The eQADC memory map is shown in Table 31-1. The address of each register is given as an offset to the
eQADC base address. Registers are listed in address order, identified by complete name and mnemonic,
and list the type of accesses allowed.

Table 31-1. eQADC Memory Map

Offset from
EQADC_BASE
(0xFFF8_0000)

Register Access Reset Value Section/Page

0x0000 eQADC Module Configuration Register (EQADC_MCR) R/W 31.3.3.1/31-9

0x0004 Reserved

0x0008 eQADC Null Message Send Format Register
(EQADC_NMSFR)

R/W 31.3.3.2/31-10

0x000C eQADC External Trigger Digital Filter Register
(EQADC_ETDFR)

R/W 31.3.3.3/31-10

0x0010 eQADC CFIFO Push Register 0 (EQADC_CFPR0) W 31.3.3.4/31-12

0x0014 eQADC CFIFO Push Register 1 (EQADC_CFPR1) W

0x0018 eQADC CFIFO Push Register 2 (EQADC_CFPR2) W

0x001C eQADC CFIFO Push Register 3 (EQADC_CFPR3) W

0x0020 eQADC CFIFO Push Register 4 (EQADC_CFPR4) W

0x0024 eQADC CFIFO Push Register 5 (EQADC_CFPR5) W

0x0028 Reserved

0x002C Reserved

0x0030 eQADC Result FIFO Pop Register 0 (EQADC_RFPR0) R 31.3.3.5/31-12

0x0034 eQADC Result FIFO Pop Register 1 (EQADC_RFPR1) R

0x0038 eQADC Result FIFO Pop Register 2 (EQADC_RFPR2) R

0x003C eQADC Result FIFO Pop Register 3 (EQADC_RFPR3) R

0x0040 eQADC Result FIFO Pop Register 4 (EQADC_RFPR4) R

0x0044 eQADC Result FIFO Pop Register 5 (EQADC_RFPR5) R

0x0048 Reserved

0x004C Reserved

0x0050 eQADC CFIFO Control Register 0 (EQADC_CFCR0) R/W 31.3.3.6/31-13

0x0052 eQADC CFIFO Control Register 1 (EQADC_CFCR1) R/W

0x0054 eQADC CFIFO Control Register 2 (EQADC_CFCR2) R/W

0x0056 eQADC CFIFO Control Register 3 (EQADC_CFCR3) R/W

0x0058 eQADC CFIFO Control Register 4 (EQADC_CFCR4) R/W

0x005A eQADC CFIFO Control Register 5 (EQADC_CFCR5) R/W

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-7
 Preliminary

0x005C Reserved

0x0060 eQADC Interrupt and eDMA Control Register 0
(EQADC_IDCR0)

R/W 31.3.3.7/31-15

0x0062 eQADC Interrupt and eDMA Control Register1
(EQADC_IDCR1)

R/W

0x0064 eQADC Interrupt and eDMA Control Register 2
(EQADC_IDCR2)

R/W

0x0066 eQADC Interrupt and eDMA Control Register 3
(EQADC_IDCR3)

R/W

0x0068 eQADC Interrupt and eDMA Control Register 4
(EQADC_IDCR4)

R/W

0x006A eQADC Interrupt and eDMA Control Register 5
(EQADC_IDCR5)

R/W

0x006C Reserved

0x0070 eQADC FIFO and Interrupt Status Register 0
(EQADC_FISR0)

R/W 31.3.3.8/31-17

0x0074 eQADC FIFO and Interrupt Status Register 1
(EQADC_FISR1)

R/W

0x0078 eQADC FIFO and Interrupt Status Register 2
(EQADC_FISR2)

R/W

0x007C eQADC FIFO and Interrupt Status Register 3
(EQADC_FISR3)

R/W

0x0080 eQADC FIFO and Interrupt Status Register 4
(EQADC_FISR4)

R/W

0x0084 eQADC FIFO and Interrupt Status Register 5
(EQADC_FISR5)

R/W

0x0088 Reserved

0x008C Reserved

Table 31-1. eQADC Memory Map (continued)

Offset from
EQADC_BASE
(0xFFF8_0000)

Register Access Reset Value Section/Page

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-8 Freescale Semiconductor
 Preliminary

0x0090 eQADC CFIFO Transfer Counter Register 0
(EQADC_CFTCR0)

R/W 31.3.3.9/31-21

0x0092 eQADC CFIFO Transfer Counter Register 1
(EQADC_CFTCR1)

R/W

0x0094 eQADC CFIFO Transfer Counter Register 2
(EQADC_CFTCR2)

R/W

0x0096 eQADC CFIFO Transfer Counter Register 3
(EQADC_CFTCR3)

R/W

0x0098 eQADC CFIFO Transfer Counter Register 4
(EQADC_CFTCR4)

R/W

0x009A eQADC CFIFO Transfer Counter Register 5
(EQADC_CFTCR5)

R/W

0x009C Reserved

0x00A0 eQADC CFIFO Status Snapshot Register
(EQADC_CFSSR)

R 31.3.3.10/31-21

0x00A4 Reserved

0x00A8 Reserved

0x00AC eQADC CFIFO Status Register (EQADC_CFSR) R 31.3.3.11/31-22

0x00B0 Reserved

0x00B4 Reserved

0x00B8 Reserved

0x00BC– 0x00FC Reserved

0x0100–0x010C eQADC CFIFO0 Registers (EQADC_CF0Rw) (w=0, .., 3) R 31.3.3.12/31-23

0x0110–0x013C Reserved

0x0140–0x014C eQADC CFIFO1 Registers (EQADC_CF1Rw) (w=0, .., 3) R 31.3.3.12/31-23

0x0150–0x017C Reserved

0x0180– 0x018C eQADC CFIFO2 Registers (EQADC_CF2Rw) (w=0, .., 3) R 31.3.3.12/31-23

0x0190–0x01BC Reserved

0x01C0– 0x01CC eQADC CFIFO3 Registers (EQADC_CF3Rw) (w=0, .., 3) R 31.3.3.12/31-23

0x01D0–0x01FC Reserved

0x0200– 0x020C eQADC CFIFO4 Registers (EQADC_CF4Rw) (w=0, .., 3) R 31.3.3.12/31-23

0x0210–0x023C Reserved

0x0240–0x024C eQADC CFIFO5 Registers (EQADC_CF5Rw) (w=0, .., 3) R 31.3.3.12/31-23

0x0250–0x02FC Reserved

Table 31-1. eQADC Memory Map (continued)

Offset from
EQADC_BASE
(0xFFF8_0000)

Register Access Reset Value Section/Page

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-9
 Preliminary

31.3.2 Register Descriptions

This section lists the eQADC registers in address order and describes the registers and their bit fields.

31.3.3 eQADC Register Descriptions

31.3.3.1 eQADC Module Configuration Register (EQADC_MCR)

The EQADC_MCR contains bits used to control how the eQADC responds to a debug mode entry request.

0x0300–0x030C eQADC RFIFO0 Registers (EQADC_RF0Rw) (w=0, .., 3) R 31.3.3.13/31-24

0x0310–0x033C Reserved

0x0340 - 0x034C eQADC RFIFO1 Registers (EQADC_RF1Rw) (w=0, .., 3) R 31.3.3.13/31-24

0x0350–0x037C Reserved

0x0380–0x038C eQADC RFIFO2 Registers (EQADC_RF2Rw) (w=0, .., 3) R 31.3.3.13/31-24

0x0390–0x03BC Reserved

0x03C0–0x03CC eQADC RFIFO3 Registers (EQADC_RF3Rw) (w=0, .., 3) R 31.3.3.13/31-24

0x03D0–0x03FC Reserved

0x0400– 0x040C eQADC RFIFO4 Registers (EQADC_RF4Rw) (w=0, .., 3) R 31.3.3.13/31-24

0x0410–0x043C Reserved

0x0440–0x044C eQADC RFIFO5 Registers (EQADC_RF5Rw) (w=0, .., 3) R 31.3.3.13/31-24

0x0450–0x07FC Reserved

Offset: Base+ 0x0000 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DBG

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-2. eQADC Module Configuration Register (EQADC_MCR)

Table 31-1. eQADC Memory Map (continued)

Offset from
EQADC_BASE
(0xFFF8_0000)

Register Access Reset Value Section/Page

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-10 Freescale Semiconductor
 Preliminary

31.3.3.2 eQADC Null Message Send Format Register (EQADC_NMSFR)

The EQADC_NMSFR defines the format of the null message sent to the external device.

NOTE
The eQADC null message send format register affects only how the eQADC
sends a null message, but it has no control on how the eQADC detects a null
message on receiving data. The eQADC detects a null message by decoding
the MESSAGE_TAG field on the receive data. Refer to Table 31-26 for
more information on the MESSAGE_TAG field.

31.3.3.3 eQADC External Trigger Digital Filter Register (EQADC_ETDFR)

The EQADC_ETDFR is used to set the minimum time a signal must be held in a logic state on the CFIFO
triggers inputs to be recognized as an edge or level gated trigger. The digital filter length field specifies the
minimum number of system clocks that the digital filter counter must count to recognize a logic state
change.

Table 31-2. EQADC_MCR Field Descriptions

Field Description

bits 0–29 Reserved.

DBG Debug Enable. Defines the eQADC response to a debug mode entry request.
00 Do not enter debug mode
01 Reserved
10 Enter debug mode. If the eQADC SSI is enabled, FCK stops while the eQADC is in debug mode.
11 Enter debug mode. If the eQADC SSI is enabled, FCK is free running while the eQADC is in debug mode

Offset: Base + 0x0008 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
NMF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
NMF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-3. eQADC Null Message Send Format Register (EQADC_NMSFR)

Table 31-3. EQADC_NMSFR Field Descriptions

Field Description

bits 0–5 Reserved.

NMF Null Message Format. Contains the programmable null message send value for the eQADC.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-11
 Preliminary

Offset: Base + 0x000C Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
DFL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-4. eQADC External Trigger Digital Filter Register (EQADC_ETDFR)

Table 31-4. EQADC_ETDFR Field Description Table

Field Description

bits 0–27 Reserved.

DFL Digital Filter Length. Specifies the minimum number of system clocks that must the digital filter counter must count
to recognize a logic state change. The count specifies the sample period of the digital filter which is calculated
according to the following equation:

Minimum clock counts for which an ETRIG signal needs to be stable to be passed through the filter are shown in
Table 31-5.
Note: The DFL field must only be written when the MODEn of all CFIFOs are configured to disabled.

Table 31-5. Minimum Required Time to Valid ETRIG

DFL Minimum Clock Count
Minimum Time (ns)

(System Clock = 66 MHz)

0b0000 2 30.30

0b0001 3 45.45

0b0010 5 75.76

0b0011 9 136.36

0b0100 17 257.58

0b0101 33 500.00

0b0110 65 984.85

0b0111 129 1954.55

0b1000 257 3893.94

0b1001 513 7772.73

0b1010 1025 15530.30

0b1011 2049 31045.45

0b1100 4097 62075.76

0b1101 8193 124136.36

FilterPeriod S(ystemClockPeriod 2
DFL)× 1 S(ystemClockPeriod)+=

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-12 Freescale Semiconductor
 Preliminary

31.3.3.4 eQADC CFIFO Push Registers 0–5 (EQADC_CFPRn)

The EQADC_CFPRs provide a mechanism to fill the CFIFOs with command messages from the command
queues. Refer to Section 31.4.3, “eQADC Command FIFOs,” for more information on the CFIFOs and to
Section 31.4.1.1, “Message Format in eQADC,” for a description on command message formats.

31.3.3.5 eQADC Result FIFO Pop Registers 0–5 (EQADC_RFPRn)

The eQADC_RFPRs provide a mechanism to retrieve data from RFIFOs.

0b1110 16385 248257.58

0b1111 32769 496500.00

Offset: Base + 0x0010 (EQADC_CFPR0)
Base + 0x0014 (EQADC_CFPR1);
Base + 0x0018 (EQADC_CFPR2)
Base + 0x001C (EQADC_CFPR3)
Base + 0x0020 (EQADC_CFPR4)
Base + 0x0024 (EQADC_CFPR5)

Access: Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W CF_PUSHn

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W CF_PUSHn

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-5. eQADC CFIFO Push Registers 0–5 (EQADC_CFPRn)

Table 31-6. EQADC_CFPRn Field Descriptions

Field Description

CF_PUSHn CFIFO Push Data n. When CFIFOn is not full, writing to the whole word or any bytes of EQADC_CFPRn will push
the 32-bit CF_PUSHn value into CFIFOn. Writing to the CF_PUSHn field also increments the corresponding
CFCTRn value by one in Section 31.3.3.8, “eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn).”
When the CFIFOn is full, the eQADC ignores any write to the CF_PUSHn. Reading the EQADC_CFPRn always
returns 0.
Note: Only whole words must be written to EQADC_CFPR. Writing halfwords or bytes to EQADC_CFPR will still

push the whole 32-bit CF_PUSH field into the corresponding CFIFO, but undefined data will fill the areas
of CF_PUSH that were not specifically designated as target locations for the write.

Table 31-5. Minimum Required Time to Valid ETRIG (continued)

DFL Minimum Clock Count
Minimum Time (ns)

(System Clock = 66 MHz)

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-13
 Preliminary

NOTE
The EQADC_RFPRn must not be read speculatively. For future
compatibility, the TLB entry covering the EQADC_RFPRn must be
configured to be guarded.

31.3.3.6 eQADC CFIFO Control Registers 0–5 (EQADC_CFCRn)

The eQADC_CFCRs contain bits that affect CFIFOs. These bits specify the CFIFO operation mode and
can invalidate all of the CFIFO contents.

Offset: Base + 0x0030 (EQADC_RFPR0)
Base + 0x0034 (EQADC_RFPR1)
Base + 0x0038 (EQADC_RFPR2)
Base + 0x003C (EQADC_RFPR3)
Base + 0x0040 (EQADC_RFPR4)
Base + 0x0044 (EQADC_RFPR5)

Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RF_POPn

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-6. eQADC RFIFO Pop Registers 0–5 (EQADC_RFPRn)

Table 31-7. EQADC_RFPRn Field Descriptions

Field Description

bits 0–15 Reserved.

RF_POPn Result FIFO Pop Data n. When RFIFOn is not empty, the RF_POPn contains the next unread entry value of RFIFOn.
Reading the whole word, a halfword, or any bytes of EQADC_RFPRn will pop one entry from RFIFOn, and the
corresponding RFCTRn value will be decremented by 1 (See Section 31.3.3.8, “eQADC FIFO and Interrupt Status
Registers 0–5 (EQADC_FISRn).” When the RFIFOn is empty, any read on EQADC_RFPRn returns undefined data
value and does not decrement the RFCTRn value. Writing to EQADC_RFPRn has no effect.

Offset: EQADC_BASE + 0x0050 (EQADC_CFCR0)
EQADC_BASE + 0x0052 (EQADC_CFCR1)
EQADC_BASE + 0x0054 (EQADC_CFCR2)
EQADC_BASE + 0x0056 (EQADC_CFCR3)
EQADC_BASE + 0x0058 (EQADC_CFCR4);
EQADC_BASE + 0x005A (EQADC_CFCR5)

Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
MODEn

0 0 0 0

W SSEn CFINVn

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-7. eQADC CFIFO Control Registers (EQADC_CFCRn)

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-14 Freescale Semiconductor
 Preliminary

Table 31-8. EQADC_CFCRn Field Descriptions

Field Description

bits 0–4 Reserved.

SSEn CFIFO Single-Scan Enable Bit n. Used to set the SSSn bit, as described in Section 31.3.3.8, “eQADC FIFO and
Interrupt Status Registers 0–5 (EQADC_FISRn).” Writing a 1 to SSEn will set the SSSn if the CFIFO is in
single-scan mode. When SSSn is already asserted, writing a 1 to SSEn has no effect. If the CFIFO is in
continuous-scan mode or is disabled, writing a 1 to SSEn will not set SSSn. Writing a 0 to SSEn has no effect.
SSEn always is read as 0.
0 No effect.
1 Set the SSSn bit.

CFINVn CFIFO Invalidate Bit n. Causes the eQADC to invalidate all entries of CFIFOn. Writing a 1 to CFINVn will reset
the value of CFCTRn in the EQADC_FISR register (refer to Section 31.3.3.8, “eQADC FIFO and Interrupt Status
Registers 0–5 (EQADC_FISRn).” Writing a 1 to CFINVn also resets the push next data pointer, transfer next data
pointer to the first entry of CFIFOn in Figure 31-27. CFINVn always is read as 0. Writing a 0 has no effect.
0 No effect.
1 Invalidate all of the entries in the corresponding CFIFO.
Note: Writing CFINVn only invalidates commands stored in CFIFOn; previously transferred commands that are

waiting for execution, that is commands stored in the ADC command buffer, will still be executed, and
results generated by them will be stored in the appropriate RFIFO.

Note: CFINVn must not be written unless the MODEn is configured to disabled, and CFIFO status is IDLE.

bit 7 Reserved.

MODEn CFIFO Operation Mode n. Selects the CFIFO operation mode for CFIFOn. Refer to Section 31.4.3.5, “CFIFO
Scan Trigger Modes,” for more information on CFIFO trigger mode.
Note: If MODEn is not disabled, it must not be changed to any other mode besides disabled. If MODEn is

disabled and the CFIFO status is IDLE, MODEn can be changed to any other mode.

bits 12–15 Reserved.

Table 31-9. CFIFO Operation Mode Table

MODEn CFIFO Operation Mode

0b0000 Disabled

0b0001 Software trigger, single scan

0b0010 Low-level gated external trigger, single scan

0b0011 High-level gated external trigger, single scan

0b0100 Falling-edge external trigger, single scan

0b0101 Rising-edge external trigger, single scan

0b0110 Falling- or rising-edge external trigger, single scan

0b0111–0b1000 Reserved

0b1001 Software trigger, continuous scan

0b1010 Low-level gated external trigger, continuous scan

0b1011 High-level gated external trigger, continuous scan

0b1100 Falling-edge external trigger, continuous scan

0b1101 Rising-edge external trigger, continuous scan

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-15
 Preliminary

31.3.3.7 eQADC Interrupt and eDMA Control Registers 0–5 (EQADC_IDCRn)

The eQADC_IDCRs contain bits to enable the generation of interrupt or eDMA requests when the
corresponding flag bits are set in EQADC_FISRn (Section 31.3.3.8, “eQADC FIFO and Interrupt Status
Registers 0–5 (EQADC_FISRn)”).

0b1110 Falling- or rising-edge external trigger, continuous scan

0b1111 Reserved

Offset: EQADC_BASE + 0x0060 (EQADC_IDCR0)
EQADC_BASE + 0x0062 (EQADC_IDCR1)
EQADC_BASE + 0x0064 (EQADC_IDCR2)
EQADC_BASE + 0x0066 (EQADC_IDCR3)
EQADC_BASE + 0x0068 (EQADC_IDCR4)
EQADC_BASE + 0x006A (EQADC_IDCR5)

Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R NCI
En

TORI
En

PIEn
EOQI

En
CFUI
En

0 CFF
En

CFF
Sn

0 0 0 0 RFOI
En

0 RFD
En

RFD
SnW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-8. eQADC Interrupt and eDMA Control Registers 0–5 (EQADC_IDCRn)

Table 31-10. EQADC_IDCRn Field Descriptions

Field Description

NCIEn Non-Coherency Interrupt Enable n. Enables the eQADC to generate an interrupt request when the
corresponding NCFn, described in Section 31.3.3.8, “eQADC FIFO and Interrupt Status Registers 0–5
(EQADC_FISRn),” is asserted.
0 Disable non-coherency interrupt request
1 Enable non-coherency interrupt request

TORIEn Trigger Overrun Interrupt Enable n. Enables the eQADC to generate an interrupt request when the corresponding
TORFn (described in Section 31.3.3.8, “eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn)”) is
asserted.
Apart from generating an independent interrupt request for a CFIFOn trigger overrun event, the eQADC also
provides a combined interrupt at which the result FIFO overflow interrupt, the command FIFO underflow interrupt,
and the command FIFO trigger overrun interrupt requests of all CFIFOs are ORed. When RFOIEn, CFUIEn, and
TORIEn are all asserted, this combined interrupt request is asserted whenever one of the following 18 flags
becomes asserted: RFOFn, CFUFn, and TORFn (assuming that all interrupts are enabled). See Section 31.4.7,
“eQADC eDMA/Interrupt Request,” for details.
0 Disable trigger overrun interrupt request
1 Enable trigger overrun interrupt request

PIEn Pause Interrupt Enable n. Enables the eQADC to generate an interrupt request when the corresponding PFx in
EQADC_FISRn (See Section 31.3.3.8, “eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn)”) is
asserted.
0 Disable pause interrupt request
1 Enable pause interrupt request

Table 31-9. CFIFO Operation Mode Table (continued)

MODEn CFIFO Operation Mode

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-16 Freescale Semiconductor
 Preliminary

EOQIEn End-of-Queue Interrupt Enable n. Enables the eQADC to generate an interrupt request when the corresponding
EOQFn in EQADC_FISRn (See Section 31.3.3.8, “eQADC FIFO and Interrupt Status Registers 0–5
(EQADC_FISRn)”) is asserted.
0 Disable end of queue interrupt request.
1 Enable end of queue interrupt request.

CFUIEn CFIFO Underflow Interrupt Enable n. Enables the eQADC to generate an interrupt request when the
corresponding CFUFn in EQADC_FISRn (See Section 31.3.3.8, “eQADC FIFO and Interrupt Status Registers
0–5 (EQADC_FISRn)”) is asserted.
Apart from generating an independent interrupt request for a CFIFOn underflow event, the eQADC also provides
a combined interrupt at which the result FIFO overflow interrupt, the command FIFO underflow interrupt, and the
command FIFO trigger overrun interrupt requests of all CFIFOs are ORed. When RFOIEn, CFUIEn, and TORIEn
are all asserted, this combined interrupt request is asserted whenever one of the following 18 flags becomes
asserted: RFOFn, CFUFn, and TORFn (assuming that all interrupts are enabled). See Section 31.4.7, “eQADC
eDMA/Interrupt Request,” for details.
0 Disable underflow interrupt request
1 Enable underflow interrupt request

bit 5 Reserved.

CFFEn CFIFO Fill Enable n. Enables the eQADC to generate an interrupt request (CFFSn is asserted) or eDMA request
(CFFSn is negated) when CFFFn in EQADC_FISRn (Section 31.3.3.8, “eQADC FIFO and Interrupt Status
Registers 0–5 (EQADC_FISRn)”) is asserted.
0 Disable CFIFO fill eDMA or interrupt request
1 Enable CFIFO fill eDMA or interrupt request
Note: CFFEn must not be negated while an eDMA transaction is in progress.

CFFSn CFIFO Fill Select n. Selects if an eDMA or interrupt request is generated when CFFFn in EQADC_FISRn (See
Section 31.3.3.8, “eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn)”) is asserted. If CFFEn is
asserted, the eQADC generates an interrupt request when CFFSn is negated, or it generates an eDMA request
if CFFSn is asserted.
0 Generate interrupt request to move data from the system memory to CFIFOn.
1 Generate eDMA request to move data from the system memory to CFIFOn.

Note: DMA access is not supported on CFIFO 2 to 5. These FIFOs can be filled only by interrupt requests.

Note: CFFSn must not be negated while an eDMA transaction is in progress.

bits 8–11 Reserved.

RFOIEn RFIFO Overflow Interrupt Enable n. Enables the eQADC to generate an interrupt request when the
corresponding RFOFn in EQADC_FISRn (See Section 31.3.3.8, “eQADC FIFO and Interrupt Status Registers
0–5 (EQADC_FISRn)”) is asserted.
Apart from generating an independent interrupt request for an RFIFOn overflow event, the eQADC also provides
a combined interrupt at which the result FIFO overflow Interrupt, the command FIFO underflow interrupt, and the
command FIFO trigger overrun interrupt requests of all CFIFOs are ORed. When RFOIEn, CFUIEn, and TORIEn
are all asserted, this combined interrupt request is asserted whenever one of the following 18 flags becomes
asserted: RFOFn, CFUFn, and TORFn (assuming that all interrupts are enabled). See Section 31.4.7, “eQADC
eDMA/Interrupt Request,” for details.
0 Disable overflow interrupt request
1 Enable overflow Interrupt request

bit 13 Reserved.

Table 31-10. EQADC_IDCRn Field Descriptions (continued)

Field Description

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-17
 Preliminary

31.3.3.8 eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn)

The EQADC_FISRs contain flag and status bits for each CFIFO and RFIFO pair. Writing 1 to a flag bit
clears it. Writing 0 has no effect. Status bits are read only. These bits indicate the status of the FIFO itself.

RFDEn RFIFO Drain Enable n. Enables the eQADC to generate an interrupt request (RFDSn is asserted) or eDMA
request (RFDSn is negated) when RFDFn in EQADC_FISRn (See Section 31.3.3.8, “eQADC FIFO and Interrupt
Status Registers 0–5 (EQADC_FISRn)”) is asserted.
0 Disable RFIFO drain eDMA or interrupt request
1 Enable RFIFO drain eDMA or interrupt request
Note: RFDEn must not be negated while an eDMA transaction is in progress.

RFDSn RFIFO Drain Select n. Selects if an eDMA or interrupt request is generated when RFDFn in EQADC_FISRn (See
Section 31.3.3.8, “eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn)”) is asserted. If RFDEn is
asserted, the eQADC generates an interrupt request when RFDSn is negated, or it generates an eDMA request
when RFDSn is asserted.
0 Generate interrupt request to move data from RFIFn to the system memory
1 Generate eDMA request to move data from RFIFOn to the system memory

Note: DMA access is not supported on CFIFO 2 to 5. These FIFOs can be filled only by interrupt requests.
Note: RFDSn must not be negated while an eDMA transaction is in progress.

Offset: Base + 0x0070 (EQADC_FISR0)
Base + 0x0074 (EQADC_FISR1)
Base + 0x0078 (EQADC_FISR2)
Base + 0x007C (EQADC_FISR3)
Base + 0x0080 (EQADC_FISR4)
Base + 0x0084 (EQADC_FISR5)

Access: Read/Write to clear

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R NCFn TORFn PFn EOQFn CFUFn SSSn CFFFn 0 0 0 0 0 RFOFn 0 RFDFn 0

W w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CFCTRn TNXTPTRn RFCTRn POPNXTPTRn

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-9. eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn)

Table 31-10. EQADC_IDCRn Field Descriptions (continued)

Field Description

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-18 Freescale Semiconductor
 Preliminary

Table 31-11. EQADC_FISRn Field Descriptions

Field Description

NCFn Non-Coherency Flag n. NCFn is set whenever a command sequence being transferred through CFIFOn
becomes non-coherent. If NCIEn in EQADC_IDCRn (See Section 31.3.3.7, “eQADC Interrupt and eDMA Control
Registers 0–5 (EQADC_IDCRn)”) and NCFn are asserted, an interrupt request will be generated. Writing a 1
clears NCFn. Writing a 0 has no effect. More for information on non-coherency refer to Section 31.4.3.6.5,
“Command Sequence Non-Coherency Detection.”
0 Command sequence being transferred by CFIFOn is coherent
1 Command sequence being transferred by CFIFOn became non-coherent
Note: Non-coherency means that a command in the command FIFO was not immediately executed, but delayed.

This may occur if the command is pre-empted, where a higher priority queue is triggered and has a
competing conversion command for the same converter.

TORFn Trigger Overrun Flag for CFIFO n. TORFn is set when trigger overrun occurs for the specified CFIFO in edge or
level trigger mode. Trigger overrun occurs when an already triggered CFIFO receives an additional trigger. When
EQADC_IDCRn[TORIEn] is set (See Section 31.3.3.7, “eQADC Interrupt and eDMA Control Registers 0–5
(EQADC_IDCRn)”) and TORFn are asserted, an interrupt request will be generated.
Apart from generating an independent interrupt request for a CFIFOn trigger overrun event, the eQADC also
provides a combined interrupt at which the result FIFO overflow interrupt, the command FIFO underflow interrupt,
and the command FIFO trigger overrun Interrupt requests of all CFIFOs are ORed. When RFOIEn, CFUIEn, and
TORIEn are all asserted, this combined interrupt request is asserted whenever one of the following 18 flags
becomes asserted: RFOFn, CFUFn, and TORFn (assuming that all interrupts are enabled). See Section 31.4.7,
“eQADC eDMA/Interrupt Request,” for details.
Write 1 to clear the TORFn bit. Writing 0 has no effect.
0 No trigger overrun occurred
1 Trigger overrun occurred
Note: The trigger overrun flag will not set for CFIFOs configured for software trigger mode.

PFn Pause Flag n. PF behavior changes according to the CFIFO trigger mode.
 • In edge trigger mode, PFn is set when the eQADC completes the transfer of an entry with an asserted pause

bit from CFIFOn.
 • In level trigger mode, when CFIFOn is in the TRIGGERED state, PFn is set when CFIFO status changes from

TRIGGERED due to the detection of a closed gate.

An interrupt routine, generated due to the asserted PF, can be used to verify if a complete scan of the
user-defined command queue was performed. If a closed gate is detected while no command transfers are taking
place, it will have immediate effect on the CFIFO status. If a closed gate is detected while a command transfer
to an on-chip ADC is taking place, it will only affect the CFIFO status when the transfer completes.

The transfer of entries bound for the on-chip ADC is considered completed when they are stored in the ADC
command buffer. In software trigger mode, PFn will never become asserted.

If PIEn (See Section 31.3.3.7, “eQADC Interrupt and eDMA Control Registers 0–5 (EQADC_IDCRn)”) and PFn
are asserted, an interrupt will be generated. Writing a 1 clears the PFn. Writing a 0 has no effect. Refer to
Section 31.4.3.6.3, “Pause Status,” for more information on pause flag.
0 Entry with asserted pause bit was not transferred from CFIFOn (CFIFO in edge trigger mode), or CFIFO status

did not change from the TRIGGERED state due to detection of a closed gate (CFIFO in level trigger mode).
1 Entry with asserted pause bit was transferred from CFIFOn (CFIFO in edge trigger mode), or CFIFO status

changes from the TRIGGERED state due to detection of a closed gate (CFIFO in level trigger mode).
Note: In edge trigger mode, an asserted PFn only implies that the eQADC has finished transferring a command

with an asserted pause bit from CFIFOn. It does not imply that result data for the current command and
for all previously transferred commands has been returned to the appropriate RFIFO.

Note: In software or level trigger mode, when the eQADC completes the transfer of an entry from CFIFOn with
an asserted pause bit, PFn will not be set and transfer of commands will continue without pausing.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-19
 Preliminary

EOQFn End-of-Queue Flag n. Indicates that an entry with an asserted EOQ bit was transferred from CFIFOn to the
on-chip ADCs or to the external device. See Section 31.4.1.1, “Message Format in eQADC,” for details about
command message formats. When the eQADC completes the transfer of an entry with an asserted EOQ bit from
CFIFOn, EOQFn will be set. The transfer of entries bound for the on-chip ADCs is considered completed when
they are stored in the command buffer. If the EOQIEn bit (See Section 31.3.3.7, “eQADC Interrupt and eDMA
Control Registers 0–5 (EQADC_IDCRn)”) and EOQFn are asserted, an interrupt will be generated. Writing a 1
clears the EOQFn bit. Writing a 0 has no effect. Refer to Section 31.4.3.6.2, “Command Queue Completion
Status,” for more information on end-of-queue flag.
0 Entry with asserted EOQ bit was not transferred from CFIFOn
1 Entry with asserted EOQ bit was transferred from CFIFOn
Note: An asserted EOQFn only implies that the eQADC has finished transferring a command with an asserted

EOQ bit from CFIFOn. It does not imply that result data for the current command and for all previously
transferred commands has been returned to the appropriate RFIFO.

CFUFn CFIFO Underflow Flag n. Indicates an underflow event on CFIFOn. CFUFn is set when CFIFOn is in the
TRIGGERED state and it becomes empty. No commands will be transferred from an underflowing CFIFO, nor
will command transfers from lower priority CFIFOs be blocked. When CFUIEn (see Section Section 31.3.3.7,
“eQADC Interrupt and eDMA Control Registers 0–5 (EQADC_IDCRn)”) and CFUFn are both asserted, the
eQADC generates an interrupt request.
Apart from generating an independent interrupt request for a CFIFOn underflow event, the eQADC also provides
a combined interrupt at which the result FIFO overflow interrupt, the command FIFO underflow interrupt, and the
command FIFO trigger overrun interrupt requests of all CFIFOs are ORed. When RFOIEn, CFUIEn, and TORIEn
are all asserted, this combined interrupt request is asserted whenever one of the following 18 flags becomes
asserted: RFOFn, CFUFn, and TORFn (assuming that all interrupts are enabled). See Section 31.4.7, “eQADC
eDMA/Interrupt Request,” for details. Writing a 1 clears CFUFn. Writing a 0 has no effect.
0 No CFIFO underflow event occurred
1 A CFIFO underflow event occurred

SSSn CFIFO Single-Scan Status Bit n. When asserted, enables the detection of trigger events for CFIFOs programmed
into single-scan level- or edge-trigger mode, and works as trigger for CFIFOs programmed into single-scan
software-trigger mode. Refer to Section 31.4.3.5.2, “Single-Scan Mode,” for further details. The SSSn bit is set
by writing a 1 to the SSEn bit (see Section Section 31.3.3.6, “eQADC CFIFO Control Registers 0–5
(EQADC_CFCRn)”). The eQADC clears the SSSn bit when a command with an asserted EOQ bit is transferred
from a CFIFO in single-scan mode, when a CFIFO is in single-scan level-trigger mode and its status changes
from the TRIGGERED state due to the detection of a closed gate, or when the value of the CFIFO operation
mode MODEn (see Section 31.3.3.6, “eQADC CFIFO Control Registers 0–5 (EQADC_CFCRn)”) is changed to
disabled. Writing to SSSn has no effect. SSSn has no effect in continuous-scan or in disabled mode.
0 CFIFO in single-scan level- or edge-trigger mode will ignore trigger events, or CFIFO in single-scan

software-trigger mode is not triggered.
1 CFIFO in single-scan level- or edge-trigger mode will detect a trigger event, or CFIFO in single-scan

software-trigger mode is triggered.

CFFFn CFIFO Fill Flag n. CFFFn is set when the CFIFOn is not full. When CFFEn (see Section 31.3.3.7, “eQADC
Interrupt and eDMA Control Registers 0–5 (EQADC_IDCRn)”) and CFFFn are both asserted, an interrupt or an
eDMA request will be generated depending on the status of the CFFSn bit. When CFFSn is negated (interrupt
requests selected), software clears CFFFn by writing a 1 to it. Writing a 0 has no effect. When CFFSn is asserted
(eDMA requests selected), CFFFn is automatically cleared by the eQADC when the CFIFO becomes full.
0 CFIFOn is full.
1 CFIFOn is not full.
Note: When generation of interrupt requests is selected (CFFSn=0), CFFFn must only be cleared in the ISR after

the CFIFOn push register is accessed.
Note: CFFFn should not be cleared when CFFSn is asserted (eDMA requests selected).

bits 7–11 Reserved.

Table 31-11. EQADC_FISRn Field Descriptions (continued)

Field Description

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-20 Freescale Semiconductor
 Preliminary

RFOFn RFIFO Overflow Flag n. Indicates an overflow event on RFIFOn. RFOFn is set when RFIFOn is already full, and
a new data is received from the on-chip ADCs or from the external device. The RFIFOn will not overwrite older
data in the RFIFO, and the new data will be ignored. When RFOIEn (see Section 31.3.3.7, “eQADC Interrupt and
eDMA Control Registers 0–5 (EQADC_IDCRn)”) and RFOFn are both asserted, the eQADC generates an
interrupt request.
Apart from generating an independent interrupt request for an RFIFOn overflow event, the eQADC also provides
a combined interrupt at which the result FIFO overflow interrupt, the command FIFO underflow interrupt, and the
command FIFO trigger overrun interrupt requests of all CFIFOs are ORed. When RFOIEn, CFUIEn, and TORIEn
are all asserted, this combined interrupt request is asserted whenever one of the following 18 flags becomes
asserted: RFOFn, CFUFn, and TORFn (assuming that all interrupts are enabled). See Section 31.4.7, “eQADC
eDMA/Interrupt Request,” for details.
Write 1 to clear RFOFn. Writing a 0 has no effect.
0 No RFIFO overflow event occurred.
1 An RFIFO overflow event occurred.

bit 13 Reserved.

RFDFn RFIFO Drain Flag n. Indicates if RFIFOn has valid entries that can be drained or not. RFDFn is set when the
RFIFOn has at least one valid entry in it. When RFDEn (see Section 31.3.3.7, “eQADC Interrupt and eDMA
Control Registers 0–5 (EQADC_IDCRn)”) and RFDFn are both asserted, an interrupt or an eDMA request will
be generated depending on the status of the RFDSn bit. When RFDSn is negated (interrupt requests selected),
software clears RFDFn by writing a 1 to it. Writing a 0 has no effect. When RFDSn is asserted (eDMA requests
selected), RFDFn is automatically cleared by the eQADC when the RFIFO becomes empty.
0 RFIFOn is empty.
1 RFIFOn has at least one valid entry.
Note: In the interrupt service routine, RFDF must be cleared only after the RFIFOn pop register is read.
Note: RFDFn should not be cleared when RFDSn is asserted (eDMA requests selected).

bit 15 Reserved.

CFCTRn CFIFOn Entry Counter. Indicates the number of commands stored in the CFIFOn. When the eQADC completes
transferring a piece of new data from the CFIFOn, it decrements CFCTRn by 1. Writing a word or any bytes to
the corresponding CFIFO Push Register (see Section 31.3.3.4, “eQADC CFIFO Push Registers 0–5
(EQADC_CFPRn)”) increments CFCTRn by 1. Writing any value to CFCTRn has no effect.

TNX
TPTRn

CFIFOn Transfer Next Pointer. Indicates the index of the next entry to be removed from CFIFOn when it
completes a transfer. When TNXTPTRn is 0, it points to the entry with the smallest memory-mapped address
inside CFIFOn. TNXTPTRn is only updated when a command transfer is completed. If the maximum index
number (CFIFO depth minus 1) is reached, TNXTPTRn is wrapped to 0, else, it is incremented by 1. For details
refer to Section 31.4.3.1, “CFIFO Basic Functionality.” Writing any value to TNXTPTRn has no effect.

RFCTRn RFIFOn entry counter. Indicates the number of data items stored in the RFIFOn. When the eQADC stores a piece
of new data into RFIFOn, it increments RFCTRn by 1. Reading the whole word, halfword or any bytes of the
corresponding Result FIFO pop register (see Section 31.3.3.5, “eQADC Result FIFO Pop Registers 0–5
(EQADC_RFPRn)”) decrements RFCTRn by 1. Writing any value to RFCTRn itself has no effect.

POPNX
TPTRn

RFIFOn Pop Next Pointer. Indicates the index of the entry that will be returned when EQADC_RFPRn is read.
When POPNXTPTRn is 0, it points to the entry with the smallest memory-mapped address inside RFIFOn.
POPNXTPTRn is updated when EQADC_RFPRn is read. If the maximum index number (RFIFO depth minus 1)
is reached, POPNXTPTRn is wrapped to 0, else, it is incremented by 1. For details refer to Section 31.4.4.1,
“RFIFO Basic Functionality.” Writing any value to POPNXTPTRn has no effect.

Table 31-11. EQADC_FISRn Field Descriptions (continued)

Field Description

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-21
 Preliminary

31.3.3.9 eQADC CFIFO Transfer Counter Registers 0–5 (EQADC_CFTCRn)

The EQADC_CFTCRs record the number of commands transferred from a CFIFO. The EQADC_CFTCR
supports the monitoring of command transfers from a CFIFO.

31.3.3.10 eQADC CFIFO Status Snapshot Register (EQADC_CFSSR)

The EQADC_CFSSR contains status fields to track the operation status of each CFIFO and the transfer
counter of the last CFIFO to initiate a command transfer to the internal ADC. All fields of
EQADC_CFSSR are captured at the beginning of a command transfer to the buffer.

Note that captured status register values are associated with a previous command transfer. This means that
the EQADC_CFSSR register captures the status register before the status register changes, because of the
transfer of the current command that is about to be popped from the CFIFO. The EQADC_CFSSR is read
only. Writing to EQADC_CFSSR has no effect.

Offset: EQADC_BASE + 0x0090 (EQADC_CFTCR0)
EQADC_BASE + 0x0092 (EQADC_CFTCR1)
EQADC_BASE + 0x0094 (EQADC_CFTCR2)
EQADC_BASE + 0x0096 (EQADC_CFTCR3)
EQADC_BASE + 0x0098 (EQADC_CFTCR4)
EQADC_BASE + 0x009A (EQADC_CFTCR5)

Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
TC_CFn

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-10. eQADC CFIFO Transfer Counter Registers (EQADC_CFTCRn)

Table 31-12. EQADC_CFTCRn Field Descriptions

Field Description

bits 0–4 Reserved.

TC_CFn Transfer Counter for CFIFOn. TC_CFn counts the number of commands that have been completely transferred
from CFIFOn. TC_CFn=2, for example, signifies that two commands have been transferred. The transfer of
entries bound for the on-chip ADCs is considered completed when they are stored in the command buffer. The
eQADC increments the TC_CFn value by 1 after a command is transferred. TC_CFn resets to 0 after eQADC
completes transferring a command with an asserted EOQ bit. Writing any value to TC_CFn sets the counter to
that written value.
Note: If CFIFOn is in the TRIGGERED state when its MODEn field is programmed to disabled, the exact number

of entries transferred from the CFIFO until that point (TC_CFn) is only known after the CFIFO status
changes to IDLE, as indicated by CFSn. For details refer to Section 31.4.3.5.1, “Disabled Mode.”

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-22 Freescale Semiconductor
 Preliminary

31.3.3.11 eQADC CFIFO Status Register (EQADC_CFSR)

The EQADC_CFSR contains the current CFIFO status. The EQADC_CFSRs are read only. Writing to the
EQADC_CFSR has no effect.

Offset: Base + 0x00A0 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CFS0_T0 CFS1_T0 CFS2_T0 CFS3_T0 CFS4_T0 CFS5_T0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 LCFT0 TC_LCFT0

W

Reset 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

Figure 31-11. eQADC CFIFO Status Snapshot Register (EQADC_CFSSR)

Table 31-13. EQADC_CFSSR Field Descriptions

Field Description

CFSn_T0 CFIFO Status At Transfer to ADC0 Command Buffer. Indicates the CFIFOn status at the time a command transfer
to ADC0 command buffer is initiated. CFSn_T0 is a copy of the corresponding CFSn in EQADC_CFSR (see
Section 31.3.3.11, “eQADC CFIFO Status Register (EQADC_CFSR)”) captured at the time a command transfer
to buffern is initiated.

bits 12–16 Reserved.

LCFT0 Last CFIFO to Transfer to ADC0 Command Buffer. Holds the CFIFO number of last CFIFO to have initiated a
command transfer to ADC0 command buffer. LCFT0 has the following values:

TC_LCFT0 Transfer Counter for Last CFIFO to Transfer Commands to ADC0 Command Buffer. Indicates the number of
commands which have been completely transferred from CFIFOn when a command transfer from CFIFOn to
ADC0 command buffer is initiated. TC_LCFT0 is a copy of the corresponding TC_CFn in EQADC_CFTCRn (see
Section 31.3.3.9) captured at the time a command transfer from CFIFOn to ADC0 command buffer is initiated.
This field has no meaning when LCFT0 is 0b1111.

LCFT0 LCFT0 Meaning

0b0000 Last command was transferred from CFIFO0

0b0001 Last command was transferred from CFIFO1

0b0010 Last command was transferred from CFIFO2

0b0011 Last command was transferred from CFIFO3

0b0100 Last command was transferred from CFIFO4

0b0101 Last command was transferred from CFIFO5

0b0110–0b1110 Reserved

0b1111 No command was transferred to ADC0 command buffer

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-23
 Preliminary

31.3.3.12 eQADC CFIFO Registers (EQADC_CF[0–5]Rn)

EQADC_CF[0–5]Rn provide visibility of the contents of a CFIFO for debugging purposes. Each CFIFO
has four registers that are uniquely mapped to its four 32-bit entries. Refer to Section 31.4.3, “eQADC
Command FIFOs,” for more information on CFIFOs. These registers are read only. Data written to these
registers is ignored.

Offset: Base + 0x00AC Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CFS0 CFS1 CFS2 CFS3 CFS4 CFS5 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-12. eQADC CFIFO Status Register (EQADC_CFSR)

Table 31-14. EQADC_CFSR Field Descriptions

Field Description

CFSn CFIFO Status. Indicates the current status of CFIFOn. Refer to Table 31-15 for more information on CFIFO
status.

bits 12–31 Reserved.

Table 31-15. Current CFIFO Status

CFIFO
Status

Field Value Explanation

IDLE 0b00 • CFIFO is disabled.
 • CFIFO is in single-scan edge or level trigger mode and does not have EQADC_FISRn[SSS]

asserted.
 • eQADC completed the transfer of the last entry of the user defined command queue in

single-scan mode.

Reserved 0b01 Not applicable.

WAITING
FOR

TRIGGER

0b10 • CFIFO mode is modified to continuous-scan edge or level trigger mode.
 • CFIFO mode is modified to single-scan edge or level trigger mode and EQADC_FISRn[SSS]

is asserted.
 • CFIFO mode is modified to single-scan software trigger mode and EQADC_FISRn[SSS] is

negated.
 • CFIFO is paused.
 • eQADC transferred the last entry of the queue in continuous-scan edge trigger mode.

TRIGGERED 0b11 CFIFO is triggered

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-24 Freescale Semiconductor
 Preliminary

31.3.3.13 eQADC RFIFO Registers (EQADC_RF[0–5]Rn)

EQADC_RF[0–5]Rn provide visibility of the contents of a RFIFO for debugging purposes. Each RFIFO
has four registers which are uniquely mapped to its four 16-bit entries. Refer to Section 31.4.4, “Result
FIFOs,” for more information on RFIFOs. These registers are read only. Data written to these registers is
ignored.

Offset: CFIFO0: Base + 0x0100 (CF0R0)
Base + 0x0104 (CF0R1)
Base + 0x0108 (CF0R2)
Base + 0x010C (CF0R3)
CFIFO1: Base + 0x0140 (CF1R0)
Base + 0x0144 (CF1R1)
Base + 0x0148 (CF1R2)
Base + 0x014C (CF1R3)
CFIFO2: Base + 0x0180 (CF2R0)
Base + 0x0184 (CF2R1)
Base + 0x0188 (CF2R2)
Base + 0x018C (CF2R3)

CFIFO3: Base + 0x01C0 (CF3R0)
Base + 0x01C4 (CF3R1)
Base + 0x01C8 (CF3R2)
Base + 0x01CC (CF3R3)
CFIFO4: Base + 0x0200 (CF4R0)
Base + 0x0204 (CF4R1)
Base + 0x0208 (CF4R2)
Base + 0x020C (CF4R3)
CFIFO5: Base + 0x0240 (CF5R0)
Base + 0x0244 (CF5R1)
Base + 0x0248 (CF5R2)
Base + 0x024C (CF5R3) Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CFIFO[0–5]_DATAn

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CFIFO[0–5]_DATAn

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-13. eQADC CFIF0[0–5] Registers (EQADC_CF[0–5]Rn)

Table 31-16. EQADC_CF[0–5]Rn Field Descriptions

Field Description

CFIFO[0–5]
_DATAn

CFIFO[0–5]_datan. Returns the value stored within the entry of CFIFO[0–5]. Each CFIFO is composed of four
32-bit entries, with register 0 being mapped to the entry with the smallest memory mapped address.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-25
 Preliminary

31.3.4 On-Chip ADC Registers

This section describes registers that control on-chip ADC operation. The ADC registers are not part of the
CPU accessible memory map. These registers can be accessed indirectly through configuration commands
only. There are five non-memory-mapped registers for ADC0. The address, usage, and access privilege of
each register is shown in Table 31-18. Data written to or read from reserved areas of the memory map is
undefined.

Offset: RFIFO0: Base + 0x0300 (RF0R0)
Base + 0x0304 (RF0R1)
Base + 0x0308 (RF0R2)
Base+0x030C (RF0R3)
RFIFO1: Base + 0x0340 (RF1R0)
Base + 0x0344 (RF1R1)
Base + 0x0348 (RF1R2)
Base + 0x034C (RF1R3)
RFIFO2: Base + 0x0380 (RF2R0)
Base + 0x0384 (RF2R1)
Base + 0x0388 (RF2R2)
Base + 0x038C (RF2R3)

RFIFO3: Base + 0x03C0 (RF3R0)
Base + 0x03C4 (RF3R1)
Base + 0x03C8 (RF3R2)
Base + 0x03CC (RF3R3)
RFIFO4: Base + 0x0400 (RF4R0)
Base + 0x0404 (RF4R1)
Base + 0x0408 (RF4R2
Base + 0x040C (RF4R3)
RFIFO5: Base + 0x0440 (RF5R0)
Base + 0x0444 (RF5R1)
Base + 0x0448 (RF5R2)
Base + 0x044C (RF5R3) Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RFIFO[0–5]_DATAn

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-14. eQADC RFIFOn Registers (EQADC_RF[0–5]Rn)

Table 31-17. EQADC_RF[0–5]Rn Field Descriptions

Field Description

RFIFO[0–5]
_DATAn

RFIFO[0–5] data n. Returns the value stored within the entry of RFIFO[0–5]. Each RFIFO is composed of four
16-bit entries, with register 0 being mapped to the entry with the smallest memory mapped address.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-26 Freescale Semiconductor
 Preliminary

Their assigned addresses are the values used to set the ADC_REG_ADDRESS field of the read/write
configuration commands bound for the on-chip ADC. These are halfword addresses. Further, the
following restrictions apply when accessing these registers:

• Registers ADC0_CR, ADC0_GCCR, and ADC0_OCCR can be accessed by configuration
commands sent to the ADC0 command buffer only.

• Registers ADC_TSCR and ADC_TBCR can be accessed by configuration commands sent to the
ADC0 command buffer.

31.3.4.1 ADC0 Control Register (ADC0_CR)

The ADC0 control register (ADC0_CR) is used to configure the on-chip ADC.

Table 31-18. ADC0 Registers

ADC0
Register
Address

Register Access Reset Value Section/Page

0x0000 ADC0 Address 0x00 is used for conversion command messages.

0x0001 ADC0_CR — ADC0 Control Register R/W 31.3.4.1/31-26

0x0002 ADC_TSCR — ADC Time Stamp Control Register R/W 31.3.4.2/31-28

0x0003 ADC_TBCR — ADC Time Base Counter Register R/W 31.3.4.3/31-29

0x0004 ADC0_GCCR — ADC0 Gain Calibration Constant Register R/W 31.3.4.4/31-30

0x0005 ADC0_OCCR — ADC0 Offset Calibration Constant Register R/W 31.3.4.5/31-31

0x0006–
0x00FF

Reserved

Offset: 0x0001 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R ADC0
_EN

0 0 0

A
D

C
0_

E
M

U
X 0 0 0 0 0 0 ADC0_CLK_PS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

Figure 31-15. ADC0 Control Registers (ADC0_CR)

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-27
 Preliminary

Table 31-19. ADC0_CR Field Descriptions

Field Description

ADC0_
EN

ADC0 Enable. Enables ADC0 to perform A/D conversions. Refer to Section 31.4.5.1, “Enabling and Disabling the
on-chip ADC,” for details.
0 ADC is disabled. Clock supply to ADC0 is stopped.
1 ADC is enabled and ready to perform A/D conversions.
Note: The bias generator circuit inside the ADC ceases functioning when this bit is negated.

Note: Conversion commands sent to a disabled ADC are ignored by the ADC control hardware.
Note: When the ADC0_EN status is changed from asserted to negated, the ADC clock will not stop until it

reaches its low phase.

bits 1–3 Reserved.

ADC0_
EMUX

ADC0 External Multiplexer Enable. When ADC0_EMUX is asserted, the MA pins will output digital values
according to the number of the external channel being converted for selecting external multiplexer inputs. Refer
to Section 31.4.6, “Internal/External Multiplexing,” for a detailed description about how ADC0_EMUX affects
channel number decoding.
0 External multiplexer disabled; no external multiplexer channels can be selected.
1 External multiplexer enabled; external multiplexer channels can be selected.
Note: The ADC0_EMUX bit must only be written when the ADC0_EN bit is negated. ADC0_EMUX can be set

during the same write cycle used to set ADC0_EN.

5–10 Reserved.

ADC0_
CLK_PS

ADC0 Clock Prescaler. The ADC0_CLK_PS field controls the system clock divide factor for the ADC0 clock as
in Table 31-20. See Section 31.4.5.2, “ADC Clock and Conversion Speed,” for details about how to set
ADC0_CLK_PS.
The ADC0_CLK_PS field must only be written when the ADC0_EN bit is negated. This field can be configured
during the same write cycle used to set ADC0_EN.

Table 31-20. System Clock Divide Factor for ADC Clock

ADC0_CLK_PS
System Clock
Divide Factor

0b00000 2

0b00001 4

0b00010 6

0b00011 8

0b00100 10

0b00101 12

0b00110 14

0b00111 16

0b01000 18

0b01001 20

0b01010 22

0b01011 24

0b01100 26

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-28 Freescale Semiconductor
 Preliminary

31.3.4.2 ADC Time Stamp Control Register (ADC_TSCR)

The ADC_TSCR contains a system clock divide factor used in the making of the time base counter clock.
It determines at what frequency the time base counter will run. ADC_TSCR can be accessed by
configuration commands sent to ADC0.

0b01101 28

0b01110 30

0b01111 32

0b10000 34

0b10001 36

0b10010 38

0b10011 40

0b10100 42

0b10101 44

0b10110 46

0b10111 48

0b11000 50

0b11001 52

0b11010 54

0b11011 56

0b11100 58

0b11101 60

0b11110 62

0b11111 64

Offset: 0x0002 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0
TBC_CLK_PS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-16. ADC Time Stamp Control Register (ADC_TSCR)

Table 31-20. System Clock Divide Factor for ADC Clock (continued)

ADC0_CLK_PS
System Clock
Divide Factor

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-29
 Preliminary

NOTE
If TBC_CLK_PS is not set to disabled, it must not be changed to any other
value besides disabled. If TBC_CLK_PS is set to disabled it can be changed
to any other value.

31.3.4.3 ADC Time Base Counter Registers (ADC_TBCR)

The ADC_TBCR contains the current value of the time base counter. ADC_TBCR can be accessed by
configuration commands sent to ADC0.

Table 31-21. ADC_TSCR Field Descriptions

Field Description

0–11 Reserved.

TBC_
CLK_PS

 Time Base Counter Clock Prescaler. Contains the system clock divide factor for the time base counter. It controls
the accuracy of the time stamp. The prescaler is disabled when TBC_CLK_PS is set to 0b0000.

Table 31-22. Clock Divide Factor for Time Stamp

TBC_CLK_PS
System Clock Divide

Factor

Clock to Time Stamp
Counter for a 66 MHz
System Clock (MHz)

0b0000 Disabled Disabled

0b0001 1 66

0b0010 2 33

0b0011 4 16.5

0b0100 6 11

0b0101 8 8.25

0b0110 10 6.60

0b0111 12 5.50

0b1000 16 4.13

0b1001 32 2.06

0b1010 64 1.03

0b1011 128 0.52

0b1100 256 0.26

0b1101 512 0.13

0b1110–0b1111 Reserved —

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-30 Freescale Semiconductor
 Preliminary

31.3.4.4 ADC0 Gain Calibration Constant Register (ADC0_GCCR)

The ADC0_GCCR contains the gain calibration constant used to fine-tune the ADC0 conversion results.
Refer to Section 31.4.5.4, “ADC Calibration Feature,” for details about the calibration scheme used in the
eQADC.

Offset: 0x0003 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
TBC_VALUE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-17. ADC Time Base Counter Register (ADC_TBCR)

Table 31-23. ADC_TBCR Field Descriptions

Field Description

TBC_
VALUE

Time Base Counter VALUE. Contains the current value of the time base counter. Reading TBC_VALUE returns the
current value of time base counter. Writes to TBC_VALUE register load the written data to the counter. The time base
counter counts from 0x0000 to 0xFFFF and wraps when reaching 0xFFFF.

Offset: 0x0004 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
GCC0

W

Reset 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-18. ADC0 Gain Calibration Constant Register (ADC0_GCCR)

Table 31-24. ADC0_GCCR Field Descriptions

Field Description

bit 0 Reserved.

GCCn ADC0 Gain Calibration Constant. Contains the gain calibration constant used to fine-tune ADC0 conversion results.
It is a unsigned 15-bit fixed pointed value. The gain calibration constant is an unsigned fixed point number expressed
in the GCC_INT.GCC_FRAC binary format. The integer part of the gain constant (GCC_INT) contains a single binary
digit while its fractional part (GCC_FRAC) contains 14 digits. For details about the GCC data format refer to
Section 31.4.5.4.2, “MAC Unit and Operand Data Format.”

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-31
 Preliminary

31.3.4.5 ADC0 Offset Calibration Constant Register (ADC0_OCCR)

The ADC0_OCCR contains the offset calibration constant used to fine-tune the ADC0 conversion results.
The offset constant is a signed 14-bit integer value. Refer to Section 31.4.5.4, “ADC Calibration Feature,”
for details about the calibration scheme used in the eQADC.

31.4 Functional Description
The eQADC provides an interface to an on-chip ADC.

Initially, command data is contained in system memory in a user-defined data queue structure. Command
data is moved between the user-defined queues and CFIFOs by the host CPU or by the eDMA which
responds to interrupt and eDMA requests generated by the eQADC. The eQADC supports software and
hardware triggers from other modules or external pins to initiate transfers of commands from the multiple
CFIFOs to the on-chip ADC.

CFIFOs can be configured to be in single-scan or continuous-scan mode. When a CFIFO is configured to
be in single-scan mode, the eQADC scans the user-defined command queue one time. The eQADC stops
transferring commands from the triggered CFIFO after detecting the EOQ bit set in the last transfer. After
an EOQ bit is detected, software involvement is required to rearm the CFIFO so that it can detect new
trigger events.

When a CFIFO is configured for continuous-scan mode, the whole user command queue is scanned
multiple times. After the detection of an asserted EOQ bit in the last command transfer, command transfers
can continue or not depending on the mode of operation of the CFIFO.

The eQADC can also in parallel and independently of the CFIFOs receive data from the on-chip ADC into
multiple RFIFOs. Result data is moved from the RFIFOs to the user-defined result queues in system
memory by the host CPU or by the eDMA.

Offset: 0x0005 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
OCC0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-19. ADC0 Offset Calibration Constant Registers (ADC0_OCCR)

Table 31-25. ADC0_OCCR Field Descriptions

Field Description

0–1 Reserved.

OCCn ADC0 Offset Calibration Constant. Contains the offset calibration constant used to fine-tune ADC0 conversion
results. Negative values should be expressed using the two’s complement representation.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-32 Freescale Semiconductor
 Preliminary

31.4.1 Data Flow in the eQADC

Figure 31-20 shows how command data flows inside the eQADC system. A command message is the
predefined format in which command data is stored in the user-defined command queues. A command
message has 32 bits and is composed of two parts: a CFIFO header and an ADC command. Command
messages are moved from the user command queues to the CFIFOs by the host CPU or by the eDMA as
they respond to interrupt and eDMA requests generated by the eQADC. The eQADC generates these
requests whenever a CFIFO is not full. The FIFO control unit will only transfer the command part of the
command message to the selected ADC. Information in the CFIFO header together with the upper bit of
the ADC command is used by the FIFO control unit to arbitrate which triggered CFIFO will be transferring
the next command. Commands sent to the ADC are executed in a first-in-first-out (FIFO) basis and three
types of results can be expected: data read from an ADC register, a conversion result, or a time stamp.

NOTE
While the eQADC pops commands out from a CFIFO, it also is checking
the number of entries in the CFIFO and generating requests to fill it. The
process of pushing and popping commands to and from a CFIFO can occur
simultaneously.

The FIFO control unit expects all incoming results to be shaped in a pre-defined result message format.
Figure 31-21 shows how result data flows inside the eQADC system. Results generated on the on-chip
ADC are formatted into result messages inside the result format and calibration submodule. Results
returning from the external device are already formatted into result messages and therefore bypass the
result format and calibration submodule located inside the eQADC. A result message is composed of an
RFIFO header and an ADC result. The FIFO control unit decodes the information contained in the RFIFO
header to determine the RFIFO to which the ADC result should be sent. Once in an RFIFO, the ADC result
is moved to the corresponding user result queue by the host CPU or by the eDMA as they respond to
interrupt and eDMA requests generated by the eQADC. The eQADC generates these requests whenever
an RFIFO has at least one entry.

NOTE
While conversion results are returned, the eQADC is checking the number
of entries in the RFIFO and generating requests to empty it. The process of
pushing and popping ADC results to and from an RFIFO can occur
simultaneously.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-33
 Preliminary

Figure 31-20. Command Flow During eQADC Operation

Figure 31-21. Result Flow During eQADC Operation

31.4.1.1 Message Format in eQADC

This section explains the command and result message formats used for on-chip ADC operation

Command
Queue

System
MemoryCFIFOn

ADC Priority

Command
Buffer

(32-bits)

(32-bits)

FIFO
Control

Unit
To

ADCs

eQADC

DMA
Transaction
Done Signals

Host CPU
or

DMACeDMA
or Interrupt

Requests

NOTES:
n = 0, 1, 2, 3, 4, 5 ADC Command

CFIFO Header

Command
Message

Result
Queue

System
MemoryRFIFOn

ADC Decoder

(16-bits)

(16-bits)

FIFO
Control

Unit

eQADC

DMA
Transaction
Done Signals

Host CPU
or

DMACDMA
or Interrupt

Requests

NOTES:
n = 0, 1, 2, 3, 4, 5 ADC Result

RFIFO Header

Result
Message

Result
Format

&
Calibration
Submodule

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-34 Freescale Semiconductor
 Preliminary

A command message is the pre-defined format at which command data is stored in the user command
queues. A command message has 32 bits and is composed of two parts: a CFIFO header and an ADC
command. The size of the CFIFO header is fixed to 6 bits, and it works as inputs to the FIFO control unit.
The header controls when a command queue ends and when it pauses. Information contained in the CFIFO
header, together with the upper bit of the ADC command, is used by the FIFO control unit to arbitrate
which triggered CFIFO will transfer the next command. ADC commands are encoded inside the least
significant 26 bits of the command message.

A result message is composed of an RFIFO header and an ADC result. The FIFO control unit decodes the
information contained in the RFIFO header to determine the RFIFO to which the ADC result should be
sent. An ADC result is always 16 bits long.

31.4.1.1.1 Message Formats for On-Chip ADC Operation

This section describes the command/result message formats used for on-chip ADC operation.

Conversion Command Message Format for On-Chip ADC Operation

Figure 31-22 describes the command message format for conversion commands when interfacing with the
on-chip ADC. A conversion result is always returned for conversion commands and time stamp
information can be optionally requested. The lower byte of conversion commands is always set to 0 to
distinguish it from configuration commands.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EOQ PAUSE Reserved BN CAL MESSAGE_TAG LST TSR FMT

CFIFO Header ADC Command

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CHANNEL_NUMBER 0 0 0 0 0 0 0 0

ADC Command

Figure 31-22. Conversion Command Message Format for On-Chip ADC Operation

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-35
 Preliminary

Table 31-26. On-Chip ADC Field Descriptions: Conversion Command Message Format

Field Description

EOQ End-of-Queue. Asserted in the last command of a command queue to indicate to the eQADC that a scan of the
queue is completed. EOQ instructs the eQADC to reset its current CFIFO transfer counter value (TC_CF) to 0.
Depending on the CFIFO mode of operation, the CFIFO status will also change upon the detection of an
asserted EOQ bit on the last transferred command. See Section 31.4.3.5, “CFIFO Scan Trigger Modes,” for
details.
0 Not the last entry of the command queue.
1 Last entry of the command queue.
Note: If both the pause and EOQ bits are asserted in the same command message the respective flags are set,

but the CFIFO status changes as if only the EOQ bit were asserted.

PAUSE Pause. Allows software to create sub-queues within a command queue. When the eQADC completes the
transfer of a command with an asserted pause bit, the CFIFO enters the WAITING FOR TRIGGER state. Refer
to Section 31.4.3.6.1, “CFIFO Operation Status,” for a description of the state transitions. The pause bit is only
valid when CFIFO operation mode is configured to single or continuous-scan edge trigger mode.
0 Do not enter WAITING FOR TRIGGER state after transfer of the current command message.
1 Enter WAITING FOR TRIGGER state after transfer of the current command message.
Note: If both the pause and EOQ bits are asserted in the same command message the respective flags are set,

but the CFIFO status changes as if only the EOQ bit were asserted.

bits 2–5 Reserved.

BN Buffer Number.
0 Message sent to ADC 0.
1 Reserved

CAL Calibration. Indicates if the returning conversion result must be calibrated.
0 Do not calibrate conversion result.
1 Calibrate conversion result.

MESSAGE_
TAG

MESSAGE_TAG Field. Allows the eQADC to separate returning results into different RFIFOs. When the eQADC
transfers a command, the MESSAGE_TAG is included as part of the command. Eventually the on-chip ADC
returns the result with the same MESSAGE_TAG. The eQADC separates incoming messages into different
RFIFOs by decoding the MESSAGE_TAG of the incoming data.

MESSAGE_TAG MESSAGE_TAG Meaning

0b0000 Result is sent to RFIFO 0

0b0001 Result is sent to RFIFO 1

0b0010 Result is sent to RFIFO 2

0b0011 Result is sent to RFIFO 3

0b0100 Result is sent to RFIFO 4

0b0101 Result is sent to RFIFO 5

0b0110–0b0111 Reserved

0b1000 Null message received

0b1001 Reserved for customer use. 1

0b1010 Reserved for customer use. 1

0b1011–0b1111 Reserved
1 These messages are treated as null messages. Therefore, they must obey the

format for incoming null messages and return valid BUSY0/1 fields.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-36 Freescale Semiconductor
 Preliminary

Write Configuration Command Message Format for On-Chip ADC Operation

Figure 31-23 describes the command message format for a write configuration command when interfacing
with the on-chip ADC. A write configuration command is used to set the control registers of the on-chip
ADC. No conversion data will be returned for a write configuration command. Write configuration
commands are differentiated from read configuration commands by a negated R/W bit.

LST Long Sampling Time. These two bits determine the duration of the sampling time in ADC clock cycles.
Note: For external mux mode, 64 or 128 sampling cycles is recommended.

TSR Time Stamp Request. TSR indicates the request for a time stamp. When TSR is asserted, the on-chip ADC
control logic returns a time stamp for the current conversion command after the conversion result is sent to the
RFIFOs. See Section 31.4.5.3, “Time Stamp Feature,” for details.
0 Return conversion result only.
1 Return conversion time stamp after the conversion result.

FMT Conversion Data Format. FMT specifies to the eQADC how to format the 12-bit conversion data returned by the
ADC into the 16-bit format which is sent to the RFIFOs. See Section , “ADC Result Format for On-Chip ADC
Operation,” for details.
0 Right justified unsigned.
1 Right justified signed.

CHANNEL_
NUMBER

Channel Number. Selects the analog input channel. The software programs this field with the channel number
corresponding to the analog input pin to be sampled and converted. See Section 31.4.6.1, “Channel
Assignment,” for details.

bits 24–31 Reserved.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EOQ PAUSE Reserved BN
R/W
(0b0)

ADC_REGISTER HIGH BYTE

CFIFO Header ADC Command

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ADC_REGISTER LOW BYTE ADC_REG_ADDRESS

ADC Command

Figure 31-23. Write Configuration Command Message Format for On-chip ADC Operation

Table 31-26. On-Chip ADC Field Descriptions: Conversion Command Message Format (continued)

Field Description

LST
Sampling cycles

(ADC Clock Cycles)

0b00 2

0b01 8

0b10 64

0b11 128

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-37
 Preliminary

Read Configuration Command Message Format for On-Chip ADC Operation

Figure 31-24 describes the command message format for a read configuration command when interfacing
with the on-chip ADC. A read configuration command is used to read the contents of the on-chip ADC
registers which are only accessible via command messages. Read configuration commands are
differentiated from write configuration commands by an asserted R/W bit.

Table 31-27. On-Chip ADC Field Descriptions: Write Configuration

Field Description

EOQ End-of-Queue. Asserted in the last command of a command queue to indicate to the eQADC that a scan of the
queue is completed. EOQ instructs the eQADC to reset its current CFIFO transfer counter value (TC_CF) to 0.
Depending on the CFIFO mode of operation, the CFIFO status will also change upon the detection of an asserted
EOQ bit on the last transferred command. See Section 31.4.3.5, “CFIFO Scan Trigger Modes,” for details.
0 Not the last entry of the command queue.
1 Last entry of the command queue.
Note: If both the pause and EOQ bits are asserted in the same command message the respective flags are set,

but the CFIFO status changes as if only the EOQ bit were asserted.

1
PAUSE

Pause Bit. Allows software to create sub-queues within a command queue. When the eQADC completes the
transfer of a command with an asserted pause bit, the CFIFO enters the WAITING FOR TRIGGER state. Refer
to Section 31.4.3.6.1, “CFIFO Operation Status,” for a description of the state transitions. The pause bit is only
valid when CFIFO operation mode is configured to single or continuous-scan edge trigger mode.
0 Do not enter WAITING FOR TRIGGER state after transfer of the current command message.
1 Enter WAITING FOR TRIGGER state after transfer of the current command message.
Note: If both the pause and EOQ bits are asserted in the same command message, the respective flags are set,

but the CFIFO status changes as if only the EOQ bit were asserted.

bits 2–5 Reserved.

BN Buffer Number. Indicates which buffer the message will be stored in.
0 Message stored in buffer 0.
1 Message stored in buffer 1.

R/W Read/Write. A negated R/W indicates a write configuration command.
0 Write
1 Read

ADC_
REGISTER

HIGH
BYTE

ADC Register High Byte. The value to be written into the most significant 8 bits of control/configuration register
when the R/W bit is negated.

ADC_
REGISTER

LOW
BYTE

ADC Register Low Byte. The value to be written into the least significant 8 bits of a control/configuration register
when the R/W bit is negated.

ADC_REG_
ADDRESS

ADC Register Address. Selects a register on the ADC register set to be written or read. Only halfword addresses
can be used. See Table 31-18.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-38 Freescale Semiconductor
 Preliminary

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EOQ PAUSE Reserved BN
R/W
(0b1)

MESSAGE_TAG Reserved

CFIFO Header ADC Command

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved ADC_REG_ADDRESS

ADC Command

Figure 31-24. Read Configuration Command Message Format for On-Chip ADC Operation

Table 31-28. On-Chip ADC Field Descriptions: Read Configuration

Field Description

EOQ End-of-Queue. Asserted in the last command of a command queue to indicate to the eQADC that a scan of the
queue is completed. EOQ instructs the eQADC to reset its current CFIFO transfer counter value (TC_CF) to 0.
Depending on the CFIFO mode of operation, the CFIFO status will also change upon the detection of an asserted
EOQ bit on the last transferred command. See Section 31.4.3.5, “CFIFO Scan Trigger Modes,” for details.
0 Not the last entry of the command queue.
1 Last entry of the command queue.
Note: If both the pause and EOQ bits are asserted in the same command message the respective flags are set,

but the CFIFO status changes as if only the EOQ bit were asserted.

PAUSE Pause Bit. Allows software to create sub-queues within a command queue. When the eQADC completes the
transfer of a command with an asserted pause bit, the CFIFO enters the WAITING FOR TRIGGER state. Refer
to Section 31.4.3.6.1, “CFIFO Operation Status,” for a description of the state transitions. The pause bit is only
valid when CFIFO operation mode is configured to single or continuous-scan edge trigger mode.
0 Do not enter WAITING FOR TRIGGER state after transfer of the current command message.
1 Enter WAITING FOR TRIGGER state after transfer of the current command message.
Note: If both the pause and EOQ bits are asserted in the same command message the respective flags are set,

but the CFIFO status changes as if only the EOQ bit were asserted.

bits 2–5 Reserved.

BN Buffer Number. Indicates which buffer the message will be stored in.
0 Message stored in buffer 0.
1 Message stored in buffer 1.

R/W Read/Write. An asserted R/W bit indicates a read configuration command.
0 Write
1 Read

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-39
 Preliminary

ADC Result Format for On-Chip ADC Operation

When the FIFO control unit receives a return data message, it decodes the MESSAGE_TAG field and
stores the 16-bit data into the appropriate RFIFO. This section describes the ADC result portion of the
result message returned by the on-chip ADC.

The 16-bit data stored in the RFIFOs can be the following:

• Data read from an ADC register with a read configuration command. In this case, the stored 16-bit
data corresponds to the contents of the ADC register that was read.

• A time stamp. In this case, the stored 16-bit data is the value of the time base counter latched when
the eQADC detects the end of the analog input voltage sampling. For details see Section 31.4.5.3,
“Time Stamp Feature.”

• A conversion result. In this case, the stored 16-bit data contains a right justified 14-bit result data.
The conversion result can be calibrated or not depending on the status of CAL bit in the command
that requested the conversion. When the CAL bit is negated, this 14-bit data is obtained by
executing a 2-bit left-shift on the 12-bit data received from the ADC. When the CAL bit is asserted,
this 14-bit data is the result of the calculations performed in the EQADC MAC unit using the12-bit

MESSAGE
_TAG

MESSAGE_TAG Field. Allows the eQADC to separate returning results into different RFIFOs. When the eQADC
transfers a command, the MESSAGE_TAG is included as part of the command. Eventually the on-chip ADC
returns the result with the same MESSAGE_TAG. The eQADC separates incoming messages into different
RFIFOs by decoding the MESSAGE_TAG of the incoming data.

bits 12–23 Reserved.

ADC_REG_
ADDRESS

ADC Register Address. Selects a register on the ADC register set to be written or read. Only halfword addresses
can be used.

Table 31-28. On-Chip ADC Field Descriptions: Read Configuration (continued)

Field Description

MESSAGE_TAG MESSAGE_TAG Meaning

0b0000 Result is sent to RFIFO 0

0b0001 Result is sent to RFIFO 1

0b0010 Result is sent to RFIFO 2

0b0011 Result is sent to RFIFO 3

0b0100 Result is sent to RFIFO 4

0b0101 Result is sent to RFIFO 5

0b0110–0b0111 Reserved

0b1000 Null message received

0b1001 Reserved for customer use. 1

1 These messages are treated as null messages. Therefore, they must obey the
format for incoming null messages and return valid BUSY0/1 fields.

0b1010 Reserved for customer use. 1

0b1011–0b1111 Reserved

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-40 Freescale Semiconductor
 Preliminary

data received from the ADC and the calibration constants GCC and OCC (See Section 31.4.5.4,
“ADC Calibration Feature”). Then, this 14-bit data is further formatted into a 16-bit format
according to the status of the FMT bit in the conversion command. When FMT is asserted, the
14-bit result data is reformatted to look as if it was measured against an imaginary ground at
VREF/2 (the msb (most significant bit) bit of the 14-bit result is inverted), and is sign-extended to
a 16-bit format as in Figure 31-25. When FMT is negated, the eQADC zero-extends the 14-bit
result data to a 16-bit format as in Figure 31-26. Correspondence between the analog voltage in a
channel and the calculated digital values is shown in Table 31-31.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SIGN_EXT CONVERSION_RESULT (With inverted msb bit) 0 0

ADC Result

Figure 31-25. ADC Result Format when FMT = 1 (Right Justified Signed)—On-Chip ADC Operation

Table 31-29. ADC Result Format when FMT = 1 Field Descriptions

Field Description

SIGN_EXT Sign Extension. Only has meaning when FMT is asserted. SIGN_EXT is 0b00 when CONVERSION_RESULT
is positive, and 0b11 when CONVERSION_RESULT is negative.

CONVERSION
_RESULT

Conversion Result. A digital value corresponding to the analog input voltage in a channel when the conversion
command was initiated. The two’s complement representation is used to express negative values.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 CONVERSION_RESULT 0 0

ADC Result

Figure 31-26. ADC Result Format when FMT = 0 (Right Justified Unsigned)—On-Chip ADC Operation

Table 31-30. ADC Result Format when FMT = 0 Field Descriptions

Field Description

SIGN_EXT Sign Extension. Only has meaning when FMT is asserted. SIGN_EXT is 0b00 when CONVERSION_RESULT
is positive, and 0b11 when CONVERSION_RESULT is negative.

CONVERSION
_RESULT

Conversion Result. A digital value corresponding to the analog input voltage in a channel when the conversion
command was initiated.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-41
 Preliminary

31.4.2 Command/Result Queues

The command and result queues are actually part of the eQADC system although they are not hardware
implemented inside the eQADC. Instead command and result queues are user-defined queues located in
system memory. Each command queue entry is a 32-bit command message.The last entry of a command
queue has the EOQ bit asserted to indicate that it is the last entry of the queue. The result queue entry is a
16-bit data item.

See Section 31.1.3, “Modes of Operation,” for a description of the message formats and their flow in
eQADC.

Refer to Section 31.5.5, “Command Queue and Result Queue Usage,” for examples of how command
queues and result queues can be used.

31.4.3 eQADC Command FIFOs

31.4.3.1 CFIFO Basic Functionality

There are six prioritized CFIFOs located in the eQADC. Each CFIFO is four entries deep, and each CFIFO
entry is 32 bits long. A CFIFO serves as a temporary storage location for the command messages stored
in the command queues in system memory. When a CFIFO is not full, the eQADC sets the corresponding
CFFF bit in Section 31.3.3.8, “eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn).” If
CFFE is asserted as in Section 31.3.3.7, “eQADC Interrupt and eDMA Control Registers 0–5
(EQADC_IDCRn),” the eQADC generates requests for more commands from a command queue. An
interrupt request, served by the host CPU, is generated when CFFS is negated, and a eDMA request, served
by the eDMA, is generated when CFFS is asserted. The host CPU or the eDMA respond to these requests

Table 31-31. Correspondence between Analog Voltages and Digital Values1, 2

1 VREF=VRH -VRL=5.12V. Resulting in one 12-bit count (lsb) =1.25mV.
2 The two’s complement representation is used to express negative values.

Voltage Level on
Channel

(V)

Corresponding 12-bit
Conversion Result

Returned by the ADC

16-bit Result
Sent to RFIFOs

(FMT=0) 3

3 Assuming uncalibrated conversion results.

16-bit Result
Sent to RFIFOs

(FMT=1) 3

Single-Ended
Conversions

5.12 0xFFF 0x3FFC 0x1FFC

5.12 – lsb 0xFFF 0x3FFC 0x1FFC

...

2.56 0x800 0x2000 0x0000

...

1 lsb 0x001 0x0004 0xE004

0 0x000 0x0000 0xE000

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-42 Freescale Semiconductor
 Preliminary

by writing to the Section 31.3.3.4, “eQADC CFIFO Push Registers 0–5 (EQADC_CFPRn),” to fill the
CFIFO.

NOTE
Only whole words must be written to EQADC_CFPR. Writing halfwords or
bytes to EQADC_CFPR will still push the whole 32-bit CF_PUSH field into
the corresponding CFIFO, but undefined data will fill the areas of
CF_PUSH that were not specifically designated as target locations for
writing.

Figure 31-27 describes the important components in the CFIFO. Each CFIFO is implemented as a circular
set of registers to avoid the need to move all entries at each push/pop operation. The push next data pointer
points to the next available CFIFO location for storing data written into the eQADC command FIFO push
register. The transfer next data pointer points to the next entry to be removed from CFIFOn when it
completes a transfer. The CFIFO transfer counter control logic counts the number of entries in the CFIFO
and generates eDMA or interrupt requests to fill the CFIFO. TNXTPTR in Section 31.3.3.8, “eQADC
FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn),” indicates the index of the entry that is
currently being addressed by the transfer next data pointer, and CFCTR, in the same register, provides the
number of entries stored in the CFIFO.

Using TNXTPTR and CFCTR, the absolute addresses for the entries indicated by the transfer next data
pointer and by the push next data pointer can be calculated using the following formulas:

Transfer Next Data Pointer Address = CFIFOn_BASE_ADDRESS + TNXTPTRn*4
Push Next Data Pointer Address = CFIFOn_BASE_ADDRESS +
[(TNXTPTRn+CFCTRn) mod CFIFO_DEPTH] * 4

where

• a mod b returns the remainder of the division of a by b.

• CFIFOn_BASE_ADDRESS is the smallest memory mapped address allocated to a CFIFOn entry.

• CFIFO_DEPTH is the number of entries contained in a CFIFO - four in this implementation.

When CFSn in Section 31.3.3.11, “eQADC CFIFO Status Register (EQADC_CFSR),” is in the
TRIGGERED state, the eQADC generates the proper control signals for the transfer of the entry pointed
by transfer next data pointer. CFUFn in Section 31.3.3.8, “eQADC FIFO and Interrupt Status Registers
0–5 (EQADC_FISRn),” is set when a CFIFOn underflow event occurs. A CFIFO underflow occurs when
the CFIFO is in the TRIGGERED state and it becomes empty. No commands will be transferred from an
underflowing CFIFO, nor will command transfers from lower priority CFIFOs be blocked. CFIFOn is
empty when the transfer next data pointer n equals the push next data pointer n and CFCTRn is 0. CFIFOn
is full when the transfer next data pointer n equals the push next data pointer n and CFCTRn is not 0.

When the eQADC completes the transfer of an entry from CFIFOn: the transferred entry is popped from
CFIFOn, the CFIFO counter CFCTR in the Section 31.3.3.8, “eQADC FIFO and Interrupt Status Registers
0–5 (EQADC_FISRn),” is decremented by 1, and transfer next data pointer n is incremented by 1 (or
wrapped around) to point to the next entry in the CFIFO. The transfer of entries bound for the on-chip ADC
is considered completed when they are stored in the appropriate ADC command buffer.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-43
 Preliminary

When the EQADC_CFPRn is written and CFIFOn is not full, the CFIFO counter CFCTRn is incremented
by 1, and the push next data pointer n then is incremented by 1 (or wrapped around) to point to the next
entry in the CFIFO.

When the EQADC_CFPRn is written but CFIFOn is full, the eQADC will not increment the counter value
and will not overwrite any entry in CFIFOn.

Figure 31-27. CFIFO Diagram

The detailed behavior of the push next data pointer and transfer next data pointer is described in the
example shown in Figure 31-28 where a CFIFO with 16 entries is shown for clarity of explanation, the
actual hardware implementation has only four entries. In this example, CFIFOn with 16 entries is shown
in sequence after pushing and transferring entries.

Push Next

32-bit Entry 2

32-bit Entry 1

Control Signals

CFIFO
Transfer Counter

Control Logic

Data Pointer *

Transfer Next
Data Pointer *

CFIFO
Push Register

Write
to Bus

Interface
by CPU
or DMA

DMA Done

Interrupt/DMA Request

All CFIFO entries are memory mapped and the entries addressed by these pointers
can have their absolute addresses calculated using TNXTPTR and CFCTR.

*

Data to
On-Chip ADC

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-44 Freescale Semiconductor
 Preliminary

Figure 31-28. CFIFO Entry Pointer Example

31.4.3.2 CFIFO Prioritization and Command Transfer

The CFIFO priority is fixed according to the CFIFO number. A CFIFO with a smaller number has a higher
priority. When commands of distinct CFIFOs are bound for the same destination (the same on-chip ADC),
the higher priority CFIFO is always served first. A triggered, not-underflowing CFIFO will start the
transfer of its commands when the following occur:

• Its commands are bound for an internal command buffer that is not full, and it is the highest priority
triggered CFIFO sending commands to that buffer.

First In Transfer
Next
Data
Pointer

Last In
Push
Next
Data

Pointer

CFIFOn
Transfer
Next
Data
Pointer

Push
Next
Data

Pointer

CFIFOn

First In Transfer
Next
Data
Pointer

Last In
Push
Next
Data

Pointer

CFIFOn

After Reset or
Invalidation

Some Entries Pushed
but None Executed

No Entries Pushed
but Some Executed

First In Transfer
Next
Data
Pointer

Push
Next
Data

Pointer

CFIFOn

Transfer
Next
Data
Pointer

Push
Next
Data

Pointer

CFIFOn

First In Transfer
Next
Data
Pointer

Last In
Push
Next
Data

Pointer

CFIFOn

No Entries Pushed
but Some Executed

Some Entries Pushed
and Some Executed

Entries Pushed Until
Full and None Executed

First In
Last In Last In

Valid Entry
Empty Entry

NOTE:
n = 0, 1, 2, 3, 4, 5

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-45
 Preliminary

A triggered CFIFO with commands bound for a certain command buffer consecutively transfers its
commands to the buffer until one of the following occurs:

• An asserted end of queue bit is reached.

• An asserted pause bit is encountered and the CFIFO is configured for edge trigger mode.

• CFIFO is configured for level trigger mode and a closed gate is detected.

• In case its commands are bound for an internal command buffer, a higher priority CFIFO that uses
the same internal buffer is triggered.

The prioritization logic of the eQADC, depicted in Figure 31-29, that prioritizes CFIFOs with commands
bound for ADC0.

NOTE
Triggered but empty CFIFOs, underflowing CFIFOs, are not considered for
prioritization. No data from these CFIFOs will be sent to the on-chip ADC,
nor will they stop lower priority CFIFOs from transferring commands.

Whenever CBuffer0 is able to receive new commands, the prioritization submodule selects the
highest-priority triggered CFIFO with a command bound for ADC0, and sends it to ADC0. If CBuffer0 is
able to receive new entries but there are no triggered CFIFOs with commands bound for it, nothing is sent.

Figure 31-29. CFIFO Prioritization Logic

31.4.3.3 External Trigger from eTPU or eMIOS Channels

The six eQADC external trigger inputs can be connected to either an external pin (either ETRIG0,
ETRIG1, GPIO206, or GPIO207), an eTPU channel, or an eMIOS channel. The input source for each
eQADC external trigger is individually specified in the eQADC trigger input select register (SIU_ETISR)
in the SIU block.

eQADC

Prioritization
Logic

6 x Command

Command
CFIFO0

Command
CFIFO1

Command
CFIFO2

Command
CFIFO3

Command
CFIFO4

Command
CFIFO5

ADC0

Command Buffer0
(2 Entries)

Prioritization
for ADC0

Usage

Command

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-46 Freescale Semiconductor
 Preliminary

The eQADC trigger numbers specified by SIU_ETISR[TSEL(0-5)] correspond to CFIFO numbers 0-5. To
calculate the CFIFO number that each trigger is connected to, divide the eDMA channel number by 2.

31.4.3.4 External Trigger Event Detection

The digital filter length field in Section 31.3.3.3, “eQADC External Trigger Digital Filter Register
(EQADC_ETDFR),” specifies the minimum number of system clocks that the external trigger signals 0
and 1 must be held at a logic level to be recognized as valid. All ETRIG signals are filtered. A counter for
each queue trigger is implemented to detect a transition between logic levels. The counter counts at the
system clock rate. The corresponding counter is cleared and restarted each time the signal transitions
between logic levels. When the corresponding counter matches the value specified by the digital filter
length field in Section 31.3.3.3, “eQADC External Trigger Digital Filter Register (EQADC_ETDFR),” the
eQADC considers the ETRIG logic level to be valid and passes that new logic level to the rest of the
eQADC.

The filter is only for filtering the ETRIG signal. Logic after the filter checks for transitions between filtered
values, such as for detecting the transition from a filtered logic level zero to a filtered logic level one in
rising edge external trigger mode. The eQADC can detect rising edge, falling edge, or level gated external
triggers. The digital filter will always be active independently of the status of the MODEn field in
Section 31.3.3.6, “eQADC CFIFO Control Registers 0–5 (EQADC_CFCRn),” but the edge, level
detection logic is only active when MODEn is set to a value different from disabled, and in case MODEn
is set to single scan mode, when the SSS bit is asserted. Note that the time necessary for a external trigger
event to result into a CFIFO status change is not solely determined by the DFL field in the Section 31.3.3.3,
“eQADC External Trigger Digital Filter Register (EQADC_ETDFR).” After being synchronized to the
system clock and filtered, a trigger event is checked against the CFIFO trigger mode. Only then, after a
valid trigger event is detected, the eQADC accordingly changes the CFIFO status. Refer to Figure 31-30
for an example.

Figure 31-30. ETRIG Event Propagation Example

31.4.3.5 CFIFO Scan Trigger Modes

The eQADC supports two different scan modes, single-scan and continuous-scan. Refer to Table 31-32 for
a summary of these two scan modes. When a CFIFO is triggered, the eQADC scan mode determines
whether the eQADC will stop command transfers from a CFIFO, and wait for software intervention to
rearm the CFIFO to detect new trigger events, upon detection of an asserted EOQ bit in the last transfer.
Refer to Section 31.4.1.1, “Message Format in eQADC,” for details about command formats.

External Trigger Signal
Signal State at Input Pin

Idle Waiting for Trigger Triggered

Disabled Continuous-Scan High Level Gated External Trigger

System Clock

CFIFO Status

MODEn

Filtered External
Trigger Signal

Trigger Synchronization & Filtering Delay

Trigger Detection Delay

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-47
 Preliminary

CFIFOs can be configured in single-scan or continuous-scan mode. When a CFIFO is configured in
single-scan mode, the eQADC scans the command queue one time. The eQADC stops future command
transfers from the triggered CFIFO after detecting the EOQ bit set in the last transfer. After a EOQ bit is
detected, software involvement is required to rearm the CFIFO so that it can detect new trigger events.

When a CFIFO is configured for continuous-scan mode, no software involvement is necessary to rearm
the CFIFO to detect new trigger events after an asserted EOQ is detected. In continuous-scan mode the
whole command queue is scanned multiple times.

The eQADC also supports different triggering mechanisms for each scan mode. The eQADC will not
transfer commands from a CFIFO until the CFIFO is triggered. The combination of scan modes and
triggering mechanisms allows the support of different requirements for scanning input channels. The scan
mode and trigger mechanism are configured by programming the MODEn field in Section 31.3.3.6,
“eQADC CFIFO Control Registers 0–5 (EQADC_CFCRn).”

Enabled CFIFOs can be triggered by software or external trigger events. The elapsed time from detecting
a trigger to transferring a command is a function of clock frequency, trigger synchronization, trigger
filtering, programmable trigger events, command transfer, CFIFO prioritization, ADC availability, etc.
Fast and predictable transfers can be achieved by ensuring that the CFIFO is not underflowing and that the
target ADC can accept commands when the CFIFO is triggered.

31.4.3.5.1 Disabled Mode

The MODEn field in Section 31.3.3.6, “eQADC CFIFO Control Registers 0–5 (EQADC_CFCRn),” for
all of the CFIFOs can be changed from any other mode to disabled at any time. No trigger event can initiate
command transfers from a CFIFO which has its MODE field programmed to disabled.

NOTE
If MODEn is not disabled, it must not be changed to any other mode besides
disabled. If MODEn is disabled and the CFIFO status is IDLE, MODEn can
be changed to any other mode.

If MODEn is changed to disabled:

• The CFIFO execution status will change to IDLE. The timing of this change depends on whether
a command is being transferred or not:

— When no command transfer is in progress, the eQADC switches the CFIFO to IDLE status
immediately.

— When a command transfer to an on-chip ADC is in progress, the eQADC will complete the
transfer, update TC_CF, and switch CFIFO status to IDLE. Command transfers to the internal
ADC are considered completed when a command is written to the relevant buffer.

• The CFIFOs are not invalidated automatically. The CFIFO still can be invalidated by writing a 1
to the CFINVn bit (see Section 31.3.3.6, “eQADC CFIFO Control Registers 0–5
(EQADC_CFCRn)”). Certify that CFS has changed to IDLE before setting CFINVn.

• The TC_CFn value also is not reset automatically, but it can be reset by writing 0 to it.

• The EQADC_FISRn[SSS] bit (see Section 31.3.3.8, “eQADC FIFO and Interrupt Status Registers
0–5 (EQADC_FISRn)”) is negated. The SSS bit can be set even if a 1 is written to the

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-48 Freescale Semiconductor
 Preliminary

EQADC_CFCR[SSE] bit (see Section 31.3.3.6, “eQADC CFIFO Control Registers 0–5
(EQADC_CFCRn)”) in the same write that the MODEn field is changed to a value other than
disabled.

• The trigger detection hardware is reset. If MODEn is changed from disabled to an edge trigger
mode, a new edge, matching that edge trigger mode, is needed to trigger the command transfers
from the CFIFO.

NOTE
CFIFO fill requests, which generated when CFFF is asserted, are not
automatically halted when MODEn is changed to disabled. CFIFO fill
requests will still be generated until EQADC_IDCRn[CFFE] bit is cleared
(see Section Section 31.3.3.7, “eQADC Interrupt and eDMA Control
Registers 0–5 (EQADC_IDCRn)”).

31.4.3.5.2 Single-Scan Mode

In single-scan mode, a single pass through a sequence of command messages in the user-defined command
queue is performed.

In single-scan software trigger mode, the CFIFO is triggered by an asserted single-scan status bit,
EQADC_FISRn[SSS] (see Section 31.3.3.8, “eQADC FIFO and Interrupt Status Registers 0–5
(EQADC_FISRn)”). The SSS bit is set by writing 1 to the single-scan enable bit, EQADC_CFCRn[SSE]
(see Section 31.3.3.6, “eQADC CFIFO Control Registers 0–5 (EQADC_CFCRn)”).

In single-scan edge- or level-trigger mode, the respective triggers are only detected when the SSS bit is
asserted. When the SSS bit is negated, all trigger events for that CFIFO are ignored. Writing a 1 to the SSE
bit can be done during the same write cycle that the CFIFO operation mode is configured.

Only the eQADC can clear the SSS bit. Once SSS is asserted, it remains asserted until the eQADC
completes the command queue scan, or the CFIFO operation mode, EQADC_CFCRn[MODEn] (see
Section 31.3.3.6) is changed to disabled. The SSSn bit will be negated while MODEn is disabled.

Single-Scan Software Trigger

When single-scan software trigger mode is selected, the CFIFO is triggered by an asserted SSS bit. The
SSS bit is asserted by writing 1 to the SSE bit. Writing to SSE while SSS is already asserted will not have
any effect on the state of the SSS bit, nor will it cause a trigger overrun event.

The CFIFO commands start to be transferred when the CFIFO becomes the highest priority CFIFO using
an available on-chip ADC. When an asserted EOQ bit is encountered, the eQADC will clear the SSS bit.
Setting the SSS bit is required for the eQADC to start the next scan of the queue.

The pause bit has no effect in single-scan software trigger mode.

Single-Scan Edge Trigger

When SSS is asserted and an edge triggered mode is selected for a CFIFO, an appropriate edge on the
associated trigger signal causes the CFIFO to become triggered. For example, if rising-edge trigger mode
is selected, the CFIFO becomes triggered when a rising edge is sensed on the trigger signal. The CFIFO

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-49
 Preliminary

commands start to be transferred when the CFIFO becomes the highest priority CFIFO using an available
on-chip ADC.

When an asserted EOQ bit is encountered, the eQADC clears SSS and stops command transfers from the
CFIFO. An asserted SSS bit and a subsequent edge trigger event are required to start the next scan for the
CFIFO. When an asserted pause bit is encountered, the eQADC stops command transfers from the CFIFO,
but SSS remains set. Another edge trigger event is required for command transfers to continue. A trigger
overrun happens when the CFIFO is in a TRIGGERED state and an edge trigger event is detected.

Single-Scan Level Trigger

When SSS is asserted and a level gated trigger mode is selected, the input level on the associated trigger
signal puts the CFIFO in a TRIGGERED state. When the CFIFO is set to high-level gated trigger mode,
a high level signal opens the gate, and a low level closes the gate. When the CFIFO is set to low-level gated
trigger mode, a low level signal opens the gate, and a high level closes the gate. If the corresponding level
is already present, setting the SSS bit triggers the CFIFO. The CFIFO commands start to be transferred
when the CFIFO becomes the highest priority CFIFO using an available on-chip ADC

The eQADC clears the SSS bit and stops transferring commands from a triggered CFIFO when an asserted
EOQ bit is encountered or when CFIFO status changes from triggered due to the detection of a closed gate.
If a closed gate is detected while no command transfers are taking place and the CFIFO status is triggered,
the CFIFO status is immediately changed to IDLE, the SSS bit is negated, and the PF flag is asserted. An
asserted SSS bit and a level trigger are required to restart the CFIFO. Command transfers will restart from
the point they have stopped.

The pause bit has no effect in single-scan level-trigger mode.

31.4.3.5.3 Continuous-Scan Mode

In continuous-scan mode, multiple passes looping through a sequence of command messages in a
command queue are executed. When a CFIFO is programmed for a continuous-scan mode, the
EQADC_CFCRn[SSE] (see Section 31.3.3.6, “eQADC CFIFO Control Registers 0–5
(EQADC_CFCRn)”) does not have any effect.

Continuous-Scan Software Trigger

When a CFIFO is programmed to continuous-scan software trigger mode, the CFIFO is triggered
immediately. The CFIFO commands start to be transferred when the CFIFO becomes the highest priority
CFIFO using an available on-chip ADC. When a CFIFO is programmed to run in continuous-scan
software trigger mode, the eQADC will not halt transfers from the CFIFO until the CFIFO operation mode
is modified to disabled or a higher priority CFIFO preempts it. Although command transfers will not stop
upon detection of an asserted EOQ bit, the EOQF is set and, if enabled, an EOQ interrupt request is
generated.

The pause bit has no effect in continuous-scan software trigger mode.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-50 Freescale Semiconductor
 Preliminary

Continuous-Scan Edge Trigger

When rising, falling, or either edge trigger mode is selected for a CFIFO, a corresponding edge on the
associated ETRIG signal places the CFIFO in a TRIGGERED state. The CFIFO commands start to be
transferred when the CFIFO becomes the highest priority CFIFO using an available on-chip ADC.

When an EOQ or a pause is encountered, the eQADC halts command transfers from the CFIFO and, if
enabled, the appropriate interrupt requests are generated. Another edge trigger event is required to resume
command transfers but no software involvement is required to rearm the CFIFO in order to detect such
event.

A trigger overrun happens when the CFIFO is already in a TRIGGERED state and a new edge trigger event
is detected.

Continuous-Scan Level Trigger

When high or low level gated trigger mode is selected, the input level on the associated trigger signal
places the CFIFO in a TRIGGERED state. When high-level gated trigger is selected, a high-level signal
opens the gate, and a low level closes the gate. The CFIFO commands start to be transferred when the
CFIFO becomes the highest priority CFIFO using an available on-chip ADC. Although command transfers
will not stop upon detection of an asserted EOQ bit at the end of a command transfer, the EOQF is asserted
and, if enabled, an EOQ interrupt request is generated.

The eQADC stops transferring commands from a triggered CFIFO when CFIFO status changes from
triggered due to the detection of a closed gate. If a closed gate is detected while no command transfers are
taking place and the CFIFO status is TRIGGERED, the CFIFO status is immediately changed to waiting
for trigger and the PF flag is asserted.Command transfers will restart as the gate opens.

The pause bit has no effect in continuous-scan level-trigger mode.

31.4.3.5.4 CFIFO Scan Trigger Mode Start/Stop Summary

Table 31-32 summarizes the start and stop conditions of command transfers from CFIFOs for all of the
single-scan and continuous-scan trigger modes.

Table 31-32. CFIFO Scan Trigger Mode—Command Transfer Start/Stop Summary

Trigger Mode

Requires
Asserted SSS
to Recognize

Trigger
Events?

Command Transfer
Start/Restart Condition

Stop on
asserted

EOQ
bit1?

Stop on
asserted

Pause
bit2?

Other Command Transfer Stop
Condition3 4

Single Scan
Software

Not Applicable Asserted SSS bit. Yes No None.

Single Scan
Edge

Yes A corresponding edge
occurs when the SSS bit

is asserted.

Yes Yes None.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-51
 Preliminary

31.4.3.6 CFIFO and Trigger Status

31.4.3.6.1 CFIFO Operation Status

Each CFIFO has its own CFIFO status field. CFIFO status (CFS) can be read from EQADC_CFSSR (see
Section 31.3.3.11, “eQADC CFIFO Status Register (EQADC_CFSR).” Figure 31-31 and Table 31-33
indicate the CFIFO status switching condition. Refer to Table 31-15 for the meaning of each CFIFO
operation status. The last CFIFO to transfer a command to an on-chip ADC can be read from the LCFTn
(n=0,1) fields (see Section 31.3.3.10, “eQADC CFIFO Status Snapshot Register (EQADC_CFSSR).”

Single Scan
Level

Yes Gate is opened when the
SSS bit is asserted.

Yes No The eQADC also stops transfers
from the CFIFO when CFIFO
status changes from triggered

due to the detection of a closed
gate.5

Continuous
Scan Software

No CFIFO starts
automatically after being
configured into this mode.

No No None.

Continuous
Scan Edge

No A corresponding edge
occurs.

Yes Yes None.

Continuous
Scan Level

No Gate is opened. No No The eQADC also stops transfers
from the CFIFO when CFIFO
status changes from triggered

due to the detection of a closed
gate.5

1 Refer to Section 31.4.3.6.2, “Command Queue Completion Status,” for more information on EOQ.
2 Refer to Section 31.4.3.6.3, “Pause Status,” for more information on pause.
3 The eQADC always stops command transfers from a CFIFO when the CFIFO operation mode is disabled.
4 The eQADC always stops command transfers from a CFIFO when a higher priority CFIFO is triggered. Refer to

Section 31.4.3.2, “CFIFO Prioritization and Command Transfer,” for information on CFIFO priority.
5 If a closed gate is detected while no command transfers are taking place, it will have immediate effect on the CFIFO

status.

Table 31-32. CFIFO Scan Trigger Mode—Command Transfer Start/Stop Summary (continued)

Trigger Mode

Requires
Asserted SSS
to Recognize

Trigger
Events?

Command Transfer
Start/Restart Condition

Stop on
asserted

EOQ
bit1?

Stop on
asserted

Pause
bit2?

Other Command Transfer Stop
Condition3 4

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-52 Freescale Semiconductor
 Preliminary

Figure 31-31. State Machine of CFIFO Status

Table 31-33. Command FIFO Status Switching Condition

No.
From Current
CFIFO Status

(CFS)

To New CFIFO
Status (CFS)

Status Switching Condition

1 IDLE
(00)

IDLE
(0b00)

 • CFIFO mode is programmed to disabled, OR
 • CFIFO mode is programmed to single-scan edge or level

trigger mode and SSS is negated.

2 WAITING FOR
TRIGGER

(0b10)

 • CFIFO mode is programmed to continuous-scan edge or
level trigger mode, OR

 • CFIFO mode is programmed to single-scan edge or level
trigger mode and SSS is asserted, OR

 • CFIFO mode is programmed to single-scan software trigger
mode.

3 TRIGGERED
(0b11)

 • CFIFO mode is programmed to continuous-scan software
trigger mode

4 WAITING FOR
TRIGGER

(10)

IDLE
(0b00)

 • CFIFO mode is modified to disabled mode.

5 WAITING FOR
TRIGGER

(0b10)

 • No trigger occurred.

6 TRIGGERED
(0b11)

 • Appropriate edge or level trigger occurred, OR
 • CFIFO mode is programmed to single-scan software trigger

mode and SSS bit is asserted.

8

6WAITING-
FOR

IDLE
1

2

4

95

7

3

TRIGGER
TRIGGERED

(CFS=0b00)

(CFS=0b10)
(CFS=0b11)

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-53
 Preliminary

31.4.3.6.2 Command Queue Completion Status

The end of queue flag, EQADC_FISRn[EOQF] (see Section 31.3.3.8, “eQADC FIFO and Interrupt Status
Registers 0–5 (EQADC_FISRn)”) is asserted when the eQADC completes the transfer of a CFIFO entry
with an asserted EOQ bit. Software sets the EOQ bit in the last command message of a user-defined
command queue to indicate that this entry is the end of the queue. See Section 31.4.1.1, “Message Format
in eQADC,” for information on command message formats. The transfer of entries bound for the on-chip
ADC is considered completed when they are stored in the appropriate command buffer.

The command with a EOQ bit asserted is valid and will be transferred. When EQADC_CFCRn[EOQIE]
(see Section 31.3.3.6, “eQADC CFIFO Control Registers 0–5 (EQADC_CFCRn)”) and
EQADC_FISRn[EOQF] are asserted, the eQADC will generate an end of queue interrupt request.

In single-scan modes, command transfers from the corresponding CFIFO will cease when the eQADC
completes the transfer of a entry with an asserted EOQ. Software involvement is required to rearm the
CFIFO so that it can detect new trigger events.

7 TRIGGERED
(11)

IDLE
(0b00)

 • CFIFO in single-scan mode, eQADC detects the EOQ bit
asserted at end of command transfer, and CFIFO mode is
not modified to disabled, OR

 • CFIFO, in single-scan level trigger mode, and the gate
closes while no commands are being transferred from the
CFIFO, and CFIFO mode is not modified to disabled, OR

 • CFIFO, in single-scan level trigger mode, and eQADC
detects a closed gated at end of command transfer, and
CFIFO mode is not modified to disabled, OR

 • CFIFO mode is modified to disabled mode and CFIFO was
not transferring commands.

 • CFIFO mode is modified to disabled mode while CFIFO was
transferring commands, and CFIFO completes or aborts the
transfer.

8 WAITING FOR
TRIGGER

(0b10)

 • CFIFO in single or continuous-scan edge trigger mode,
eQADC detects the pause bit asserted at the end of
command transfer, the EOQ bit in the same command is
negated, and CFIFO mode is not modified to disabled, OR

 • CFIFO in continuous-scan edge trigger mode, eQADC
detects the EOQ bit asserted at the end of command
transfer, and CFIFO mode is not modified to disabled, OR

 • CFIFO, in continuous-scan level trigger mode, and the gate
closes while no commands are being transferred from the
CFIFO, and CFIFO mode is not modified to disabled, OR

 • CFIFO, in continuous-scan level trigger mode, and eQADC
detects a closed gated at end of command transfer, and
CFIFO mode is not modified to disabled.

9 TRIGGERED
(0b11)

 • No event to switch to IDLE or WAITING FOR TRIGGER
status has happened.

Table 31-33. Command FIFO Status Switching Condition (continued)

No.
From Current
CFIFO Status

(CFS)

To New CFIFO
Status (CFS)

Status Switching Condition

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-54 Freescale Semiconductor
 Preliminary

NOTE
An asserted EOQFn only implies that the eQADC has finished transferring
a command with an asserted EOQ bit from CFIFOn. It does not imply that
result data for the current command and for all previously transferred
commands has been returned to the appropriate RFIFO.

31.4.3.6.3 Pause Status

In edge trigger mode, when the eQADC completes the transfer of a CFIFO entry with an asserted pause
bit, the eQADC will stop future command transfers from the CFIFO and set EQADC_FISRn[PF] (see
Section 31.3.3.8, “eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn)”). Refer to
Section 31.4.1.1, “Message Format in eQADC,” for information on command message formats. The
eQADC ignores the pause bit in command messages in any software level trigger mode. The eQADC sets
the PF flag upon detection of an asserted pause bit only in single or continuous-scan edge trigger mode.
When the PF flag is set for a CFIFO in single-scan edge trigger mode, the EQADC_FISRn[SSS] bit will
not be cleared (see Section 31.3.3.8, “eQADC FIFO and Interrupt Status Registers 0–5
(EQADC_FISRn)”).

In level trigger mode, the definition of the PF flag has been redefined. In level trigger mode, when CFIFOn
is in TRIGGERED status, PFn is set when the CFIFO status changes from TRIGGERED due to detection
of a closed gate. The pause flag interrupt routine can be used to verify if the a complete scan of the
command queue was performed. If a closed gate is detected while no command transfers are taking place,
it will have immediate effect on the CFIFO status.

When EQADC_CFCR[PIE] (see Section 31.3.3.6, “eQADC CFIFO Control Registers 0–5
(EQADC_CFCRn)”) and EQADC_FISRn[PF] are asserted, the eQADC will generate a pause interrupt
request.

NOTE
In edge trigger mode, an asserted PFn only implies that the eQADC finished
transferring a command with an asserted pause bit from CFIFOn. It does not
imply that result data for the current command and for all previously
transferred commands has been returned to the appropriate RFIFO.

NOTE
In software or level trigger mode, when the eQADC completes the transfer
of an entry from CFIFOn with an asserted pause bit, PFn will not be set and
command transfers will continues without pausing.

31.4.3.6.4 Trigger Overrun Status

When a CFIFO is configured for edge- or level-trigger mode and is in a TRIGGERED state, an additional
trigger occurring for the same CFIFO results in a trigger overrun. The trigger overrun bit for the
corresponding CFIFO will be set (EQADC_FISRn[TORFn] = 1, see Section 31.3.3.8, “eQADC FIFO and
Interrupt Status Registers 0–5 (EQADC_FISRn)”). When EQADC_CFCRn[TORIE] (see
Section 31.3.3.6, “eQADC CFIFO Control Registers 0–5 (EQADC_CFCRn)”) and
EQADC_FISRn[TORF] are asserted, the eQADC generates a trigger overrun interrupt request.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-55
 Preliminary

31.4.3.6.5 Command Sequence Non-Coherency Detection

The eQADC provides a mechanism to indicate if a command sequence has been completely executed
without interruptions. A command sequence is defined as a group of consecutive commands bound for the
same ADC and it is expected to be executed without interruptions. A command sequence is coherent if its
commands are executed in order without interruptions. Because commands are stored in the ADC’s
command buffers before being executed in the eQADC, a command sequence is coherent if, while it is
transferring commands to an on-chip ADC command buffer, the buffer is only fed with commands from
that sequence without ever becoming empty.

A command sequence starts when:

• A CFIFO in TRIGGERED state transfers its first command to an on-chip ADC.

• The CFIFO is constantly transferring commands and the previous command sequence ended.

• The CFIFO resumes command transfers after being interrupted.

And a command sequence ended when:

• An asserted EOQ bit is detected on the last transferred command.

• CFIFO is in edge-trigger mode and asserted pause bit is detected on the last transferred command.

Figure 31-32 shows examples of how the eQADC would detect command sequences when transferring
commands from a CFIFO.

Figure 31-32. Command Sequence Example

The NCF flag is used to indicate command sequence non-coherency. When the NCFn flag is asserted, it
indicates that the command sequence being transferred through CFIFOn became non-coherent. The NCF
flag only becomes asserted for CFIFOs in a TRIGGERED state.

A command sequence is non-coherent when, after transferring the first command of a sequence from a
CFIFO to a buffer, it cannot successively send all the other commands of the sequence before any of the
following conditions are true:

• The CFIFO through which commands are being transferred is pre-empted by a higher priority
CFIFO which sends commands to the same CBuffer. The NCF flag becomes asserted immediately
after the first command transfer from the pre-empting CFIFO, that is the higher priority CFIFO, to
the ADC in use is completed. See Figure 31-43.

Assuming that these commands are transferred by a CFIFO
configured for edge trigger mode and the command transfers are
never interrupted, the eQADC would check for non-coherency of
two command sequences: one formed by commands 0, 1, 2, 3, and
the other by commands 4, 5, 6.

User Command Queue with
Two Command Sequences

CF5_ADC0_CM6(EOQ=1)7

CF5_ADC0_CM56

CF5_ADC0_CM45

CF5_ADC0_CM3(Pause=1)4

CF5_ADC0_CM23

CF5_ADC0_CM12

CF5_ADC0_CM01

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-56 Freescale Semiconductor
 Preliminary

31.4.4 Result FIFOs

31.4.4.1 RFIFO Basic Functionality

There are six RFIFOs located in the eQADC. Each RFIFO is four entries deep, and each RFIFO entry is
16 bits long. Each RFIFO serves as a temporary storage location for the one of the result queues allocated
in system memory. All result data is saved in the RFIFOs before being moved into the system result
queues. When an RFIFO is not empty, the eQADC sets the corresponding EQADC_FISRn[RFDF] (see
Section 31.3.3.8, “eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn)”). If
EQADC_IDCRn[RFDE] is asserted (see Section 31.3.3.7), the eQADC generates a request so that the
RFIFO entry is moved to a result queue. An interrupt request, served by the host CPU, is generated when
EQADC_IDCRn[RFDS] is negated, and an eDMA request, served by the eDMA, is generated when
RFDS is asserted. The host CPU or the eDMA responds to these requests by reading EQADC_RFPRn (see
Section 31.3.3.5, “eQADC Result FIFO Pop Registers 0–5 (EQADC_RFPRn)”) to retrieve data from the
RFIFO.

NOTE
Reading a word, halfword, or any bytes from EQADC_RFPRn will pop an
entry from RFIFOn, and the RFCTRn field will be decremented by 1.

The eDMA controller should be configured to read a single result (16-bit
data) from the RFIFO pop registers for every asserted eDMA request it
acknowledges. Refer to Section 31.5.2, “eQADC/eDMA Controller
Interface” for eDMA controller configuration guidelines.

Figure 31-33 describes the important components in the RFIFO. Each RFIFO is implemented as a circular
set of registers to avoid the need to move all entries at each push/pop operation. The pop next data pointer
always points to the next RFIFO message to be retrieved from the RFIFO when reading eQADC_RFPR.
The receive next data pointer points to the next available RFIFO location for storing the next incoming
message from the on-chip ADC. The RFIFO counter logic counts the number of entries in RFIFO and
generates interrupt or eDMA requests to drain the RFIFO.

EQADC_FISRn[POPNXTPTR] (see Section 31.3.3.8, “eQADC FIFO and Interrupt Status Registers 0–5
(EQADC_FISRn)”) indicates which entry is currently being addressed by the pop next data pointer, and
EQADC_FISRn[RFCTR] provides the number of entries stored in the RFIFO. Using POPNXTPTR and
RFCTR, the absolute addresses for pop next data pointer and receive next data pointer can be calculated
using the following formulas:

Pop Next Data Pointer Address= RFIFOn_BASE_ADDRESS + POPNXTPTRn*4
Receive Next Data Pointer Address = RFIFOn_BASE_ADDRESS +
[(POPNXTPTRn + RFCTRn) mod RFIFO_DEPTH] * 4

where

• a mod b returns the remainder of the division of a by b.

• RFIFOn_BASE_ADDRESS is the smallest memory mapped address allocated to an RFIFOn
entry.

• RFIFO_DEPTH is the number of entries contained in a RFIFO - four in this implementation.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-57
 Preliminary

When a new message arrives and RFIFOn is not full, the eQADC copies its contents into the entry pointed
by receive next data pointer. The RFIFO counter EQADC_FISRn[RFCTRn] (see Section 31.3.3.8,
“eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn)”) is incremented by 1, and the receive
next data pointer n is also incremented by 1 (or wrapped around) to point to the next empty entry in
RFIFOn. However, if the RFIFOn is full, the eQADC sets the EQADC_FISRn[RFOF] (see
Section 31.3.3.8, “eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn)”). The RFIFOn will
not overwrite the older data in the RFIFO, the new data will be ignored, and the receive next data pointer
n is not incremented or wrapped around. RFIFOn is full when the receive next data pointer n equals the
pop next data pointer n and RFCTRn is not 0. RFIFOn is empty when the receive next data pointer n equals
the pop next data pointer n and RFCTRn is 0.

When the eQADC RFIFO pop register n is read and the RFIFOn is not empty, the RFIFO counter RFCTRn
is decremented by 1, and the pop next data pointer is incremented by 1 (or wrapped around) to point to the
next RFIFO entry.

When the eQADC RFIFO pop register n is read and RFIFOn is empty, eQADC will not decrement the
counter value and the pop next data pointer n will not be updated. The read value will be undefined.

Figure 31-33. RFIFO Diagram

The detailed behavior of the pop next data pointer and receive next data pointer is described in the example
shown in Figure 31-34 where an RFIFO with 16 entries is shown for clarity of explanation, the actual
hardware implementation has only four entries. In this example, RFIFOn with 16 entries is shown in
sequence after popping or receiving entries.

Pop Next

Data Entry 1

Data Entry 2

Control Signals

RFIFO
Counter Control

Logic

Data Pointer *

Receive Next
Data Pointer *

Data from
External
Device or
from
On-Chip

Read
from Bus
Interface
by CPU
or DMA

DMA Done

Interrupt/DMA Request

All RFIFO entries are memory mapped and the entries addressed by these pointers
can have their absolute addresses calculated using POPNXTPTR and RFCTR.

*

RFIFO
Pop Register

ADCs

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-58 Freescale Semiconductor
 Preliminary

Figure 31-34. RFIFO Entry Pointer Example

31.4.4.2 Distributing Result Data into RFIFOs

Data to be moved into the RFIFOs comes from ADC0. All result data comes with a MESSAGE_TAG field
defining what should be done with the received data. The FIFO control unit decodes the MESSAGE_TAG
field and:

• Stores the 16-bit data into the appropriate RFIFO if the MESSAGE_TAG indicates a valid RFIFO
number or

• Ignores the data in case of a null or “reserved for customer use” MESSAGE_TAG

First In Pop
Next
Data
Pointer

Last In
Receive

Next
Data

Pointer

RFIFOn
Pop
Next
Data
Pointer

Receive
Next
Data

Pointer

RFIFOn

First In Pop
Next
Data
Pointer

Last In
Receive

Next
Data

Pointer

RFIFOn

After Reset or
Invalidation

Some Entries Received
but None Popped

No Entries Received
but Some Popped

First In Pop
Next
Data
Pointer

Receive
Next
Data

Pointer

RFIFOn

Pop
Next
Data
Pointer

Receive
Next
Data

Pointer

RFIFOn

First In Pop
Next
Data
Pointer

Last In
Receive

Next
Data

Pointer

RFIFOn

No Entries Received
but Some Popped

Some Entries Received
and Some Popped

Entries Received Until
Full and None Popped

First In
Last In Last In

Valid Entry
Empty Entry

NOTE:
n = 0, 1, 2, 3, 4, 5

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-59
 Preliminary

In general, received data is moved into RFIFOs as they become available.

When time-stamped results return from the on-chip ADC, the conversion result and the time stamp are
always moved to the RFIFOs in consecutive clock cycles in order to guarantee they are always stored in
consecutive RFIFO entries.

31.4.5 On-Chip ADC Configuration and Control

31.4.5.1 Enabling and Disabling the on-chip ADC

The on-chip ADC has an enable bit (ADC0_CR[ADC0_EN], see Section 31.3.4.1, “ADC0 Control
Register (ADC0_CR)”) which allows the enabling of the ADC only when necessary. When the enable bit
for an ADC is negated, the clock input to that ADC is stopped. The ADC is disabled out of reset -
ADC0_EN negated - to allow for their safe configuration. The ADC must only be configured when its
enable bit is negated. Once the enable bit of the ADC is asserted, clock input is started, and the bias
generator circuit is turned on. When the enable bits of the ADC is negated, the bias circuit generator is
stopped.

NOTE
Conversion commands sent to a disabled ADC are ignored by the ADC
control hardware.

NOTE
An 8ms wait time from VDDA power up to enabling ADC or exiting from
stop or sleep mode is required to pre-charge the external 100nf capacitor on
REFBYPC. This time must be guaranteed by crystal startup time plus reset
duration or the user. The ADC internal bias generator circuit will start up
after 10us upon VRH/VRL power up and produces a stable/required bias
current to the pre-charge circuit, but the current to the other analog circuits
are disabled until the ADC is enabled. As soon as the ADC is enabled, the
bias currents to other analog circuits will be ready.

NOTE
Because of previous design versions, the eQADC will always wait 120
ADC clocks before issuing the first conversion command following the
enabling the on-chip ADC, or the exiting of stop mode. There is an
independent counter checking for this delay Conversion commands can start
to be executed whenever the counter completes counting 120 ADC clocks.

31.4.5.2 ADC Clock and Conversion Speed

The clock input to the ADC is defined by setting the ADC0_CR[ADC0_CLK_PS](see Section 31.3.4.1,
“ADC0 Control Register (ADC0_CR)”) The ADC0_CLK_PS field selects the clock divide factor by
which the system clock will be divided as showed in Table 31-20. The ADC clock frequency is calculated
as below and it must not exceed 12 MHz.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-60 Freescale Semiconductor
 Preliminary

Figure 31-35 depicts how the ADC clocks for ADC0 are generated.

Figure 31-35. ADC0 Clock Generation

The ADC conversion speed (in kilosamples per second – ksamp/s) is calculated by the following formula.
The number of sampling cycles is determined by the LST bits in the command message — see Section ,
“Conversion Command Message Format for On-Chip ADC Operation,” — and it can take one of the
following values: 2, 8, 64, or 128 ADC clock cycles. The number of AD conversion cycles is 14. The
maximum conversion speed is achieved when the ADC Clock frequency is set to its maximum (12 MHz)
and the number of sampling cycles set to its minimum (2 cycles). The maximum conversion speed is
750ksamp/s.

31.4.5.3 Time Stamp Feature

The on-chip ADC can provide a time stamp for the conversions they execute. A time stamp is the value of
the time base counter latched when the eQADC detects the end of the analog input voltage sampling. A
time stamp for a conversion command is requested by setting the TSR bit in the corresponding command.
When TSR is negated, that is a time stamp is not requested, the ADC returns a single result message
containing the conversion result. When TSR is asserted, that is a time stamp is requested, the ADC returns
two result messages; one containing the conversion result, and another containing the time stamp for that
conversion. The result messages are sent in this order to the RFIFOs and both messages are sent to the
same RFIFO as specified in the MESSAGE_TAG field of the executed conversion command.

The time base counter is a 16-bit up counter and wraps after reaching 0xFFFF. It is disabled after reset and
it is enabled according to the setting of ADC_TSCR[TBC_CLK_PS] field (see Section 31.3.4.2, “ADC
Time Stamp Control Register (ADC_TSCR)”). TBC_CLK_PS defines if the counter is enabled or
disabled, and, if enabled, at what frequency it is incremented. The time stamps are returned regardless of
whether the time base counter is enabled or disabled. The time base counter can be reset by writing 0x0000
to the ADC_TBCR (Section 31.3.4.3, “ADC Time Base Counter Registers (ADC_TBCR)”) with a write
configuration command.

ADCClockFrequency SystemClockFrequency MHz()
SystemClockDivideFactor

-- ADCClockFrequency 12MHz≤();=

Divide by:
2, 4, 6, ..., 60, 62, 64

ADC0
Control Register

To ADC0

ADC0_CLK_PS

ADC0 ClockSystem
Clock

System Clock Divider

ADCConversionSpeed ADCClockFrequency MHz()
NumberOfSamplingCycles NumberOfADConversionCycles+()

--=

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-61
 Preliminary

31.4.5.4 ADC Calibration Feature

31.4.5.4.1 Calibration Overview

The eQADC provides a calibration scheme to remove the effects of gain and offset errors from the results
generated by the on-chip ADC. Only results generated by the on-chip ADC are calibrated. The main
component of calibration hardware is a multiply-and-accumulate (MAC) unit, one per on-chip ADC, that
is used to calculate the following transfer function which relates a calibrated result to a raw, uncalibrated
one.

CAL_RES = GCC * RAW_RES + OCC + 2;

where:

• CAL_RES is the calibrated result corresponding the input voltage Vi.

• GCC is the gain calibration constant.

• RAW_RES is the raw, uncalibrated result corresponding to an specific input voltage Vi.

• OCC is the offset calibration constant.

• The addition of two reduces the maximum quantization error of the ADC. See Section 31.5.6.3,
“Quantization Error Reduction During Calibration.”

Calibration constants GCC and OCC are determined by taking two samples of known reference voltages
and using these samples to calculate their values. For details and an example about how to calculate the
calibration constants and use them in result calibration refer to Section 31.5.6, “ADC Result Calibration.”
Once calculated, GCC is stored in ADC0_GCCR (see Section 31.3.4.4, “ADC0 Gain Calibration Constant
Register (ADC0_GCCR)”) and OCC in ADC0_OCCR(see Section 31.3.4.5, “ADC0 Offset Calibration
Constant Register (ADC0_OCCR)”) from where their values are fed to the MAC unit.

A conversion result is calibrated according to the status of CAL bit in the command that initiated the
conversion. If the CAL bit is asserted, the eQADC will automatically calculate the calibrated result before
sending the result to the appropriate RFIFO. If the CAL bit is negated, the result is not calibrated, it
bypasses the calibration hardware, and is directly sent to the appropriate RFIFO.

31.4.5.4.2 MAC Unit and Operand Data Format

The MAC unit diagram is shown in Figure 31-36. Each on-chip ADC has a separate MAC unit to calibrate
its conversion results.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-62 Freescale Semiconductor
 Preliminary

Figure 31-36. MAC Unit Diagram

The OCCn operand is a 14-bit signed value and it is the upper 14 bits of the value stored in ADC0_OCCR.
The RAW_RES operand is the raw uncalibrated result, and it is a direct output from the on-chip ADC.

The GCCn operand is a 15-bit fixed point unsigned value, and it is the upper 15 bits of the value stored in
ADC0_GCCR. The GCC is expressed in the GCC_INT.GCC_FRAC binary format. The integer part of the
GCC (GCC_INT = GCC[1]) contains a single binary digit while its fractional part
(GCC_FRAC = GCC[2:15]) contains 14 bits. See Figure 31-37 for more information. The gain constant
equivalent decimal value ranges from 0 to 1.999938..., as shown in Table 31-35. Two is always added to
the MAC output: see Section 31.5.6.3, “Quantization Error Reduction During Calibration. CAL_RES
output is the calibrated result, and it is a 14-bit unsigned value. CAL_RES is truncated to 0x3FFF, in case
of a overflow, and to 0x0000, in case of an underflow.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

GCC_
INT0

GCC_FRAC

Figure 31-37. Gain Calibration Constant Format

Table 31-34. Gain Calibration Constant Format Field Descriptions

Field Description

bit 0 Reserved

GCC_INT0 Integer part of the gain calibration constant for ADC0. GCC_INT is the integer part of the gain calibration constant
(GCC) for ADC0/1.

GCC_
FRAC

Fractional part of the gain calibration constant for ADC0. GCC_FRAC is the fractional part of the gain calibration
constant (GCC) for ADC0. GCC_FRAC can expresses decimal values ranging from 0 to 0.999938...

MAC Unit

Offset Calibration Constant (OCCn)
(14-bit signed value from ADC0_OCCR)

Raw Uncalibrated Result (RAW_RES)
(12-bit unsigned value)

Gain Calibration Constant (GCCn)
(15-bit fixed point unsigned value

from ADC0_GCCR)

Calibrated Result (CAL_RES)
(14-bit unsigned value)

2

Gain Calibration Constant (GCC)

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-63
 Preliminary

31.4.5.5 ADC Control Logic Overview and Command Execution

Figure 31-38 shows the basic logic blocks involved in the ADC control and how they interact.
CFIFOs/RFIFOs interact with ADC command/result message return logic through the FIFO control unit.
The EB and BN bits in the command message uniquely identify the ADC to which a command should be
sent. The FIFO control unit decodes these bits and sends the ADC command to the proper ADC. Other
blocks of logic are the result format and calibration submodule, the time stamp logic, and the MUX control
logic.

The result format and calibration submodule formats the returning data into result messages and sends
them to the RFIFOs. The returning data can be data read from an ADC register, a conversion result, or a
time stamp. The formatting and calibration of conversion results also take place inside this submodule.

The time stamp logic latches the value of the time base counter when detecting the end of the analog input
voltage sampling, and sends it to the result format and calibration submodule as time stamp information.

The MUX control logic generates the proper MUX control signals and, when the ADC0/1_EMUX bits are
asserted, the MA signals based on the channel numbers extracted from the ADC Command.

ADC commands are stored in the ADC command buffers (2 entries) as they come in and they are executed
on a first-in-first-out basis. After the execution of a command in ENTRY1 finishes, all commands are
shifted one entry. After the shift, ENTRY0 is always empty and ready to receive a new command.
Execution of configuration commands only starts when they reach ENTRY1. Consecutive conversion
commands are pipelined, and their execution can start while in ENTRY0. This is explained below.

A/D conversion accuracy can be affected by the settling time of the input channel multiplexers. Some time
is required for the channel multiplexer’s internal capacitances to settle after the channel number is
changed. If the time prior to and during sampling is not long enough to permit this settling, then the voltage
on the sample capacitors will not accurately represent the voltage to be read. This is a problem in particular
when external muxes are used.

Table 31-35. Correspondence between Binary and Decimal Representations of the Gain Constant

Gain Constant
(GCC_INT.GCC_FRAC binary format)

Corresponding Decimal Value

0.0000_0000_0000_00 0

... ...

0.1000_0000_0000_00 0.5

... ...

0.1111_1111_1111_11 0.999938...

1.0000_0000_0000_00 1

... ...

1.1100_0000_0000_00 1.75

... ...

1.1111_1111_1111_11 1.999938...

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-64 Freescale Semiconductor
 Preliminary

To maximize settling time, when a conversion command is in buffer ENTRY1 and another conversion
command is identified in ENTRY0, then the channel number of ENTRY0 is sent to the MUX control logic
half an ADC clock before the start of the sampling phase of the command in ENTRY0. This pipelining of
sample and settling phase is shown in Figure 31-39(b).

This provides more accurate sampling, which is specially important for applications that require high
conversion speeds, i.e., with the ADC running at maximum clock frequency and with the analog input
voltage sampling time set to a minimum (2 ADC clock cycles). In this case the short sampling time may
not allow the multiplexers to completely settle. The second advantage of pipelining conversion commands
is to provide equal conversion intervals even though the sample time increases on second and subsequent
conversions. See Figure 31-39. This is important for any digital signal process application.

Figure 31-38. On-Chip ADC Control Scheme

MUX
40:1

CFIFOn

ADC0

BIAS
GEN

MUX
Control
Logic

(32-bits)

RFIFOn
(16-bits)

AN0-AN39

REFBYPC

MA0, MA1,

Configuration
Registers

EMUX0

Entry1
LST0

Entry0

ADC0 Buffer

Register Data 0

CHANNEL_NUMBER0

MESSAGE_TAG0;
FMT0, CAL0

Result Format
and

Calibration
Submodule

FIFO
Control

Unit

Result0

Time Stamp0

Time
Stamp
Logic

TBC_CLK_PS

TSR0

ADC0_Result0

ADDR or/and DATA

MA2

Configuration Register Fields NOTE: n = 0, 1, 2, 3, 4, 5

REF
GEN

Pre
Charge

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-65
 Preliminary

Figure 31-39. Overlapping Consecutive Conversion Commands

31.4.6 Internal/External Multiplexing

31.4.6.1 Channel Assignment

The internal analog multiplexers select one of the 40 analog input pins for conversion, based on the
CHANNEL_NUMBER field of a Command Message.

Table 31-36 shows the channel number assignments for the non-multiplexed mode. The 40 single-ended
channels are provided by the ADC.

Table 31-36. Non-multiplexed Channel Assignments

Input Pins
Channel Number in

CHANNEL_NUMBER Field

Analog
Pin Name

Other
Functions

Conversion Type Binary Decimal

AN0 to AN39 Single-ended 0000_0000 to 0010_0111 0 to 39

VRH Single-ended 0010_1000 40

VRL Single-ended 0010_1001 41

MUX Settle Time
and Sampling

AD Conversion

Minimum time necessary to perform a single
conversion after channel number is changed

MUX Settle Time
and Sampling

AD Conversion

Channel # Change
and Sample Start

Channel # Change
& Sample Start

(a) Command Execution Sequence for Two Non-Overlapped Commands

Conversion starts immediately after
channel # change. ADC sample time
should compensate for MUX internal
capacitance settling and for the sampling
on the sampling capacitor. If sample time
is not long enough then conversion

MUX Settle Time
& Sampling

AD Conversion

Sampling AD Conversion
Channel # Change
and Sample Start

Channel #

(b) Command Execution Sequence for Two Overlapped Commands

MUX
Settle Time

Change
Sample
Start

Channel # changes before sampling starts leading to
more time for MUX internal capacitance to settle.

results will have reduced accuracy

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-66 Freescale Semiconductor
 Preliminary

Table 31-37 shows the channel number assignments for multiplexed mode. The ADC with the
ADC0_EMUX bit asserted can access 39 single-ended and, at most, 56 externally multiplexed channels.
Refer to Section 31.4.6.2, “External Multiplexing,” for a detailed explanation about how external
multiplexing can be achieved.

(VRH - VRL)/2
see footnote1

Single-ended 0010_1010 42

75% x (VRH - VRL) Single-ended 0010_1011 43

25% x (VRH - VRL) Single-ended 0010_1100 44

Reserved 0010_1101 to 1111_1111 45 to 255

1 This equation only applies before calibration. After calibration, the 50% reference point will actually return approximately
20mV lower than the expected 50% of the difference between the High Reference Voltage (VRH) and the Low Reference
Voltage (VRL). For calibration of the ADC only the 25% and 75% points should be used as described in Section 31.5.6.1,
“MAC Configuration Procedure”

Table 31-37. Multiplexed Channel Assignments

Input Pins
Channel Number in

CHANNEL_NUMBER Field

Analog
Pin Name

Other Functions Conversion Type Binary Decimal

AN0 to AN7 Single-ended 0000_0000 to 0000_0111 0 to 7

Reserved 0000_1000 to 0000_1011 8 to 11

AN12 to AN15 Single-ended 0000_1100 to 0000_1111 12 to 15

Reserved 0001_0000 to 0001_0010 16 to 18

AN19 to AN39 Single-ended 0001_0011 to 0010_0111 19 to 39

VRH Single-ended 0010_1000 40

VRL Single-ended 0010_1001 41

(VRH–VRL)/2 Single-ended 0010_1010 42

75% x (VRH–VRL) Single-ended 0010_1011 43

25% x (VRH–VRL) Single-ended 0010_1100 44

Reserved 0010_1101 to 0011_1111 45 to 63

ANW
ANX
ANY
ANZ

—
—
—
—

Single-ended
Single-ended
Single-ended
Single-ended

0100_0xxx
0100_1xxx
0101_0xxx
0101_1xxx

64 to 71
72 to 79
80 to 87
88 to 95

Reserved 0110_0000 to 1101_1111 96 to 223

Table 31-36. Non-multiplexed Channel Assignments

Input Pins
Channel Number in

CHANNEL_NUMBER Field

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-67
 Preliminary

31.4.6.2 External Multiplexing

The eQADC can use from one to seven external multiplexers to expand the number of analog signals that
may be converted. Up to 56 analog channels can be converted through external multiplexer selection. The
externally multiplexed channels are automatically selected by the CHANNEL_NUMBER field of a
command message, in the same way done with internally multiplexed channels. The software selects the
external multiplexed mode by setting the ADC0_EMUX bit in ADC0_CR. Figure 31-37 shows the
channel number assignments for the multiplexed mode. There are 40 single-ended and, at most, 56
externally multiplexed channels that can be selected.

Figure 31-40 shows a typical configuration of four external multiplexer chips connected to the eQADC.
The external multiplexer chip selects one of eight analog inputs and connects it to a single analog output,
which is fed to a specific input of the eQADC. The eQADC provides three multiplexed address signals,
MA0, MA1, and MA2, to select one of eight inputs. These three multiplexed address signals are connected
to all four external multiplexer chips. The analog output of the four multiplex chips are each connected to
four separate eQADC inputs, ANW, ANX, ANY, and ANZ. The MA pins correspond to the three least
significant bits of the channel number that selects ANW, ANX, ANY, and ANZ with MA0 being the most
significant bit - See Table 31-38.

When the external multiplexed mode is selected, the eQADC automatically creates the MA output signals
from CHANNEL_NUMBER field of a command message. The eQADC also converts the proper input

ANR
ANS
ANT

—
—
—

Single-ended
Single-ended
Single-ended

1110_0xxx
1110_1xxx
1111_0xxx

224 to 231
232 to 239
240 to 247

Reserved 1111_1000 to 1111_1111 248 to 255

Table 31-38. Encoding of MA Pins1

1 0 means pin is driven LOW and 1 that pin is driven HIGH.

Channel Number selecting ANW, ANX, ANY, ANZ, ANR, ANS, ANT (decimal)
MA0 MA1 MA2

ANW ANX ANY ANZ ANR ANS ANT

64 72 80 88 224 232 240 0 0 0

65 73 81 89 225 233 241 0 0 1

66 74 82 90 226 234 242 0 1 0

67 75 83 91 227 235 243 0 1 1

68 76 84 92 228 236 244 1 0 0

69 77 85 93 229 237 245 1 0 1

70 78 86 94 230 238 246 1 1 0

71 79 87 95 231 239 247 1 1 1

Table 31-37. Multiplexed Channel Assignments (continued)

Input Pins
Channel Number in

CHANNEL_NUMBER Field

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-68 Freescale Semiconductor
 Preliminary

channel (ANR, ANS, ANT, ANW, ANX, ANY, and ANZ) by interpreting the CHANNEL_NUMBER
field. As a result, up to 56 externally multiplexed channels appear to the conversion queues as directly
connected signals.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-69
 Preliminary

Figure 31-40. Example of External Multiplexing

AN71
AN70
AN69
AN68
AN67
AN66
AN65
AN64

MUX
40:1 ADC0

MUX
Control
Logic

MUX

ANW

ANX

ANY

ANZ

Channel
Number 0

MA2

MA1

MA0

eQADC

7
40

33

AN79
AN78
AN77
AN76
AN75
AN74
AN73
AN72

MUX

AN87
AN86
AN85
AN84
AN83
AN82
AN81
AN80

MUX

AN95
AN94
AN93
AN92
AN91
AN90
AN89
AN88

MUX

AN12-AN15
AN0-AN7

AN224-AN231
MUX

AN232-AN239
MUX AN240-AN247

MUX

ANR ANS ANT

MA0-2 MA0-2 MA0-2

AN19-AN39

ANR

ANS

ANT

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-70 Freescale Semiconductor
 Preliminary

31.4.7 eQADC eDMA/Interrupt Request

Table 31-39 lists methods to generate interrupt requests in the eQADC queuing control and triggering
control. The eDMA/interrupt request select bits and the eDMA/interrupt enable bits are described in
Section 31.3.3.7, “eQADC Interrupt and eDMA Control Registers 0–5 (EQADC_IDCRn),” and the
interrupt flag bits are described in Section 31.3.3.8, “eQADC FIFO and Interrupt Status Registers 0–5
(EQADC_FISRn).” Table 31-41 depicts all interrupts and eDMA requests generated by the eQADC.

Table 31-40 describes a list of methods to generate eDMA requests by the eQADC.

Table 31-39. eQADC FIFO Interrupt Summary1

1 For details refer to Section 31.3.3.8, “eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn),” and
Section 31.3.3.7, “eQADC Interrupt and eDMA Control Registers 0–5 (EQADC_IDCRn).”

Interrupt Condition Clearing Mechanism

Non Coherency Interrupt NCIEn = 1
NCFn = 1

Clear NCFn bit by writing a 1 to the bit.

Trigger Overrun Interrupt2 TORIEn = 1
TORFn =1

Clear TORFn bit by writing a 1 to the bit.

 Pause Interrupt PIEn = 1
PFn =1

Clear PFn bit by writing a 1 to the bit.

End of Queue Interrupt EOQIEn = 1
EOQFn = 1

Clear EOQFn bit by writing a 1 to the bit.

Command FIFO
Underflow Interrupt2

CFUIEn = 1
CFUFn = 1

Clear CFUFn bit by writing a 1 to the bit.

Command FIFO
Fill Interrupt

CFFEn = 1
CFFSn = 0
CFFFn = 1

Clear CFFFn bit by writing a 1 to the bit.

Result FIFO Overflow
Interrupt2

2 Apart from generating an independent interrupt request for when a RFIFO overflow interrupt, a CFIFO underflow
interrupt, and a CFIFO trigger overrun interrupt occurs, the eQADC also provides a combined interrupt request at
which these requests from ALL CFIFOs are ORed. Refer to Figure 31-41 for details.

RFOIEn = 1
RFOFn = 1

Clear RFOFn bit by writing a 1 to the bit.

Result FIFO
Drain Interrupt

RFDEn = 1
RFDSn = 0
RFDFn = 1

Clear RFDFn bit by writing a 1 to the bit.

Table 31-40. eQADC FIFO eDMA Summary1

1 For details refer to Section 31.3.3.8, “eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn),” and
Section 31.3.3.7, “eQADC Interrupt and eDMA Control Registers 0–5 (EQADC_IDCRn).”

eDMA Request Condition Clearing Mechanism

Result FIFO Drain
eDMA Request

RFDEn = 1
RFDSn = 1
RFDFn = 1

The eQADC automatically clears the RFDFn when RFIFOn becomes
empty. Writing 1 to the RFDFn bit is not allowed while RDFS = 1.

Command FIFO Fill
eDMA Request

CFFEn = 1
CFFSn = 1
CFFFn = 1

The eQADC automatically clears the CFFFn when CFIFOn becomes
full. Writing 1 to the CFFFn bit is not allowed while CFDS = 1.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-71
 Preliminary

Figure 31-41. eQADC eDMA and Interrupt Requests

31.4.8 Analog Submodule

31.4.8.1 Reference Bypass

The reference bypass capacitor (REFBYPC) signal requires a 100 nF capacitor connected to VRL to filter
noise on the internal reference used by the ADC.

Figure 31-42. Reference Bypass Circuit

RFDEn
RFDFn
RFDSn

RFIFO Drain Interrupt Request

CFFEn
CFFFn
CFFSn

CFIFO Fill DMA Request

RFDEn
RFDFn
RFDSn

RFIFO Drain DMA Request
DMA

Request Generation
Logic

CFFEn
CFFFn
CFFSn

CFIFO Fill Interrupt Request

NCIEn
NCFn

Non-Coherency Interrupt Request

PIEn
PFn

Pause Interrupt Request

EOQIEn
EOQFn

End of Queue Interrupt Request

TORIEn
TORFn

Trigger Overrun Interrupt Request

CFUIEn
CFUFn

CFIFO Underflow Interrupt Request

RFOIEn
RFOFn

RFIFO Overflow Interrupt Request

DMA
Request Generation

Logic

Combined Interrupt Request

VRL REFBYPC

100nF

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-72 Freescale Semiconductor
 Preliminary

31.4.8.2 Analog-to-Digital Converter (ADC)

31.4.8.2.1 ADC Overview

Figure 31-43. RSD ADC Block Diagram

The redundant signed digit (RSD) cyclic ADC consists of two main portions, the analog RSD stage, and
the digital control and calculation module, as shown in Figure 31-43. To begin an analog-to-digital
conversion, an input voltage is passed into the analog RSD stage and then from the RSD stage output, back
to its input to be passed again. To complete a 12-bit conversion, the signal must pass through the RSD stage
13 times. Each time an input signal is read into the RSD stage, a digital sample is taken by the digital
control/calculation module. The digital control/calculation module uses this sample to tell the analog
module how to condition the signal. The digital module also saves each successive sample and adds them
according to the RSD algorithm at the end of the entire conversion cycle.

On each pass through the RSD stage, the input signal will be multiplied by exactly two, and summed with
either –vref, 0, or vref, depending on the logic control. The logic control will determine –vref, 0, or vref
depending on the two comparator inputs. As the logic control sets the summing operation, it also sends a
digital value to the RSD adder. Each time an analog signal passes through the RSD single-stage, a digital
value is collected by the RSD adder. At the end of an entire AD conversion cycle, the RSD adder uses these
collected values to calculate the 12-bit digital output.

Figure 31-44 shows the transfer function for the RSD stage. Note how the digital value (AB) is dependent
on the two comparator inputs.

+

–Vrefl

Logic
Control

+

–Vrefh Digital
Signal RSD

Adder

–vref,0,vref

Sumx2
Residue VoltageInput Voltage

RSD Stage

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-73
 Preliminary

Figure 31-44. RSD Stage Transfer Function

In each pass through the RSD stage, the residue will be sent back to be the new input, and the digital
signals, a and b, will be stored. For the 12-bit ADC, the input signal is sampled during the input phase, and
after each of the 12 passes through the RSD stage. Thus, 13 total a and b values are collected. Upon
collecting all these values, they will be added according to the RSD algorithm to create the 12-bit digital
representation of the original analog input. The bits are added in the following manner:

31.4.8.2.2 RSD Adder

The array, s1 to s12,will be the digital output of the RSD ADC with s1 being the msb and s12 being the
lsb (least significant bit).

Figure 31-45. RSD Adder

vref

vref

–vref

–vref VL VH

Input Voltage

Residue Voltage

Vres=2Vin+vref Vres=2Vin Vres=2Vin–vref

a=0, b=0 a=1, b=0a=0, b=1

b1

a13
Carry

b12
b11

a3
a2

a12

b2
• • •
• • •• • •

• • •b10
a11

s1

+

s2• • •• • •s10s11s12

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-74 Freescale Semiconductor
 Preliminary

31.5 Initialization/Application Information

31.5.1 Multiple Queues Control Setup Example

This section provides an example of how to configure multiple user command queues. Table 31-41
describes how each queue can be used for a different application. Also documented in this section are
general guidelines on how to initialize the on-chip ADC, and how to configure the command queues and
the eQADC.

31.5.1.1 Initialization of On-Chip ADC

The following steps provide an example of configuring the eQADC to initialize the on-chip ADC. In this
example, commands will be sent through CFIFO0.

1. Load all required configuration commands in the RAM in such way that they form a queue; this
data structure will be referred below as Queue0. Figure 31-46 shows an example of a command
queue able to configure the on-chip ADC.

2. Configure Section 31.3.3.2, “eQADC Null Message Send Format Register (EQADC_NMSFR).”

3. Configure the eDMA to transfer data from Queue0 to CFIFO0 in the eQADC.

4. Configure Section 31.3.3.7, “eQADC Interrupt and eDMA Control Registers 0–5
(EQADC_IDCRn).”

a) Set CFFS0 to configure the eQADC to generate an eDMA request to load commands from
Queue0 to the CFIFO0.

b) Set CFFE0 to enable the eQADC to generate an eDMA request to transfer commands from
Queue0 to CFIFO0; Command transfers from the RAM to the CFIFO0 will start immediately.

Table 31-41. Example Applications of Each Command Queue

Command
Queue Number

Queue Type Running Speed
Number of

Contiguous
Conversions

 Example

0 Very fast burst
time-based queue

every 2 μs for 200 μs;
pause for 300 μs and then

repeat

2 Injector current profiling

1 Fast
hardware-triggered

queue

every 900 μs 3 Current sensing of PWM
controlled actuators

2 Fast repetitive
time-based queue

every 2 ms 8 Throttle position

3 Software-triggered
queue

every 3.9 ms 3 Command triggered by
software strategy

4 Repetitive
angle-based queue

every 625 us 7 Airflow read every 30
degrees at 8000 RPM

5 Slow repetitive
time-based queue

every 100 ms 10 Temperature sensors

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-75
 Preliminary

c) Set EOQIE0 to enable the eQADC to generate an interrupt after transferring all of the
commands of Queue0 through CFIFO0.

5. Configure Section 31.3.3.6, “eQADC CFIFO Control Registers 0–5 (EQADC_CFCRn).”

a) Write 0b0001 to the MODE0 field in eQADC_CFCR0 to program CFIFO0 for software
single-scan mode.

b) Write 1 to SSE0 to assert SSS0 and trigger CFIFO0.

6. Because CFIFO0 is in single-scan software mode and it is also the highest priority CFIFO, the
eQADC starts to transfer configuration commands to the on-chip ADC.

7. When all of the configuration commands have been transferred, EQADC_FISRn[CF0] (see
Section 31.3.3.8, “eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn)”) will be
set. The eQADC generates an end-of-queue interrupt. The initialization procedure is complete.

Figure 31-46. Example of a Command Queue Configuring the On-Chip ADC

31.5.1.2 Configuring eQADC for Applications

This section provides an example based on the applications in Table 31-41. The example describes how to
configure multiple command queues to be used for those applications and provides a step-by-step
procedure to configure the eQADC and the associated command queue structures. In the example, the
“Fast hardware-triggered command queue,” described on the second row of Table 31-41, will have its
commands transferred to ADC; the conversion commands will be executed by ADC. The generated results
will be returned to RFIFO3 before being transferred to the result queues in the RAM by the eDMA.

NOTE
There is no fixed relationship between CFIFOs and RFIFOs with the same
number. The results of commands being transferred through CFIFO1 can be
returned to any RFIFO, regardless of its number. The destination of a result
is determined by the MESSAGE_TAG field of the command that requested
the result. See Section 31.4.1.1, “Message Format in eQADC,” for details.

Step One: Set up the command queues and result queues.

1. Load the RAM with configuration and conversion commands. Table 31-42 is an example of how
command queue 1 commands should be set.

a) Each trigger event will cause four commands to be executed. When the eQADC detects the
pause bit asserted, it will wait for another trigger to restart transferring commands from the
CFIFO.

b) At the end of the command queue, the “EOQ” bit is asserted as shown in Table 31-42.

c) Results will be returned to RFIFO3 as specified in the MESSAGE_TAG field of commands.

2. Reserve memory space for storing results.

Configuration Command to ADC0—Ex: Write ADC0_CR

Command Queue in

0x0

0x1

System Memory

Configuration Command to ADC0—Ex: Write ADC_TSCR
Command
Address

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-76 Freescale Semiconductor
 Preliminary

Step Two: Configure the eDMA to handle data transfers between the command/result queues in RAM and
the CFIFOs/RFIFOs in the eQADC.

1. For transferring, set the source address of the eDMA TCDn to point to the start address of
command queue 1. Set the destination address of the eDMA to point to EQADC_CFPR1. Refer to
Section 31.3.3.4, “eQADC CFIFO Push Registers 0–5 (EQADC_CFPRn).”

2. For receiving, set the source address of the eDMA TCDn to point to EQADC_RFPR3. Refer to
Section 31.3.3.5, “eQADC Result FIFO Pop Registers 0–5 (EQADC_RFPRn).” Set the destination
address of the eDMA to point to the starting address of result queue 1.

Step Three: Configure the eQADC control registers.

3. Configure Section 31.3.3.7, “eQADC Interrupt and eDMA Control Registers 0–5
(EQADC_IDCRn).”

a) Set EOQIE1 to enable the End of Queue Interrupt request.

b) Set CFFS1 and RFDS3 to configure the eQADC to generate eDMA requests to push commands
into CFIFO1 and to pop result data from RFIF03.

c) Set CFINV1 to invalidate the contents of CFIFO1.

d) Set RFDE3 and CFFE1 to enable the eQADC to generate eDMA requests. Command transfers
from the RAM to the CFIFO1 will start immediately.

Table 31-42. Example of Command Queue Commands1

1 Fields LST, TSR, FMT, and CHANNEL_NUMBER are not shown for clarity. See Section , “Conversion Command Message
Format for On-Chip ADC Operation,” for details.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

E
O

Q

PA
U

S
E

R
E

S
E

R
V

E
D

A
B

O
R

T
_S

T

E
B

 (
0b

1)

B
N

C
A

L

MESSAGE
TAG

ADC COMMAND

CMD1 0 0 0 0 0 1 0 0b0011 Conversion Command

CMD2 0 0 0 0 0 1 0 0b0011 Conversion Command

CMD3 0 0 0 0 0 1 0 0b0011 Conversion Command

CMD4 0 1 0 0 0 1 0 0b0011 2

2 MESSAGE_TAG field is only defined for read configuration commands.

Configure peripheral device for next conversion sequence

CMD5 0 0 0 0 0 1 0 0b0011 Conversion Command

CMD6 0 0 0 0 0 1 0 0b0011 Conversion Command

CMD7 0 0 0 0 0 1 0 0b0011 Conversion Command

CMD8 0 1 0 0 0 1 0 0b00112 Configure peripheral device for next conversion sequence

etc............

CMDEOQ 1 0 0 0 0 1 0 0b0011 EOQ Message

CFIFO Header ADC Command

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-77
 Preliminary

e) Set RFOIE3 to indicate if RFIFO3 overflows.

f) Set CFUIE1 to indicate if CFIFO1 underflows.

4. Configure MODE1 to continuous-scan rising edge external trigger mode in Section 31.3.3.6,
“eQADC CFIFO Control Registers 0–5 (EQADC_CFCRn).”

Step Four: Command transfer to ADCs and result data reception.

When an external rising edge event occurs for CFIFO1, the eQADC automatically will begin
transferring commands from CFIFO1 when it becomes the highest priority CFIFO trying to send
commands to ADC0. The received results will be placed in RFIFO3 and then moved to result
queue 1 by the eDMA.

31.5.2 eQADC/eDMA Controller Interface

This section provides an overview of the EQADC/eDMA interface and general guidelines about how the
eDMA should be configured in order for it to correctly transfer data between the queues in system memory
and the EQADC FIFOs.

31.5.2.1 Command Queue/CFIFO Transfers

In transfers involving command queues and CFIFOs, the eDMA moves data from a queued source to a
single destination as shown in Figure 31-47. The location of the data to be moved is indicated by the source
address, and the final destination for that data, by the destination address. The eDMA has transfer control
descriptors (TCDs) containing these addresses and other parameters used in the control of data transfers
(See Section 12.3.2.16, “Transfer Control Descriptor (TCD)” for more information). For every eDMA
request issued by the EQADC, the eDMA must be configured to transfer a single command (32-bit data)
from the command queue, pointed to by the source address, to the CFIFO push register, pointed to by the
destination address. After the service of an eDMA request is completed, the source address has to be
updated to point to the next valid command. The destination address remains unchanged. When the last
command of a queue is transferred one of the following actions is recommended. Refer to Chapter 12,
“Enhanced Direct Memory Access (eDMA)” for details about how this functionality is supported.

• The corresponding eDMA channel should be disabled. This might be desirable for CFIFOs in
single scan mode.

• The source address should be updated to pointed to a valid command which can be the first
command in the queue that has just been transferred (cyclic queue), or the first command of any
other command queue. This is desirable for CFIFOs in continuous scan mode, or in some cases,
for CFIFOs in single scan mode.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-78 Freescale Semiconductor
 Preliminary

Figure 31-47. Command Queue/CFIFO Interface

31.5.2.2 Receive Queue/RFIFO Transfers

In transfers involving receive queues and RFIFOs, the eDMA controller moves data from a single source
to a queue destination as shown in Figure 31-48. The location of the data to be moved is indicated by the
source address, and the final destination for that data, by the destination address. For every eDMA request
issued by the EQADC, the eDMA controller has to be configured to transfer a single result (16-bit data),
pointed to by the source address, from the RFIFO pop register to the receive queue, pointed to by the
destination address. After the service of an eDMA request is completed, the destination address has to be
updated to point to the location where the next 16-bit result will be stored. The source address remains
unchanged. When the last expected result is written to the receive queue, one of the following actions is
recommended. Refer to Chapter 12, “Enhanced Direct Memory Access (eDMA)” for details about how
this functionality is supported.

• The corresponding eDMA channel should be disabled.

• The destination address should be updated pointed to the next location where new coming results
are stored, which can be the first entry of the current receive queue (cyclic queue), or the beginning
of a new receive queue.

Figure 31-48. Receive Queue/RFIFO Interface

31.5.3 Sending Immediate Command Setup Example

In the eQADC, there is no immediate command register for sending a command immediately after writing
to that register. However, a CFIFO can be configured to perform the same function as an immediate

Command 1

Command 2

Command 3
•

Command n-1

Command n

One command transfer
per DMA request

CFPRx

Source Address

Destination Address

CFIFO Push Register

•
•

•••
eDMA_TCDn

Result 1

Result 2

Result 3
•

Result n-1

Result n

One result transfer
per DMA request

RFPRx

Source Address

Destination Address

RFIFO Pop Register

•
•

•••

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-79
 Preliminary

command register. The following steps illustrate how to configure CFIFO5 as an immediate command
CFIFO. This eliminates the use of the eDMA. The results will be returned to RFIFO5.

1. Configure the Section 31.3.3.7, “eQADC Interrupt and eDMA Control Registers 0–5
(EQADC_IDCRn).”

a) Clear CFIFO fill enable5 (CFFE5 = 0) in EQADC_IDCR5.

b) Clear CFIFO underflow interrupt enable5 (CFUIE5 = 0) in EQADC_IDCR2.

c) Clear RFDS5 to configure the eQADC to generate interrupt requests to pop result data from
RFIF05.

d) Set RFIFO drain enable5 (RFDE5 = 1) in EQADC_IDCR5.

2. Configure the Section 31.3.3.6, “eQADC CFIFO Control Registers 0–5 (EQADC_CFCRn).”

a) Write 1 to CFINV5 in EQADC_CFCR5. This will invalidate the contents of CFIFO5.

a) Set MODE5 to continuous-scan software trigger mode in EQADC_CFCR5.

3. To transfer a command, write it to the eQADC CFIFO push register 5 (EQADC_CFPR5) with
message tag = 0b0101. Refer to Section 31.3.3.4, “eQADC CFIFO Push Registers 0–5
(EQADC_CFPRn).”

4. Up to 4 commands can be queued in CFIFO5. Check the CFCTR5 status in EQADC_FISR5 before
pushing another command to avoid overflowing the CFIFO. Refer to Section 31.3.3.8, “eQADC
FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn).”

5. When the eQADC receives a conversion result for RFIFO5, it generates an interrupt request.
RFIFO pop register 5 (EQADC_RFPR5) can be popped to read the result. Refer to
Section 31.3.3.5, “eQADC Result FIFO Pop Registers 0–5 (EQADC_RFPRn).”

31.5.4 Modifying Queues

More command queues may be needed than the six supported by the eQADC. These additional command
queues can be supported by interrupting command transfers from a configured CFIFO, even if it is
triggered and transferring, modifying the corresponding command queue in the RAM or associating
another command queue to it, and restarting the CFIFO. More details on disabling a CFIFO are described
in Section 31.4.3.5.1, “Disabled Mode.”

1. Determine the resumption conditions when later resuming the scan of the command queue at the
point before it was modified.

a) Change EQADC_CFCRn[MODEn] (see Section 31.3.3.6, “eQADC CFIFO Control Registers
0–5 (EQADC_CFCRn)”) to disabled. Refer to Section 31.4.3.5.1, “Disabled Mode,” for a
description of what happens when MODEn is changed to disabled.

b) Poll EQADC_CFSR[CFSn] until it becomes IDLE (see Section 31.3.3.11, “eQADC CFIFO
Status Register (EQADC_CFSR)”).

c) Read and save EQADC_CFTCRn[TC_CFn] (see Section 31.3.3.9, “eQADC CFIFO Transfer
Counter Registers 0–5 (EQADC_CFTCRn)”) for later resuming the scan of the queue. The
TC_CFn provides the point of resumption.

d) Since all result data may not have being stored in the appropriate RFIFO at the time MODEn
is changed to disable, wait for all expected results to be stored in the RFIFO/result queue before

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-80 Freescale Semiconductor
 Preliminary

reconfiguring the eDMA to work with the modified result queue. The number of results that
must return can be estimated from the TC_CFn value obtained above.

2. Disable the eDMA from responding to the eDMA request generated by EQADC_FISRn[CFFFn]
and EQADC_FISRn[RFDFn] (see Section 31.3.3.8, “eQADC FIFO and Interrupt Status Registers
0–5 (EQADC_FISRn)”).

3. Write “0x0000” to the TC_CFn field.

4. Load the new configuration and conversion commands into RAM. Configure the eDMA to support
the new command/result queue, but do not configure it yet to respond to eDMA requests from
CFIFOn/RFIFOn.

5. If necessary, modify the EQADC_IDCRn registers (see Section 31.3.3.7, “eQADC Interrupt and
eDMA Control Registers 0–5 (EQADC_IDCRn)”) to suit the modified command queue.

6. Write 1 to EQADC_CFCRn[CFINVn] (see Section 31.3.3.6, “eQADC CFIFO Control Registers
0–5 (EQADC_CFCRn)”) to invalidate the entries of CFIFOn.

7. Configure the eDMA to respond to eDMA requests generated by CFFFn and RFDFn.

8. Change MODEn to the modified CFIFO operation mode. Write 1 to SSEn to trigger CFIFOn if
MODEn is software trigger.

31.5.5 Command Queue and Result Queue Usage

Figure 31-49 is an example of command queue and result queue usage. It shows the command queue 0
commands requesting results that will be stored in result queue 0 and result queue 1, and command queue
1 commands requesting results that will be stored only in result queue 1. Some command messages request
data to be returned from the on-chip ADC, but some only configure them and do not request returning data.
When a command queue contains both write and read commands like command queue 0, the command
queue and result queue entries will not be aligned, in Figure 31-49, the result for the second command of
command queue 0 is the first entry of result queue 0. The figure also shows that command queue and result
queue entries can also become unaligned even if all commands in a command queue request data as
command queue 1. Command queue 1 entries became unaligned to result queue 1 entries because a result
requested by the forth command queue 0 command was sent to result queue 1. This happens because the
system can be configured so that several command queues can have results sent to a single result queue.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-81
 Preliminary

Figure 31-49. eQADC Command and Result Queues

31.5.6 ADC Result Calibration

The ADC result calibration process consists of two steps: determining the gain and offset calibration
constants, and calibrating the raw results generated by the on-chip ADC by solving the following equation
discussed in Section 31.4.5.4.1, “Calibration Overview.”

CAL_RES = GCC * RAW_RES + OCC + 2; Eqn. 31-1

The calibration constants GCC and OCC can be calculated from Equation 31-1 provided that two pairs of
expected (CAL_RES) and measured (RAW_RES) result values are available for two different input
voltages. Most likely calibration points to be used are 25% VREF1 and 75% VREF since they are far apart
but not too close to the end points of the full input voltage range. This allows for calculations of more
representative calibration constants. The eQADC provides these voltages via channel numbers 43 and 44.

1. VREF=VRH-VRL

CQueue0 Write Command 0
No Results

0x0000

CQueue0 Read Command 1
Results to RQueue0

0x0004

CQueue0 Conversion Command 2
Results to RQueue0

0x0008

CQueue0 Conversion Command 3
Results to RQueue1

0x000C

CQueue0 Conversion Command n
Results to RQueue0

0x001C

Command Queue 1 (CQueue1)

CQueue1 Read Command 0
Results to RQueue1

0x0000

CQueue1 Read Command 1
Results to RQueue1

0x0004

CQueue1 Conversion Command 2
Results to RQueue1

0x0008

CQueue1 Conversion Command m
Results to RQueue1

0x001C

•
•
•

Command Queue 0 (CQueue0)

•
•
•

CQueue0 Read Command 1
Result

0x0000

CQueue0 Conversion Command 2
Result

0x0002

Result Queue 0 (RQueue0)

Result Queue 1 (RQueue1)

CQueue1 Read Command 0
Result

0x0000

CQueue1 Read Command 1
Result

0x0002

CQueue0 Conversion Command 3
Result

0x0004

CQueue1 Read Command 2
Result0x0016

•
•
•

RQueue0 is not aligned with CQueue0
because the first command of
CQueue0 does not request results.

•
•
•

RQueue1 is not aligned with CQueue1
because it contains results for
CQueue0 and CQueue1 commands.
The timing at which the CQueue0
command result is stored in RQueue1
depends on the relative speed at
which commands from both CQueues
are executed. This is influenced by
factors like resource sharing, ADC
clock frequency, sampling time, and
triggering time.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-82 Freescale Semiconductor
 Preliminary

The raw, uncalibrated results for these input voltages are obtained by converting these channels with
conversion commands that have the CAL bit negated.

The transfer equations for when sampling these reference voltages are:

CAL_RES75%VREF = GCC * RAW_RES75%VREF + OCC +2; Eqn. 31-2

CAL_RES25%VREF = GCC * RAW_RES25%VREF + OCC +2; Eqn. 31-3

Thus;

GCC = (CAL_RES75%VREF - CAL_RES25%VREF) / (RAW_RES75%VREF - RAW_RES25%VREF); Eqn. 31-4

OCC = CAL_RES75%VREF - GCC*RAW_RES75%VREF – 2 ; Eqn. 31-5

or

OCC = CAL_RES25%VREF - GCC*RAW_RES25%VREF – 2 ; Eqn. 31-6

After being calculated, the GCC and OCC values must be written to ADC0_GCCR(see Section 31.3.4.4,
“ADC0 Gain Calibration Constant Register (ADC0_GCCR)”) and the ADC0_OCCR (see
Section 31.3.4.5, “ADC0 Offset Calibration Constant Register (ADC0_OCCR)”) using write
configuration commands.

The eQADC will automatically calibrate the results, according to Equation 31-1, of every conversion
command that has its CAL bit asserted using the GCC and OCC values stored in the ADC calibration
registers.

31.5.6.1 MAC Configuration Procedure

The following steps illustrate how to configure the calibration hardware, that is, determining the values of
the gain and offset calibration constants, and the writing these constants to the calibration registers.

1. Convert channel 44 with a command that has its CAL bit negated and obtain the raw, uncalibrated
result for 25%VREF (RAW_RES25%VREF).

2. Convert channel 43 with a command that has its CAL bit negated and obtain the raw, uncalibrated
result for 75%VREF (RAW_RES75%VREF).

3. Because the expected values for the conversion of these voltages are known (CAL_RES25%VREF
and CAL_RES75%VREF), GCC and OCC values can be calculated from Equation 31-4 and
Equation 31-5 using these values, and the results determined in steps 1 and 2.

4. Reformat GCC and OCC to the proper data formats as specified in Section 31.4.5.4.2, “MAC Unit
and Operand Data Format.” GCC is an unsigned 15-bit fixed point value and OCC is a signed
14-bit value.

5. Write the GCC value to ADC0 gain calibration register (see Section 31.3.4.4, “ADC0 Gain
Calibration Constant Register (ADC0_GCCR)”) and the OCC value to ADC0 offset calibration
constant register (see Section 31.3.4.5, “ADC0 Offset Calibration Constant Register
(ADC0_OCCR)”) using write configuration commands.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 31-83
 Preliminary

31.5.6.2 Example Calculation of Calibration Constants

The raw results obtained when sampling reference voltages 25%VREF and 75%VREF were, respectively,
3798 and 11592. The results that should have been obtained from the conversion of these reference
voltages are, respectively, 4096 and 12288. Therefore, using Equation 31-4 and Equation 31-5, the gain
and offset calibration constants are:

GCC=(12288-4096)/(11592-3798) = 1.05106492-> 1.051025391 = 0x4344
OCC=12288-1.05106492*11592 -2 = 102.06-> 102 = 0x0066

Table 31-43 shows, for this particular case, examples of how the result values change according to GCC
and OCC when result calibration is executed (CAL=1) and when it is not (CAL=0).

31.5.6.3 Quantization Error Reduction During Calibration

Figure 31-50 shows how the ADC transfer curve changes due to the addition of two to the MAC output
during the calibration - see MAC output equation in Section 31.4.5.4, “ADC Calibration Feature.” The
maximum absolute quantization error is reduced by half leading to an increase in accuracy.

1. This calculation is rounded down due to binary approximation.

Table 31-43. Calibration Example

Input Voltage
Raw result (CAL=0) Calibrated result (CAL=1)

Hexadecimal Decimal Hexadecimal Decimal

25% VREF 0x0ED6 3798 0x1000 4095.794

75% VREF 0x2D48 11592 0x3000 12287.486

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

31-84 Freescale Semiconductor
 Preliminary

Figure 31-50. Quantization Error Reduction During Calibration

threeand

4

Ideal Transfer Curve

0

Shifted Transfer Curve

ADC Transfer Curve

Input Voltage
(12-bit A/D Resolution)

Digital Value
(14-bit Result)

1/2
lsb

lsb

0

–4

Error for Shifted Transfer Curve

Input Voltage
(12-bit A/D Resolution)

Quantization Error

1/2
lsb lsb

Error for ADC Transfer Curve

2

–2

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 32-1
 Preliminary

Chapter 32
Boot Assist Module (BAM)

32.1 Introduction
The MPC5510 boot assist module (BAM) is a 4-KB block of read-only memory (ROM) that contains the
BAM program. The BAM program is compiled to variable length encoding (VLE) code. The BAM
program is executed by the e200z1 when the MPC5510 performs a power-on-reset (POR), or any other
reset, when the CRP_Z1VEC register remains in its reset state. The BAM program initializes the MCU,
transitions to the user application code in the internal flash or downloads the user code into internal RAM
via CAN or SCI serial links, and passes control to the user code.

32.1.1 Features

The BAM program provides the following functionality:

• Initial e200z1 core MMU setup with no address translation to allow the core to access all internal
MCU resources and external memory address space

• Location and detection of user code in the internal flash

• Automatic switch to serial boot mode if internal flash is blank or invalid

• Supports user programmable 64-bit password protection for serial boot mode

• Supports serial bootloading via CAN bus or eSCI to the internal SRAM

• Supports censorship protection for internal flash memory

• Provides an option to disable the miscellaneous control module (MCM) software watchdog timer
(enabled by default)

• Configures MMU to start user application, compiled in either classic Power Book E code or as
Freescale VLE code

NOTE
The BAM program is intended to be run on e200z1 (main core) only.
Attempting to execute the BAM program by the e200z0 core may cause
erratic MCU behavior.

NOTE
During BAM program execution, the default reset values of various system
registers (e.g. SIU, FlexCAN, eSCI, MCM SWT) may be updated.

Boot Assist Module (BAM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

32-2 Freescale Semiconductor
 Preliminary

32.1.2 Modes of Operation

32.1.3 Normal Mode

In normal operation the BAM responds to all read requests within its address space. The e200z1 core
executes the BAM program after the negation of reset if the CRP CRP_Z1VEC register value is
0xFFFF_FFFC.

32.1.4 Debug Mode

The BAM program is not executed when the MCU comes out of reset in OnCE debug mode. The
development tool must initialize the MCU instead of BAM before starting the user application.

32.1.5 Internal Boot Mode

This mode of operation is for systems that boot from internal memory. The internal flash is used for all
code and the boot configuration data. After the BAM has completed the boot process, user code may
enable the external bus interface if required.

32.1.6 Serial Boot Mode

This mode of operation can be used for initial MCU programming or for user system initialization. It
allows a user program to be loaded into system RAM, using the eSCI or FlexCAN serial interface, then
executed. The loaded program can be used to control the download of data, and the erasing or
programming of internal or external flash memory.

32.2 Memory Map and Registers
This section provides a detailed description of the BAM memory map.

32.2.1 Module Memory Map

Table 32-1 shows the BAM memory map.

The BAM ROM module occupies the last 16 KB of the MCU memory space; however, only the last 4 KB
is physically present.

NOTE
Attempting to execute instructions from addresses in the range
0xFFFF_C000–0xFFFF_EFFF may cause unpredictable results.

Some important absolute addresses are presented in Table 32-1.

Boot Assist Module (BAM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 32-3
 Preliminary

32.2.2 Register Descriptions

The BAM module does not have any registers.

32.3 Functional Description

32.3.1 BAM Program Resources

The BAM program uses/initializes these MCU resources:

• The BOOTCFG field in the reset status register (SIU_RSR) determines the boot mode

• The location and value of the reset configuration halfword (RCHW) determines the location of the
boot code and the boot configuration options

• FlexCAN_A and eSCI _A modules for serial boot mode

• FlexCAN_A message buffers RAM for stack and global variables during serial boot mode

• The DISNEX bit in the SIU_CCR register to determine if the Nexus port is enabled

The BAM program:

• Configures the e200z1 MMU to allow access to all available MCU address space (internal flash,
EBI, peripheral bridge, and SRAM) without address translation

• Configures FlexCAN_A and eSCI_A when performing serial boot mode

• Uses the eDMA during serial boot mode.

32.3.2 BAM Program Operation

If the CRP_Z1VEC register remains in its POR state, the BAM code is executed after the negation of reset
and before user code starts. To prevent the execution of the BAM code upon exiting sleep mode, change
the value of the CPR_Z1VEC register before entering the sleep mode. See Section 5.2.2.6, “Z1 Reset
Vector Register (CRP_Z1VEC),” in Chapter 5, “Clock, Reset, and Power Control (CRP),” for more detail
about the CRP_Z1VEC register.

The BAM reads the status of the BOOTCFG bit from the reset status register (SIU_RSR) and the
appropriate boot sequence is started (see Table 32-2). The BOOTCFG bit reflects state of the BOOTCFG
pin during the MCU reset.

Table 32-2 shows the boot mode selection depending on BOOTCFG bit in the SIU_RSR, how the value
stored in the Censorship word in the shadow row of internal flash memory effects whether the internal
flash memory is enabled or disabled, whether the Nexus port is enabled or disabled, and whether the
password downloaded in serial boot mode is compared to a fixed public password or to a user program-

Table 32-1. BAM Absolute Addresses

Address Comment

0xFFFF_FFFC BAM reset vector—first executed address after the reset

0xFFFF_F000 BAM start address

Boot Assist Module (BAM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

32-4 Freescale Semiconductor
 Preliminary

mable flash password.

The censorship control word is a 32-bit word of data stored in the shadow row of internal flash memory.
This memory location is read and interpreted by hardware as part of the boot process. The memory address
of the censorship control word is 0x00FF_FDE0. The censorship control word is factory programmed to
be 0x55AA_55AA. This results in a device that is not censored and uses a flash-based password for serial
boot mode.

Figure 32-1. Censorship Control Word

The BAM code uses the state of the DISNEX bit (reflecting disabled status of the NEXUS port) to
determine if the serial password downloaded in serial boot mode should be compared to a fixed public
value (0xFEED_FACE_CAFE_BEEF) or to a flash value stored in the shadow row of internal flash at
address 0x00FF_FDD8.

Table 32-2. Boot Modes

Boot Mode Name BOOTCFG
Censorship

Control
0x00FF_FDE0

Serial Boot
Control

0x00FF_FDE2

Internal
Flash
State

Nexus State
Serial

Password

Internal—Censored 0 Any other value Don't care Enabled Disabled Flash

Internal—Public 0x55AA Enabled Enabled Public

Serial—Flash Password 1 Don't care 0x55AA Enabled Disabled Flash

Serial—Public Password Any other value Disabled Enabled Public

Censorship control word at 0x00FF_FDE0:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

Censorship control—showing an uncensored part (factory default 0x55AA)

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

Serial boot control—showing the use of the flash-based password (factory default 0x55AA)

Boot Assist Module (BAM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 32-5
 Preliminary

Figure 32-2. Serial Boot Flash Password

Because the BAM program enters serial boot mode if it fails to find a valid RCHW in internal boot mode,
a valid serial password must be programmed. The factory preprogrammed value of the serial password is
the public password value (0xFEED_FACE_CAFE_BEEF).

32.3.3 Features

Because the MMU default out of reset is to allow access to the 4 KB range around the reset vector only,
the BAM program sets up the e200z1 core MMU to enable accesses to all MCU resources, as described in
Table 32-3.

Table 32-3. MMU Configuration for an Internal Boot

TLB
Entry

Region
Logical Base

Address
Physical Base

Address
Size Attributes

0 Peripheral bridge and BAM 0xFFF0_0000 0xFFF0_0000 1 MB Big Endian
Global PID

1 Internal flash 0x0000_0000 0x0000_0000 256 MB Big Endian
Global PID

2 EBI 0x2000_0000 0x2000_0000 256 MB Big Endian
Global PID

3 SRAM 0x4000_0000 0x4000_0000 256 KB Big Endian
Global PID

Serial boot flash password at 0x00FF_FDD8 – 0x00FF_FDDF:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1

Serial boot password (0x00FF_FDD8)–0xFEED (factory default)

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 0

Serial boot password (0x00FF_FDDA)–0xFACE (factory default)

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 0

Serial boot password (0x00FF_FDDC)–0xCAFE (factory default)

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1

Serial boot password (0x00FF_FDDE)– 0xBEEF (factory default)

Boot Assist Module (BAM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

32-6 Freescale Semiconductor
 Preliminary

Code type attributes for all TLB entries are set to be VLE from the beginning.

Code type attributes for TLB entries 1–3 are set later according to the VLE bit in the RCHW (see
Figure 32-3) or the VLE bit received during serial boot mode (see Section 32.3.3.2.2, “Serial Boot Mode
Download Protocol”) and should match the user application encoding (VLE or classic Power Book E).

After configuring the MMU, the BAM determines the selected boot mode and provides the following
features for each of the boot modes:

32.3.3.1 Internal Boot Mode

When the core determines that internal boot mode has been selected, a machine check exception is
configured to handle possible ECC read errors that may occur while searching the internal flash to find the
reset configuration halfword (RCHW).

32.3.3.1.1 Reset Configuration Halfword Read

The BAM searches the internal flash memory for a valid RCHW. A valid RCHW is a 16-bit value that
contains a fixed 8-bit boot identifier and some configuration bits. The RCHW is expected to be the first
halfword in one of the locations shown in Table 32-4.

The BOOT_BLOCK_ADDRESS used in the register descriptions below is the first address from
Table 32-4 where the BAM finds a valid RCHW.

Figure 32-3 shows the fields of the RCHW.

Figure 32-3. RCHW Fields

Table 32-4. LAS Block Memory Addresses

Block Address

0 0x0000_0000

1 0x0000_4000

4 0x0001_0000

7 0x0001_C000

8 0x0002_0000

9 0x0003_0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

WTE VLE 0 1 0 1 1 0 1 0

Boot Identifier = 0x005A

BOOT_BLOCK_ADDRESS + 0x0000_0000

Boot Assist Module (BAM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 32-7
 Preliminary

If the BAM fails to find a valid RCHW, it switches to serial boot mode.

If the BAM finds a valid RCHW, the configuration bits are parsed as shown in Table 32-5. The BAM then
fetches the reset vector from the address of the RCHW + 4, and branches to that address.
BOOT_BLOCK_ADDRESS + 0x0000_0004

32.3.3.2 Serial Boot Mode Features

In this mode of operation, the BAM code configures FlexCAN_A and eSCI_A for serial download of a
user program. Unused message buffers in FlexCAN_A are used for stack and global variables. The system
clock is selected directly from main crystal oscillator output; thus, the crystal frequency defines baud rates
for serial interfaces, used to download the user application.

32.3.3.2.1 FlexCAN and eSCI Configuration

The BAM program configures FlexCAN_A and eSCI_A for reception. The CNRX_A and the RXD_A
pads are configured as inputs to the FlexCAN and eSCI modules. The CNTX_A pad is configured as an
output from the FlexCAN module.The TXD_A pad remains configured as GPIO input until a valid eSCI
byte is received before a valid CAN message.

Table 32-5. Internal Boot RCHW Field Descriptions

Field Description

bits 0–4 Reserved. These bit values are ignored when the halfword is read. Write to 0 for future compatibility.

WTE Watchdog timer enable. This bit determines if the MCM software watchdog timer is disabled.
0 Disable software watchdog timer
1 Software watchdog timer maintains its default state out of reset, i.e. enabled. The timeout period is

programmed to be 217 system clocks.

Reserved.

VLE VLE Code Indicator. This bit is used to configure the MMU to execute the user code as either Classic Book E
code or as Freescale VLE code.
0 User code executes as classic Book E code
1 User code executes as Freescale VLE code

BOOTID Boot identifier. This field serves two functions. First, it is used to indicate which block in flash memory contains
the boot program. Second, it identifies whether the flash memory is programmed or invalid. The value of a valid
boot identifier is 0x005A (0b01011010). The BAM program checks the first halfword of each flash memory block
starting at block 0 until a valid boot identifier is found. If all blocks in the low- address space of the internal flash
are checked and no valid boot identifier is found, the internal flash is assumed to be invalid and a CAN/SCI boot
is initiated.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31

Figure 32-4. Reset Boot Vector

Boot Assist Module (BAM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

32-8 Freescale Semiconductor
 Preliminary

The FlexCAN controller is configured to operate at a baud rate equal to the system clock frequency divided
by 40, using the standard 11-bit identifier format detailed in the CAN 2.0A specification. (See Table 32-6
for examples of baud rates.)

The BAM program ignores all possible errors that may happen during the serial communication. All
received data is assumed to be good and is echoed on the CNTX signal.

The CAN controller bit timing is programmed with 10 time quantas and the sample point is two time
quantas before the end (see Figure 32-5).

Figure 32-5. FlexCAN Bit Timing

The eSCI is configured for one start bit, eight data bits, no parity, and one stop bit. It operates at a
baud rate equal to the system clock divided by 33. (See Table 32-6 for baud rate examples.)

The BAM program ignores eSCI errors. All received data is assumed to be good and is echoed out on the
TXD_A signal.

Table 32-6. Serial Boot Mode—Baud Rates and Watchdog Summary

Crystal
Frequency

(MHz)

SCI Baud Rate
(baud)

CAN Baud Rate
(baud)

Watchdog
Time-out

period
(seconds)

fextal fextal / 833 fextal / 40 217 / fextal

8 9600 200K 16.8

12 14400 300K 11.2

16 19200 400K 8.4

20 24000 500K 6.7

40 48000 1M 3.4

SYNC_SEG Time segment 1 Time segment 2

Sample point

NRZ signal

Transmit point

1
Time quanta Time quanta Time quanta

7 2

1 bit time

1 time quanta = 4 system clock periods

Boot Assist Module (BAM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 32-9
 Preliminary

Upon reception of a valid CAN message with ID = 0x011 that contains 8 bytes of data, or an eSCI byte,
the BAM program transitions to one of two serial boot sub-modes: CAN serial boot mode or eSCI serial
boot mode.

In CAN serial boot mode, the eSCI_A RXD_A pad reverts to GPIO input. The ensuing download protocol
is assumed to be all through the CAN. The eSCI is disabled.

If the eSCI byte is received first, the CAN_A controller is disabled and its pads reprogrammed to the
GPIO. The eSCI TXD_A pad is reconfigured as an output.

32.3.3.2.2 Serial Boot Mode Download Protocol

The download protocol follows four steps:

1. Host sends 64-bit password.

2. Host sends start address, size of download code in bytes, and VLE bit.

3. Host sends the application code data.

4. The MCU switches to the loaded code at the start address.

The communication is done in half-duplex manner, any transmission from host is followed by the MCU
transmission. The host computer will not send data until it receives echo from the MCU. All multibyte data
structures are sent most significant byte (MSB) first.

When the CAN is used for serial download, the data is packed into standard CAN messages in the
following manner:

• A message with 0x0011 ID and 8-byte length is used to send the password. The MCU echoes with
the same data, but 0x0001 ID.

• A message with 0x0012 ID and 8-byte length is used to send the start address, length, and the VLE
mode bit. The MCU echoes with a message with 0x002 ID.

Table 32-7. CAN/eSCI Reset Configuration for CAN/eSCI Pins in Serial Boot Mode

Pins
Reset

 Function
Initial Serial
Boot Mode

Serial Boot Mode
After a Valid CAN

Message Received

Serial Boot Mode
After a Valid eSCI

Message Received

CNTX_A GPIO CNTX_A CNTX_A GPIO

CNRX_A GPIO CNRX_A CNRX_A GPIO

TXD_A GPIO GPIO GPIO TXD_A

RXD_A GPIO RXD_A GPIO RXD_A

Table 32-8. CAN/eSCI Reset Pin Configuration

Pins I/O Hysteresis
Driver

Configuration

CNTX_A /
TXD_A

Output — Push/Pull

CNRX_A /
RXD_A

Input Y —

Boot Assist Module (BAM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

32-10 Freescale Semiconductor
 Preliminary

• Messages with 0x0013 ID are used to send the downloaded data. The MCU echoes with 0x003 ID.

When the SCI is used for serial download, the data is sent byte-by-byte.

32.3.3.2.3 Serial Boot Mode Processing

The BAM program executes the serial boot as following:

1. Download 64-bit password.

The received 8-byte password is checked for validity. For a password to be valid, none of its four
16-bit halfwords must equal 0x0000 or 0xFFFF. Also, a password must have at least one 0 and one
1 in each halfword lane to be considered valid.

The BAM program then checks the censorship status of the MCU by checking the DISNEX bit in
the SIU_CCR register. If Nexus is disabled, the MCU is considered to be censored and the
password is compared with a password stored in the shadow row in internal flash memory.

If Nexus is enabled, the MCU is not considered to be censored, or the MCU is booting from
external flash and the password is compared to the fixed value = 0xFEED_FACE_CAFE_BEEF.

If the password fails the validity test, the MCU stops responding to all stimuli. To get the MCU out
of that state, the RESET signal must be asserted.

If the password is valid, the BAM refreshes the MCM software watchdog timer and performs the
next step in the protocol.

2. Download start address, size of download, and VLE bit.

The next 8 bytes received by the MCU are considered to contain a 32-bit start address, the VLE
mode bit, and a 31-bit code length (see Figure 32-6).

Figure 32-6. Start Address, VLE Bit and Download Size in Bytes

The start address defines where the received data will be stored and where the MCU will branch
after the download is finished. The two least significant bits of the start address are ignored by the
BAM program, such that the loaded code should be 32-bit word aligned.

The length defines how many data bytes to be loaded.

The VLE mode bit instructs the MCU to program MMU pages with VLE attribute. If it is 1, the
downloaded code must be compiled to VLE instructions, if it is 0 the code contains classic Power
Book E architecture instructions.

3. Download data.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
START_ADDRESS[0:15]

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
START_ADDRESS[16:31]

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
VLE CODE_LENGTH[0:14]

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
CODE_LENGTH[15:30]

Boot Assist Module (BAM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 32-11
 Preliminary

Each byte of data received is stored in the MCU’s memory, starting at the address specified in the
previous protocol step, and incrementing through memory until the number of bytes of data
received and stored in memory matches the number specified in the previous protocol step.

NOTE
In the MPC5510, the SRAM is protected by 32-bit wide error correction
code (ECC), but other MPC55XX devices protect SRAM with 64-bit wide
ECC. In the general case, this means any write to uninitialized SRAM must
be 64 bits wide, otherwise an ECC error may occur. Therefore the BAM
buffers downloaded data until 8 bytes have been received, and then does a
single 64-bit wide write. Only system RAM supports 64-bit writes;
therefore, attempting to download data to other RAM apart from system
RAM will cause errors. If the start address of the downloaded data is not on
an 8-byte boundary, the BAM will write 0x0000 to the memory locations
from the proceeding 8-byte boundary to the start address (maximum
4 bytes). The BAM will also write 0x0000 to all memory locations from the
last byte of data downloaded to the following 8 byte boundary (maximum
7 bytes).

4. Switch to the loaded code.

The BAM program waits for the last echo message transmission to complete, then the active
communication controller is disabled. Its pins revert to GPIO inputs. The BAM code passes control
to the loaded code at start address, which was received in step 2 of the protocol.

NOTE
The code that is downloaded and executed must periodically refresh the
MCM watchdog timer or change the timeout period to a value that will not
cause resets during normal operation.

The serial download protocol is summarized in the Table 32-9 and Table 32-10

Table 32-9. CAN Serial Boot Mode Download Protocol

Protocol
Step

Host Sent Message
BAM Response

Message
Action

1 CAN ID 0x0011 + 64-bit
password

CAN ID 0x0001 + 64 bit
password

Password checked for validity and compared against
stored password. Platform watchdog timer is refreshed
if the password check is successful.

2 CAN ID 0x0012 + 32-bit
store address + VLE bit +

31-bit number of bytes

CAN ID 0x0002 + 32-bit
store address + VLE bit
+ 31-bit number of bytes

Load address and size of download are stored for
future use. The VLE bit determines whether the MMU
entry for the SRAM, EBI, and flash is configured to run
Book E or VLE code.

Boot Assist Module (BAM)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

32-12 Freescale Semiconductor
 Preliminary

3 CAN ID 0x0013 + 8 to
64 bits of raw binary data

CAN ID 0x0003 + 8 to
64 bits of raw binary

data

Each byte of data received is stored in MCU memory,
starting at the address specified in the previous step
and incrementing until the amount of data received
and stored, matches the size as specified in the
previous step.

4 None None The BAM returns IO pins to their reset state, disables
FlexCAN_A module and then branches to the first
address the data was stored to (As specified in step 2).

Table 32-10. eSCI Serial Boot Mode Download Protocol

Protocol
Step

Host Sent Message
BAM Response

Message
Action

1 64-bit password MSB first 64-bit password Password checked for validity and compared against
stored password. Platform Watchdog timer is
refreshed if the password check is successful.

2 32-bit store address + VLE
bit + 31-bit number of

bytes (MSB first)

 32-bit store address +
VLE bit + 31-bit number

of bytes

Load address and size of download are stored for
future use. The VLE bit determines whether the MMU
entry for the SRAM, EBI and Flash is configured to run
Book E or VLE code.

3 8 bits of raw binary data 8 bits of raw binary data Each byte of data received is store in MCU memory,
starting at the address specified in the previous step
and incrementing until the amount of data received
and stored, matched the size as specified in the
previous step.

4 None None The BAM returns IO pins to their reset state and
disables the ESCI_A module. Then it branches to the
first address the data was stored to (as specified in
step 2).

Table 32-9. CAN Serial Boot Mode Download Protocol

Protocol
Step

Host Sent Message
BAM Response

Message
Action

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 33-1
 Preliminary

Chapter 33
Media Local Bus (MLB)

33.1 Introduction
The Media Local Bus (MLB) is an inter-chip communication bus that gives external devices real-time
access to the Media Oriented Systems Transport (MOST) bus. It has been designed to standardize a
common hardware interface and common software API library, and allows transport of synchronous,
asynchronous, isochronous and control data. The standardization allows an application (or multiple
applications) to access the MOST network via a MOST transceiver. An MLB system consists of one MLB
controller and one or several MLB devices. The MLB controller is typically an Intelligent Network
Interface Chip, for example, the INIC/OS81050 (INIC), which functions as a transceiver for the MOST
network and as a controller for the Media Local Bus.

The MLB interface consists of an MLB clock (generated by the MLB controller), MLB signal, and MLB
data lines. There are two possible interface configurations: 3-pin and 5-pin. In the 3-pin interface, the
MLBSIG and MLBDAT are bidirectional and the MLBCLK is unidirectional. In the 5-pin interface, all
signals are unidirectional (MLBSI, MLBSO, MLBDI, MLBDO, and MLBCLK).

The MPC551xE/G implements a software1 emulated MLB solution (SoftMLB) that is based on the
e200Z0 core (IOP), but also uses system RAM, 2xDSPIs, and the eDMA module. In addition, SoftMLB
Interface Logic has been integrated to detect the FRAMESYNC pattern and generate the appropriate
triggers to the IOP, eDMA, and DSPIs. The MLB signals are routed out on Port E and Port F, which are
on VDDE1 and VDDE3 power domains respectively. The MLB signals on Port E must be externally level
shifted to be compatible with the 2.5 V MLB bus (as the VDDE1 domain must be 5 V to cater for other
signals on this domain). The VDDE3 is a smaller domain that is shared with Nexus, JTAG, and some EBI
signals.

33.1.1 Block Diagram

Figure 33-1 is a simplified block diagram of the SoftMLB concept and shows the functionality and
interdependence on the other major blocks in the SoC.

1. A software driver for MLB emulation will be available from freescale. Available date - TBD

Media Local Bus (MLB)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

33-2 Freescale Semiconductor
 Preliminary

Figure 33-1. SoftMLB Block Diagram

33.1.2 Features
• 3-pin interface or 5-pin interface

• 256Fs operation

• External level shift control signals for 3-pin interface

• Multiple pin out options to increase flexibility

• MLBCLK clock adjust

• Visibility of debug signals

33.1.3 Modes of Operation

The SoftMLB Interface Logic has two modes of operation: Normal mode and Stop mode

MUX

DSPI_B DSPI_A
MLB

SoftMLB Interface Logic

MUX

BIU

SIU

GPIO Pad Control

IMUX

Reset Control

External Interrupt
Request PD11

Peripheral Bus eDMA INTC

Z0
Critical

Interrupt Peripheral Bus

SIU_ESIR[30]

MLB Signals

Note: MLB signals are muxed with PE[0:4] and PF[1:5]

(NMI1 Z0)

(Data) (Signal)

MSVRQS

MLB
Debug/Observation

Signals

PE5/PF6

Media Local Bus (MLB)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 33-3
 Preliminary

33.1.3.1 Normal Mode

This mode is the main operational mode. The module transmits and receives MLB data, interfaces with
DSPI_A and DSPI_B, and generates synchronization signals for other modules. In this mode, debug
signals can be output to help in the setup. These signals are selected through the MLB Configuration
Register (MLB_MCR) and the appropriate SIU_PCR[PA] field.

33.1.3.2 Stop Mode

This mode is the main low-power mode of the SoftMLB Interface Logic. It is enabled by setting the MDIS
bit in the MLB_MCR register or by setting the HLT[9] bit in the SIU_HLT register. In this mode, the
SoftMLB Interface Logic clocks are disabled, eliminating dynamic power consumption.

This module is power gated when the SoC enters SLEEP mode.

33.2 External Signal Description
The SoftMLB Interface Logic can be configured, via the MIFSEL bit in the MLB_MCR register, for a
3-pin interface (MIFSEL=0) or a 5-pin interface (MIFSEL=1). The state of this bit determines the signals
that are multiplexed out by the SoftMLB Interface Logic. In 3-pin mode, the MLBCLK (input), MLBSIG
(bidirectional), MLBDAT (bidirectional), MLBSIG_BUFEN (output), and MLBDAT_BUFEN (output)
are available and can be routed to PE[0:4] or PF[1:5]. In 5-pin mode, MLBCLK (input), MLBSI (input),
MLBDI (input), MLBSO (output), and MLBDO (output) are available and can be routed to PE[0:4] or
PF[1:5], respectively. Furthermore, the clock adjust observation signals, MLB_SIGOBS, MLB_DATOBS,
and the MLB_SLOT debug signal can be output and routed to PE5 or PF6. Table 33-1 provides a summary
of the external signals used for the SoftMLB interface.

Table 33-1. SoftMLB External Signal Summary

SoftMLB External Signal Summary

Signal Name Signal Description Interface
Pin Muxing

Options

MLBCLK MLB Clock 5-pin & 3-pin PE0, PF1

MLBSI
MLBSIG

MLB Signal In
MLB Bi-directional Signal

5-pin
3-pin

PE1, PF2

MLBDI
MLBDAT

MLB Data In
MLB Bi-directional Data

5-pin
3-pin

PE2, PF3

MLBSO
MLBSIG_BUFEN

MLB Signal Out
MLB Signal Level Shifter Enable

5-pin
3-pin

PE3, PF4

MLBDO
MLBDAT_BUFEN

MLB Data Out
MLB Data Level Shifter Enable

5-pin
3-pin

PE4, PF5

MLB_SLOT
MLB_SIGOBS
MLB_DATOBS

MLB Slot Debug
MLB Clock Adjust Observe Signal Output
MLB Clock Adjust Observe Data Output

5-pin & 3-pin
5-pin & 3-pin
5-pin & 3-pin

PE5, PF6

Media Local Bus (MLB)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

33-4 Freescale Semiconductor
 Preliminary

In each configuration, the MLB interface signals can be routed out in multiple pin positions on the
MPC551xE/G. The selection is made via the associated SIU_PCR[PA] field for the particular pin. See
Table 2-1 for specific details.

NOTE
Port E and Port F are used to support the MLB signals. For timing reasons,
the MLB signals should not be mixed between the two ports at the same
time.

33.3 Memory Map and Registers
The SoftMLB Interface Logic memory map is shown in Table 33-2. The address of each register is given
as an offset to the MLB base address. Registers are listed in address order, identified by complete name
and mnemonic, and show the type of access allowed. The memory map consists of a block of 64 address
locations which are aliased within the 16K block reserved for the MLB starting at the MLB_BASE
address.

Table 33-2. MLB Memory Map

Offset from
MLB_BASE

(0xFFF8_4000)
Register Access Reset Value Section/Page

General Registers

0x00 MLB_MCR – Module Configuration Register R/W 0x8000_0000 33.3.1.1/33-5

0x04 MLB_MBR – MLB Blank Register R/W 0x0000_0000 33.3.1.2/33-7

0x08 MLB_MSR – Module Status Register R 0x0000_0000 33.3.1.3/33-8

0x0C MLB_RXCCHAR – RX Control Channel Address Register R/W 0x0000_0000 33.3.1.4/33-9

0x10 MLB_RXACHAR – RX Async Channel Address Register R/W 0x0000_0000 33.3.1.5/33-10

0x14 MLB_TXCCHAR – TX Control Channel Address Register R/W 0x0000_0000 33.3.1.6/33-11

0x18 MLB_TXACHAR – TX Async Channel Address Register R/W 0x0000_0000 33.3.1.7/33-12

0x1C MLB_TXSCHAR – TX Sync Channel Address Register R/W 0x0000_0000 33.3.1.8/33-13

0x20 MLB_TXSCHAMR – TX Sync Channel Address Mask Register R/W 0x0000_003E 33.3.1.9/33-14

0x24 MLB_CLKACR – MLBCLK Clock Adjust Control Register R/W 0x0000_0000 33.3.1.10/33-15

0x28 MLB_RXICHAR – RX Isochronous Channel Address Register R/W 0x0000_0000 33.3.1.11/33-16

0x2C MLB_TXICHAR – TX Isochronous Channel Address Register R/W 0x0000_0000 33.3.1.12/33-17

Note: Unimplemented locations always read 0. Writes to unimplemented locations have no effect.

Media Local Bus (MLB)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 33-5
 Preliminary

33.3.1 Register Descriptions

This section lists the registers and bits that are used to control the SoftMLB Interface Logic.

33.3.1.1 MLB Module Configuration Register (MLB_MCR)

The MLB_MCR contains bits that configure the SoftMLB Interface Logic.

Offset MLB_BASE+0x0000 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MDIS

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

M
D

AT
O

B
S

E

M
S

IG
O

B
S

E

M
S

LO
T

E

0 0

M
S

V
R

Q
IE

M
D

AT
R

Q
E 0 0

MSVRQDL

M
S

V
R

Q
C

IE

M
IF

S
E

L

M
S

B
F

E
P

O
L

M
D

B
F

E
P

O
L

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-2. MLB Module Configuration Register (MLB_MCR)

Table 33-3. MLB Module Configuration (MLB_MCR) Register Field Descriptions

Field Description

MDIS Module Disable. Controls whether the SoftMLB Interface Logic is enabled or not. When MDIS is set, the
SoftMLB Interface logic is asynchronously held in reset and disabled. When disabled, clocks are stopped to
the non-memory mapped logic. Register reads and writes are still accessible. The DSPI_SS is driven high
(DSPI are de-selected). The SoftMLB Interface Logic also masks out all received bits on DSPI_S_OUT and
DSPI_D_OUT. Once this signal is cleared, the SoftMLB Interface Logic requires some time to synchronize to
the MLB Bus. MLB_MSR[MSYSS] = 1 indicates that the logic has synchronized.
0 Enable the SoftMLB Interface Logic
1 Disable the SoftMLB Interface Logic – Default out of reset

bits 1–15 Reserved.

Media Local Bus (MLB)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

33-6 Freescale Semiconductor
 Preliminary

MDATOBSE

MSIGOBSE

MSLOTE

MLB Observation Output Enables and MLB Slot Debug Output Enable. These bits control the output of the
SoftMLB Interface Logic to be the MLB_SLOT signal, or the MLB_SIGOBS or MLB_DATOBS signals (output
of the DSPI_A and DSPI_B input latch is routed to PTE5 or PTF6 for use in the clock adjust scheme). The
correct SIU_PCR[PA] selection must be chosen to route the desired signal to either PTE5 or PTF6. The table
below summarizes the multiplexing between MLB_SLOT, MLB_SIGOBS and MLB_DATOBS.

bits 19–20 Reserved.

MSVRQIE MLB Service Request Interrupt Enable. This bit is used to enable interrupt requests (SRV_REQ) to the IOP
via the interrupt controller. The SRV_REQ is the MSVRQS flag gated with MSVRQIE. MSVRQS is the
reflection of a free toggle (SRV_REQ_GLUE) and is self clearing. If the ISR does not respond fast enough
the interrupt request will be lost. Likewise if the ISR is too fast the request can still be pending and should not
be re-enabled until the MSVRQS is clear. The interrupt request can also directly request a critical interrupt to
the IOP. See the description of the MSVRQCIE bit below for details.

Note: The MSYSS needs to be set before an SRV_REQ_GLUE signal will be generated.
0 Interrupt request disabled (default out of reset)
1 Interrupt request enabled and generated every 32 MLBCLK cycles

MDATRQE MLB DATA eDMA Request Enable. This bit is used to enable the SoftMLB Interface Logic to generate eDMA
requests. The eDMA request is a free running toggle. The eDMA controller moves the data, then the SoftMLB
Interface request to the eDMA is cleared until the next eDMA request. This is independent of the MDATRQS
which is a reflection of the free running toggle.
Note: The MSYSS needs to be set before an eDMA request shall be generated.

Note. In order to generate an eDMA request the eDMA channel mux needs to enable an eDMA channel and
associate the MLB_DMA_REQ(0x35).
0 SoftMLB Interface Logic does not trigger an eDMA request (default out of reset)
1 SoftMLB Interface Logic does trigger an eDMA request every MLBDATA word (32 MLBCLK cycles)

bits 23–24 Reserved.

Table 33-3. MLB Module Configuration (MLB_MCR) Register Field Descriptions (continued)

Field Description

MSLOTE MDATOBSE MSIGOBSE SoftMLB Interface Logic Output

0 0 0 Disabled

0 0 1 MLB_SIGOBS

0 1 0 MLB_DATOBS

0 1 1 Reserved (defaults to MLB_SIGOBS)

1 0 0 MLB_SLOT

1 0 1 MLB_SLOT

1 1 0 MLB_SLOT

1 1 1 MLB_SLOT

Media Local Bus (MLB)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 33-7
 Preliminary

33.3.1.2 MLB Blank Register (MLB_MBR)

The MLB_MBR register contains the blank request bit to cancel data that has been queued in the DSPI
FIFO.

MSVRQDL MLB Service Request Delay in MLBCLK cycles. These control bits are used to control the number of cycles
that the SRV_REQ _GLUE is driven before the real 32-bit MLB word boundary. MSVRQDL should only be
updated when MDIS is set.
000 0 cycles (default out of reset)
001 1 cycle
010 2 cycles
011 3 cycles
100 4 cycles
101 5 cycles
110 Reserved
111 Reserved

MSVRQCIE MLB Service Request Critical Interrupt Enable. This bit is used to enable critical interrupt requests
(SRV_REQ_CI) to the IOP. The SRV_REQ_CI is ORed with the IOP NMI interrupt to create the IOP critical
interrupt input. The SRV_REQ_CI is the MSVRQS flag gated with MSVRQCIE and MSVRQIE. MSVRQS is
the reflection of a free toggle (SRV_REQ_GLUE) and is self clearing.

 MSVRQCIE is a write once bit and thus once written, MSVRQCIE will hold its value until the next reset.
Note: The MSYSS needs to be set before an SRV_REQ_CI will be generated.

0 Critical interrupt request disabled (default out of reset)

1 Critical interrupt request enabled

MIFSEL MLB Interface Select. This bit selects between the 3-pin and 5-pin MLB interfaces. Depending on its value,
the SIU_PCR[PA] field routes different signals to the pins. In the 3-pin interface this field allows the MLBDAT,
MLBSIG, MLBCLK, MLBSIG_BUFEN, and MLBDAT_BUFEN signals to be routed to the corresponding pins.
In the 5-pin interface the MLBSI, MLBSO, MLBDI, MLBDO, and MLBCLK signals are routed to the pins.
0 3-pin interface selected (default out of reset)
1 5-pin interface selected

MSBFEPOL MLBSIG_BUFEN Polarity Select. This bit selects the active polarity for the MLBSIG_BUFEN. If the default
condition (MSBFEPOL=0) is selected, the MLBSIG_BUFEN is driven high when active and low when inactive.
If MSBFEPOL=1, the signal is active low.
0 Active High (default out of reset)
1 Active Low

MDBFEPOL MLBDAT_BUFEN Polarity Select. This bit selects the active polarity for the MLBDAT_BUFEN. If the default
condition (MDBFEPOL=0) is selected, the MLBDAT_BUFEN is driven high when active and low when inactive.
If MDBFEPOL=1, the signal is active low.
0 Active High (default out of reset)
1 Active Low

Table 33-3. MLB Module Configuration (MLB_MCR) Register Field Descriptions (continued)

Field Description

Media Local Bus (MLB)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

33-8 Freescale Semiconductor
 Preliminary

33.3.1.3 MLB Module Status Register (MLB_MSR)

The MLB_MSR contains the status bits that are used to determine detection of the system channel and
status flags for service and eDMA requests.

Offset MLB_BASE+0x0004 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B
LA

N
K

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-3. MLB Blank Register (MLB_MBR)

Table 33-4. MLB Blank (MLB_MBR) Register Field Descriptions

Field Description

bit 0–30 Reserved.

BLANK MLB Blank Request. This bit is used to cancel data that has been previously queued in the DSPI FIFO due to
change in the receiver status. (for example, RxBusy)

To save IOP cycles required to clear this bit again, the SoftMLB Interface Logic automatically clears this bit,
after the MLB_GATE signal has been generated internally. The SoftMLB Interface Logic asserts the
MLB_GATE signal at the start of the next MLB quadlet and resets the BLANK signal. The self clearing function
is only active when MDIS is cleared. The BLANK bit is cleared when MDIS is set. Due to clock synchronization
between the system clock and MLBCLK, it may take up to two MLBCLK clocks before BLANK is updated in
the MLBCLK domain.
0 MLB Blank not requested (default out of Reset)
1 MLB Blank requested

Media Local Bus (MLB)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 33-9
 Preliminary

33.3.1.4 RX Control Channel Address Register (MLB_RXCCHAR)

The MLB_RXCCHAR contains the RX Control Channel Address for this device.

Offset MLB_BASE+0x0008 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

0 0 0 0 0 0 0 0 0 0 0 0 0

M
D

AT
R

Q
S

M
S

Y
S

S

M
S

V
R

Q
S

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-4. MLB Module Status Register (MLB_MSR)

Table 33-5. MLB Module Status (MLB_MSR) Register Field Descriptions

Field Description

bits 0–28 Reserved.

MDATRQS MLB Data eDMA Request Status. This bit indicates the state of the internal eDMA request signal. It is free
running and high for 16 bits of the MLBCLK signal then low for the following 16 bits. MDATRQS is cleared when
MDIS is set. MDATRQS will only be set after MSYSS is set.
0 eDMA request is not asserted
1 eDMA request is asserted

MSYSS MLB System Stable. This signal is asserted by the hardware after it detects 256 occurrences of the
FRAMESYNC pattern (0x1FE). It can be cleared only by setting MDIS.
0 System is not stable
1 System is stable

MSVRQS MLB Service Request Status. This bit indicates the state of the internal SRV_REQ_GLUE signal. It is high for 16
bits of the MLBCLK signal then low for the following 16 bits. SRV_REQ is MSVRQS gated with MSVRQIE.
Likewise, SRV_REQ_CI is MSVRQS gated with MSVRQCIE and MSVRQIE. MSVRQS is cleared when MDIS is
set. MSVRQS will only be set after MSYSS is set.
0 Service request not active
1 Service request active

Media Local Bus (MLB)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

33-10 Freescale Semiconductor
 Preliminary

33.3.1.5 RX Async Channel Address Register (MLB_RXACHAR)

The MLB_RXACHAR contain the RX Async Channel Address for this device.

Offset MLB_BASE+0x000C Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
R

X
C

C
H

A
_A

C
E

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0
RXCCHA

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-5. MLB RX Control Channel Address Register (MLB_RXCCHAR)

Table 33-6. MLB RX Control Channel Address Register (MLB_RXCCHAR) Field Descriptions

Field Description

RXCCHA_ACEN RX Control Channel Address Comparison Enable. When enabled, a received Channel Address is
compared against the RX Control Channel Address configured in this register. RXCCHA_ACEN should
only be updated when MDIS is set.
0 RX Control Channel Address comparison disabled (default out of reset)
1 RX Control Channel Address comparison enabled

bits 1–25 Reserved.

RXCCHA RX Control Channel Address. If RXCCHA_ACEN=1, this address will be compared against the logical
address that was driven on the bus by the MLB controller (INIC). If the received channel address matches
the programmed value in the MLB_RXCCHAR register the appropriate output buffer enables are driven
(Section 33.4.2.1.4, “MLBSIG_BUFEN and MLBDAT_BUFEN”).

Although Channel Addresses are defined to be sixteen bits wide, bits 15 through 9 and the LSB are
always zero. The odd addresses are reserved and Channel Address 0x0000 is the bus idle state. Only
the 31 even addresses between 0x0002 and 0x003E are allowed; therefore, only five bits per Channel
Address are required to be configured. RXCCHA should only be updated when MDIS is set.

An address match occurs when RXCCHA_ACEN is set and the received 16 bit Channel Address equals
16b0000_0000_00_{RXCCHA}_0.

bit 31 Reserved.

Media Local Bus (MLB)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 33-11
 Preliminary

33.3.1.6 TX Control Channel Address Register (MLB_TXCCHAR)

The MLB_TXCCHAR contains the TX Control Channel Address for this device.

Offset MLB_BASE+0x0010 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
R

X
A

C
H

A
_A

C
E

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0
RXACHA

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-6. MLB RX Async Channel Address Register (MLB_RXACHAR)

Table 33-7. MLB RX Async Channel Address Register (MLB_RXACHAR) Field Descriptions

Field Description

RXACHA_ACEN RX Async Channel Address Comparison Enable. When enabled a received Channel Address is
compared against the RX Async Channel Address configured in this register. RXACHA_ACEN should
only be updated when MDIS is set.
0 RX Async Channel Address comparison disabled (default out of reset)
1 RX Async Channel Address comparison enabled

bits 1–25 Reserved.

RXACHA RX Async Channel Address. If RXACHA_ACEN=1, this address will be compared against the logical
address that was driven on the bus by the MLB controller (INIC). If the received channel address matches
the programmed value in the MLB_RXACHAR register the appropriate output buffer enables are driven
(Section 33.4.2.1.4, “MLBSIG_BUFEN and MLBDAT_BUFEN”).
Although Channel Addresses are defined to be sixteen bits wide, bits 15 through 9 and the LSB are
always zero. The odd addresses are reserved and Channel Address 0x0000 is the bus idle state. Only
the 31 even addresses between 0x0002 and 0x003E are allowed; therefore, only five bits per Channel
Address are required to be configured. RXACHA should only be updated when MDIS is set.

An address match occurs when RXACHA_ACEN is set and the received 16 bit Channel Address equals
16b0000_0000_00_{RXACHA}_0.

bit 31 Reserved.

Media Local Bus (MLB)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

33-12 Freescale Semiconductor
 Preliminary

33.3.1.7 TX Async Channel Address Register (MLB_TXACHAR)

The MLB_TXACHAR contain the TX Async Channel Address for this device.

Offset MLB_BASE+0x0014 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
T

X
C

C
H

A
_A

C
E

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0
TXCCHA

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-7. MLB TX Control Channel Address Register (MLB_TXCCHAR)

Table 33-8. MLB TX Control Channel Address Register (MLB_TXCCHAR) Field Descriptions

Field Description

TXCCHA_ACEN TX Control Channel Address Comparison Enable. When enabled, a received Channel Address is
compared against the TX Control Channel Address configured in this register. TXCCHA_ACEN should
only be updated when MDIS is set.
0 TX Control Channel Address comparison disabled (default out of reset)
1 TX Control Channel Address comparison enabled

bits 1–25 Reserved.

TXCCHA TX Control Channel Address. If TXCCHA_ACEN=1, this address will be compared against the logical
address that was driven on the bus by the MLB controller (INIC). If the received channel address matches
the programmed value in the MLB_TXCCHAR register the appropriate output buffer enables are driven
(Section 33.4.2.1.4, “MLBSIG_BUFEN and MLBDAT_BUFEN”).
Although Channel Addresses are defined to be sixteen bits wide, bits 15 through 9 and the LSB are
always zero. The odd addresses are reserved and Channel Address 0x0000 is the bus idle state. Only
the 31 even addresses between 0x0002 and 0x003E are allowed; therefore, only five bits per Channel
Address are required to be configured. TXCCHA should only be updated when MDIS is set.

An address match occurs when TXCCHA_ACEN is set and the received 16 bit Channel Address equals
16b0000_0000_00_{TXCCHA}_0.

bit 31 Reserved.

Media Local Bus (MLB)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 33-13
 Preliminary

33.3.1.8 TX Sync Channel Address Register (MLB_TXSCHAR)

The MLB_TXSCHAR contains the TX Sync Channel Address for this device.

Offset MLB_BASE+0x0018 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
T

X
A

C
H

A
_A

C
E

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0
TXACHA

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-8. MLB TX Async Channel Address Register (MLB_TXACHAR)

Figure 33-9. MLB TX Async Channel Address Register (MLB_TXACHAR) Field Descriptions

Field Description

TXACHA_ACEN TX Async Channel Address Comparison Enable. When enabled a received Channel Address is
compared against the TX Async Channel Address configured in this register. TXACHA_ACEN should only
be updated when MDIS is set.
0 TX Async Channel Address comparison disabled (default out of reset)
1 TX Async Channel Address comparison enabled

bits 1–25 Reserved.

TXACHA TX Async Channel Address. If TXACHA_ACEN=1, this address will be compared against the logical
address that was driven on the bus by the MLB controller (INIC). If the received channel address matches
the programmed value in the MLB_TXACHAR register the appropriate output buffer enables are driven
(Section 33.4.2.1.4, “MLBSIG_BUFEN and MLBDAT_BUFEN”).

Although Channel Addresses are defined to be sixteen bits wide, bits 15 through 9 and the LSB are
always zero. The odd addresses are reserved and Channel Address 0x0000 is the bus idle state. Only
the 31 even addresses between 0x0002 and 0x003E are allowed; therefore, only five bits per Channel
Address are required to be configured. TXACHA should only be updated when MDIS is set.
An address match occurs when TXACHA_ACEN is set and the received 16 bit Channel Address equals
16b0000_0000_00_{TXACHA}_0.

bit 31 Reserved.

Media Local Bus (MLB)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

33-14 Freescale Semiconductor
 Preliminary

33.3.1.9 TX Sync Channel Address Mask Register (MLB_TXSCHAMR)

The MLB_TXSCHAMR contains the TX Sync Channel Address Mask for this device.

Offset MLB_BASE+0x001C Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
T

X
S

C
H

A
_A

C
E

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0
TXSCHA

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-10. MLB TX Sync Channel Address Register (MLB_TXSCHAR)

Table 33-9. MLB TX Sync Channel Address Register (MLB_TXSCHAR) Field Descriptions

Field Description

TXSCHA_ACEN TX Sync Channel Address Comparison Enable. When enabled a received Channel Address is compared
against the TX Sync Channel Address configured in this register. TXSCHA_ACEN should only be updated
when MDIS is set.
0 TX Sync Channel Address comparison disabled (default out of reset)
1 TX Sync Channel Address comparison enabled

bits 1–25 Reserved.

TXSCHA TX Sync Channel Address. If TXSCHA_ACEN=1, this address will be compared against the logical
address that was driven on the bus by the MLB controller (INIC). If the received channel address matches
the programmed value in the MLB_TXSCHAR register the appropriate output buffer enables are driven
(Section 33.4.2.1.4, “MLBSIG_BUFEN and MLBDAT_BUFEN”).
Although Channel Addresses are defined to be sixteen bits wide, bits 15 through 9 and the LSB are
always zero. The odd addresses are reserved and Channel Address 0x0000 is the bus idle state. Only
the 31 even addresses between 0x0002 and 0x003E are allowed; therefore, only five bits per Channel
Address are required to be configured. TXSCHA should only be updated when MDIS is set.

An address match occurs when TXSCHA_ACEN is set and the received 16 bit Channel Address equals
16b0000_0000_00_{TXSCHA}_0.

bit 31 Reserved.

Media Local Bus (MLB)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 33-15
 Preliminary

T

33.3.1.10 MLBCLK Clock Adjust Control Register (MLB_CLKACR)

The MLB_CLKACR contains bits that are used to control the delay of the DSPI_DS_CLK relative to the
MLBCLK input clock.

Offset MLB_BASE+0x0020 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0
TXSCHAM

0

W

Reset 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0

Figure 33-11. MLB TX Sync Channel Address Mask Register (MLB_TXSCHAMR)

Table 33-10. MLB TX Sync Channel Address Register (MLB_TXSCHAMR) Field Descriptions

Field Description

bits 0–25 Reserved.

TXSCHAM TX Sync Channel Address Mask Register. These user configuration bits are used to define bit-wise
masking on the TX Sync Channel address that will allow the device to recognize multiple TX Channel
Sync Addresses. If the mask is cleared, the corresponding bit in the address is ignored. If the mask is set
the corresponding bit in the received address must match for a valid comparison. TXSCHAM should only
be updated when MDIS is set.
0 Ignore corresponding bit in the address (filter open)
1 Compare corresponding bit in the address (All 1s – default out of Reset – match on single address in

the MLB_TXSCHAMR register.

bit 31 Reserved.

Offset MLB_BASE+0x0024 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PDLY

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-12. MLBCLK Clock Adjust Control Register (MLB_CLKACR)

Media Local Bus (MLB)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

33-16 Freescale Semiconductor
 Preliminary

33.3.1.11 RX Isochronous Channel Address Register (MLB_RXICHAR)

The MLB_RXICHAR contains the RX Isochronous Channel Address for this device.

Table 33-11. MLBCLK Clock Adjust Control (MLB_CLKACR) Register Field Descriptions

Field Description

bits 0–15 Reserved.

PDLY Programmable Delay. The PDLY value determines the programmable delay added to the incoming MLBCLK
before being used to capture data. All incoming MLB data is captured on the rising edge of the delayed
MLBCLK. Each PDLY bit enables one of sixteen equal delay stages which are concatenated together.

0000_0000_0000_0000 All delay stages disabled (bypass)
0000_0000_0000_0001 1 delay stages enabled
0000_0000_0000_0011 2 delay stages enabled
0000_0000_0000_0111 3 delay stages enabled
0000_0000_0000_1111 4 delay stages enabled
0000_0000_0001_1111 5 delay stages enabled
0000_0000_0011_1111 6 delay stages enabled
0000_0000_0111_1111 7 delay stages enabled
0000_0000_1111_1111 8 delay stages enabled
0000_0001_1111_1111 9 delay stages enabled
0000_0011_1111_1111 10 delay stages enabled
0000_0111_1111_1111 11 delay stages enabled
0000_1111_1111_1111 12 delay stages enabled
0001_1111_1111_1111 13 delay stages enabled
0011_1111_1111_1111 14 delay stages enabled
0111_1111_1111_1111 15 delay stages enabled
1111_1111_1111_1111 16 delay stages enabled
Other Reserved

Offset MLB_BASE+0x0028 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

R
X

IC
H

A
_A

C
E

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0
RXICHA

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-13. MLB RX Isochronous Channel Address Register (MLB_RXICHAR)

Media Local Bus (MLB)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 33-17
 Preliminary

33.3.1.12 TX Isochronous Channel Address Register (MLB_TXICHAR)

The MLB_TXICHAR contain the TX Isochronous Channel Address for this device.

Table 33-12. MLB RX Isochronous Channel Address Register (MLB_RXICHAR) Field Descriptions

Field Description

RXICHA_ACEN RX Isochronous Channel Address Comparison Enable. When enabled a received Channel Address is
compared against the RX Isochronous Channel Address configured in this register. RXICHA_ACEN
should only be updated when MDIS is set.
0 RX Isochronous Channel Address comparison disabled (default out of reset)
1 RX Isochronous Channel Address comparison enabled

bits 1–25 Reserved.

RXICHA RX Isochronous Channel Address. If RXICHA_ACEN=1, this address will be compared against the logical
address that was driven on the bus by the MLB controller (INIC). If the received channel address matches
the programmed value in the MLB_RXICHAR register the appropriate output buffer enables are driven
(Section 33.4.2.1.4, “MLBSIG_BUFEN and MLBDAT_BUFEN”).

Although Channel Addresses are defined to be sixteen bits wide, bits 15 through 9 and the LSB are
always zero. The odd addresses are reserved and Channel Address 0x0000 is the bus idle state. Only
the 31 even addresses between 0x0002 and 0x003E are allowed; therefore, only five bits per Channel
Address are required to be configured. RXICHA should only be updated when MDIS is set.

An address match occurs when RXICHA_ACEN is set and the received 16-bit Channel Address equals
16b0000_0000_00_{RXICHA}_0.

bit 31 Reserved.

Offset MLB_BASE+0x0028 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

T
X

IC
H

A
_A

C
E

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0
TXICHA

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-14. MLB TX Isochronous Channel Address Register (MLB_TXICHAR)

Media Local Bus (MLB)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

33-18 Freescale Semiconductor
 Preliminary

33.4 Functional Description
The MLB topology supports communications between a single MLB controller (INIC) and one or several
MLB devices (for example, MPC551xE/G). The 3-pin interface consists of an MLBCLK clock (generated
by the MLB controller), an MLBSIG signal, and MLBDAT data lines. In this interface, MLBSIG and
MLBDAT are bidirectional. In the 5-pin interface, all signals are unidirectional (MLBSI, MLBSO,
MLBDI, MLBDO, and MLBCLK). The implementation on the MPC551xE/G also includes Level Shifter
Enable control signals (MLBSIG_BUFEN and MLBDAT_BUFEN) for the 3-pin interface, and setup and
debug signals (MLB_SIGOBS, MLB_DATOBS, and MLB_SLOT). See Section 33.2, “External Signal
Description” description for a full details.

The MLB controller is the interface between the MLB devices and the MOST network. Figure 33-15
shows the MLB topology with the MPC551xE/G as the MLB device and the INIC as the MLB controller.
The 5-pin interface is shown.

Table 33-13. MLB TX Isochronous Channel Address Register (MLB_TXICHAR) Field Descriptions

Field Description

TXICHA_ACEN TX Isochronous Channel Address Comparison Enable. When enabled a received Channel Address is
compared against the TX Isochronous Channel Address configured in this register. TXICHA_ACEN
should only be updated when MDIS is set.
0 TX Isochronous Channel Address comparison disabled (default out of reset)
1 TX Isochronous Channel Address comparison enabled

bits 1–25 Reserved.

TXICHA TX Isochronous Channel Address. If TXICHA_ACEN=1, this address will be compared against the logical
address that was driven on the bus by the MLB controller (INIC). If the received channel address matches
the programmed value in the MLB_TXICHAR register the appropriate output buffer enables are driven
(Section 33.4.2.1.4, “MLBSIG_BUFEN and MLBDAT_BUFEN”).

Although Channel Addresses are defined to be sixteen bits wide, bits 15 through 9 and the LSB are
always zero. The odd addresses are reserved and Channel Address 0x0000 is the bus idle state. Only
the 31 even addresses between 0x0002 and 0x003E are allowed; therefore, only five bits per Channel
Address are required to be configured. TXICHA should only be updated when MDIS is set.

An address match occurs when TXICHA_ACEN is set and the received 16-bit Channel Address equals
16b0000_0000_00_{RXICHA}_0.

bit 31 Reserved.

Media Local Bus (MLB)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 33-19
 Preliminary

Figure 33-15. 5-pin MLB Topology

The INIC generates the MLBCLK clock, which is synchronized to the MOST network and provides the
timing for the entire MOST interface.

The MLBSIG (or MLBSO) carries the Channel Address generated by the MLB controller (INIC). The
Channel Address indicates which MLB device is transmitting and which MLB device is receiving in the
following physical channel. The transmitting MLB device outputs a Command Byte on its MLBSIG (or
MLBSO) and the receiving MLB device outputs an RxStatus byte in the quadlet following the Command
Byte.

The MLBDAT (or MLBDO) line is driven by the transmitting MLB device and is received by all other
devices, including the controller. This line carries the actual data (synchronous, asynchronous,
isochronous, control).

The IOP based softMLB solution uses the following resources to emulate an MLB device.

• e200z0 (IOP)

• DSPI_A and DSPI_B

• eDMA (four channels)

• SoftMLB Interface Logic

• Pin multiplexing options within the SIU

• System RAM

MediaLB Device 1

GND

MLBDO M
O

S
T

 N
etw

ork

MediaLB Controller
(INIC/OS81050)(MPC551xE/G)

MLBDI

MLBSO

MLBSI

MLBCLK

MLBDI

MLBDO

MLBSI

MLBSO

MLBCLK

RX

TX

Media Local Bus (MLB)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

33-20 Freescale Semiconductor
 Preliminary

The DSPIs are used in slave mode and clocked continuously by a delayed version of the MLBCLK.
DSPI_A and DSPI_B are used to implement the signal and data channels, respectively. Frame
synchronization is achieved by the slave select signal generated by the SoftMLB Interface Logic, which
is derived from the FRAMESYNC signal on the MLBSIG (or MLBSO) line.

The SoftMLB emulation uses four eDMA channels in the soft MLB concept. One channel is used to
transfer the MLBSIG values into the internal RAM; this is triggered by DSPI_A drain flag. The second
channel is used to transfer the MLBDAT values into the internal RAM, triggered by the SoftMLB Interface
Logic (MLB_DMA_REQ) and aligned with every MLB word. The third and fourth channels are used to
transfer the data from internal SRAM to DSPI_A and DSPI_B respectively, and are triggered by the IOP,
which in turn is triggered by the SoftMLB Interface Logic (SRV_REQ) every 32 MLBCLK cycles. The
source of the IOP interrupt can be selected at initialization to be from the interrupt controller, source 293,
or the IOP critical interrupt. The IOP also implements the low level MLB protocol, processes the data, and
transmits the command and RXStatus bytes (depending on whether it is a transmitter or receiver) from the
MLB device. Figure 33-16 shows the data flow of the soft MLB solution.

Media Local Bus (MLB)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 33-21
 Preliminary

Figure 33-16. SoftMLB Data Flow

33.4.1 SoftMLB Interface Logic Description

The internal SoftMLB Interface Logic is an essential component of the softMLB solution. It is the interface
between the 3-pin or 5-pin MLB interface and DSPI_A and DSPI_B on the MPC551xE/G. It also performs
synchronization, eDMA triggering, IOP triggering, startup, clock adjust, and internal and external buffer
control for the 3-pin and 5-pin configurations. The SoftMLB interface logic is enabled by asserting the

MLBSIG
Rx Array

MLBDAT
Rx Array

MLBSIG
Tx Word (32-bit)

MLBDAT
Tx Word (32-bit)

ASYNC Frame
Buffer

SYNC Tx
Buffer

SYNC Tx
Buffer

eDMA

pop_reg

push_reg

pop_reg

push_reg

DSPI_A

DSPI_A

e200z0
Core

Glue
Logic

MLBSIG_BUFEN/MLBDO

MLB_SLOT/MLBSGOBS/

MLBSIG/MLBSI

Channel

eDMA
Channel

eDMA
Channel

eDMA
Channel

DMAMUX

eDMA
Channel

eDMA
Channel

DSPI_S_SIN

DSPI_S_OUT

DSPI_SS

DSPI_DS_SCLK

DSPI_D_SOUT

DSPI_D_SIN

MLBDAT/MLBDI

MLBSIG_BUFEN/MLBSO

MLBCLK/MLBCLK

MLBDATOBS

MDATRQS
MLB_DMA_REQ

MSVRQS
SRV_REQ_GLUE

MSVRQIE

MSVRQCIE

30

INTC
VECT293

SIU_EISR

SRV_REQ_CI

SRV_REQ

PD11

DSPI_A_DMA_REQ

3-pin Interface (plain)
5-pin Interface (italic)

Setup/Debug Function

KEY:

(underline)

Internal SRAM

(Signal)

(Data)

Media Local Bus (MLB)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

33-22 Freescale Semiconductor
 Preliminary

MLB_MCR[MDIS] bit. When enabled, it looks for the FRAMESYNC pattern (0x1FE) on the MLBSIG (or
MLBSI) line. Detection of this pattern is used to synchronize to the bus. The logic detects 256 occurrences
of the pattern before it is enabled to transmit data to/from the MLB bus. This is mandatory to prevent
erroneous behavior of the MOST network controller (INIC) and to guarantee stable operation. Stable
operation is signalled by setting the MLB_MSR[MSYSS] bit.

The Logic also generates an IOP trigger signal (SRV_REQ_GLUE) every 32 MLBCLK cycles that
activates the IOP. This signal can be shifted upto 5 MLBCLK cycles from the MLB word boundary by the
MLB_MCR[MSVRQDL] bits. The signal is an interrupt source into the INTC (see Section 33.3.1,
“Register Descriptions” for details) or a critical interrupt which is Ored with the IOP external NMI. An
eDMA request can also be generated from the SoftMLB Interface logic. This is input into the eDMA Mux
(input 35) and generated every 32 MLBCLK cycles on the MLB word boundary.

In addition, the SoftMLB Interface Logic is responsible for selecting the 3-pin or 5-pin interface. It
controls the output of the correct signals to the SIU in the 3-pin or 5-pin interface, and the level shifter
enable signals in the 3-pin interface. See section Section 33.4.2.1.4, “MLBSIG_BUFEN and
MLBDAT_BUFEN” for specific details of the level shifter control signals.

It also performs the MLBCLK adjust. The MLBCLK clock must be delayed to ensure proper setup and
hold times for internal signals. The delay relative to the MLBCLK input is controlled via the
MLB_CLKACR.

33.4.2 SoftMLB Interface Logic Signal Description

Figure 33-17 shows a block diagram of the SoftMLB Interface Logic with all input and output signals.
Integration of the SoftMLB Interface Logic in the SoC is shown in Figure 33-16. Only the signals that are
routed to the SIU are described below.

Media Local Bus (MLB)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 33-23
 Preliminary

Figure 33-17. SoftMLB Interface Logic

33.4.2.1 Three-pin Interface

The 3-pin MLB interface has a separate unidirectional clock driven from the INIC and bidirectional signal
and data lines. These are multiplexed out on the same pins as the 5pin interface.

33.4.2.1.1 MLBCLK

MLBCLK is the MLB bus clock input that is driven by the MLB master (INIC) and is synchronized with
the MOST network. This signal has a typical frequency of 12.288 MHz. The maximum frequency is
12.3136 MHz (256 Fs at 48.1 kHz).

NOTE
This clock is asynchronous to the MCU system clock and is used to clock
the SoftMLB Interface Logic.

33.4.2.1.2 MLBDAT

MLBDAT is a bidirectional data line that transfers data (synchronous, asynchronous, isochronous, control)
to or from the network controller (INIC). The data word is 32 bits and the MSB is sent first.

33.4.2.1.3 MLBSIG

MLBSIG is a bidirectional signal line that transfers the bus management data to or from the network
controller (INIC). The 32-bit word is comprised of the following three parts:

• Command — a byte-wide value that specifies the type of user data

MLBCLK

MLBDAT/MLBDI

MLBSIG_BUFEN/MLBSO

MLBDAT_BUFEN/MLBDO

MLB_SLOT/MLB_SIGOBS/MLB_DATOBS

MLBSIG/MLBSI
SoftMLB

DSPI_DS_SCK

DSPI_S_SOUT

DSPI_S_SIN

DSPI_SS

DSPI_D_SOUT

DSPI_D_SIN

SRV_REQ_GLUE

MSVRQIE

System

The SoftMLB Interface Logic selects the

MSVRQCIE

Logic

signals routed to/from the SIU. The SIU controls

Interface

the signals routed to the pins.
MLB_DMA_REQ

Integration
Unit (SIU)

Media Local Bus (MLB)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

33-24 Freescale Semiconductor
 Preliminary

• RxStatus — a byte-wide value that provides a handshaking mechanism

• Channel Address — a 16-bit token that is sent by the MLB master (INIC) and specifies a logical
channel.

33.4.2.1.4 MLBSIG_BUFEN and MLBDAT_BUFEN

These signals are technically not part of the 3-pin MLB specification, but are required to control the
external level shifters and output enable of the internal pads when 3 pin mode is used. To drive the level
shifter enable signals at the end of the MLB quadlet (32-bit timeslot), the content of the shift register is
compared against potential MLB receive and transmit slots assigned to the device. These are configured
in the Channel Address registers. See Section 33.3.1, “Register Descriptions” for a full description. If a
valid comparison is detected, the appropriate external level shifter enable is asserted by the SoftMLB
Interface Logic. The level of assertion is controlled by the MLB[MSBFEPOL:MDBFEPOL] bits. Details
of when these signals are asserted are given below.

If the received Channel Address matches the programmed Rx Channel Address the MLBSIG output buffer
is enabled in the next timeslot for eight bits during the RxStatus byte field. The MLBDAT output buffer is
de-asserted

If the received Channel Address matches the programmed Tx Channel Address the MLBSIG output buffer
is enabled in the next timeslot for 8 bits during the Command byte field. The MLBDAT output buffer is
enabled in the next timeslot for 32 bits during Data word field.

NOTE
Multiple SYNC address are supported via the Section 33.3.1.9, “TX Sync
Channel Address Mask Register (MLB_TXSCHAMR)”

If the received Channel Address matches the programmed Tx and Rx Channel Address this is an error
condition. Both buffer are de-asserted

If the received Channel Address does not match the programmed Tx and Rx Channel Addresses this is a
valid condition and both buffer are de-asserted.

33.4.2.2 Five-pin Interface

The 5-pin MLB interface has separate data and signal lines. The interface is half-duplex for consistency
with the 3-pin interface. These signals are multiplexed out in the same positions as the 3-pin interface.

33.4.2.2.1 MLBCLK

MLBCLK is the MLB bus clock that is driven by the MLB master (INIC) and is synchronized with the
MOST network. This signal has a typical frequency of 12.288 MHz. The maximum frequency is 12.3136
MHz (256 Fs at 48.1 kHz).

33.4.2.2.2 MLBDO

MLBDO transmits MLB Data from the MPC551xE/G onto the MLB bus.

Media Local Bus (MLB)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor 33-25
 Preliminary

33.4.2.2.3 MLBDI

MLBDI receives MLB Data from the MLB bus into the MPC551xE/G.

33.4.2.2.4 MLBSO

MLBSO transmits the MLB Signal from the MPC551xE/G onto the MLB bus.

33.4.2.2.5 MLBSI

MLBSI receives the MLB signal from the MLB bus into the MPC551xE/G.

33.4.2.2.6 MLB_DATOBS and MLB_SIGOBS

These signals are not part of the MLB specification. They are used during setup to observe the internal
MLBDAT and MLBSIG signals during clock adjust.

33.4.2.2.7 MLB_SLOT

This signal toggles (low to high) exactly at the 32-bit boundary of an MLB word. It is a debug signal that
can be used during development.

Media Local Bus (MLB)

MPC5510 Microcontroller Family Reference Manual, Rev. 1

33-26 Freescale Semiconductor
 Preliminary

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor A-1
 Preliminary

Appendix A
Revision History
This appendix describes corrections to the MPC5510 Reference Manual. For convenience, the corrections
are grouped by revision.

A.1 Changes Between Revisions 0 and 1
Table A-1. Changes Between Revisions 0 and 1

Chapter Description

1 Removed references to SMSRUN and SMSSTOP and inserted “64K” in SLEEP mode description in section
1.5.

Corrected Execution Speed row in Table 1-2.
In Table 1-1, changed maximum number of DSPIs on 5517S from 3 to 4.

Modified Figure 1-1.

Inserted note on bit numbering in Section 1.1.
Added new section 1.3.1.

Modified Figure 1-1.

Modified Section 1.5 to show that RTC continues to receive clock during STOP and SLEEP.
Imported revised Table 1-1 and Table 1-5 from MPC5510PB Rev. 2.

2 Inserted pin number for VDDF in Table 2-2.

Changed “32,47” to “15,32,47” for VSSE2 in 144-pin package in Table 2-2.

Corrected labels on pins 51, 52, 64 of 144-pin package.
Changed “I/O” to “O” for PCS_C[0] in Table 2-1.

Corrected labels on pins 52, 53 in 176-pin package diagram.

Modified Table 2-1, row for PD2.
Corrected signal descriptions to ensure eMIOS I/O capability agrees with Table 2-1.

Modified Section 2.7.11.3.

Modified Sections 2.7.11.9, 2.7.12.13, and 2.7.12.14.
Modified Section 2.7.12.9.

Modified Section 2.7.12.6.

Modified Table 2-1, Table 2-2, and Figure 2-4.

3 Deleted PIT_RTI from Table 3-2.
Removed superfluous bit numbers in bit field names. Modified text where necessary to clarify.

Changed 32KOSCEN to OSC32KEN, 32KRCTRIM to TRIM32IRC and IRCTRIM to TRIMIRC in block
diagram to agree with chapter 5.

Modified sections 3.2.1 and 3.2.2 to remove frequency spec values and refer to data sheet.

In Table 3-1 added “PIT” to the list of modules in LPCLKDIV 1.

Modified section 3.5.3,

4 Removed superfluous bit numbers in bit field names. Modified text where necessary to clarify.
Changed flag bits to show w1c where cleared by writing 1.

Revision History

MPC5510 Microcontroller Family Reference Manual, Rev. 1

A-2 Freescale Semiconductor
 Preliminary

5 Appended two notes to definition of WKCLKSEL in CRP_WKSE Field Descriptions table.

Added INIT box to Sleep Mode Transition Diagram (Part 1) and Stop Mode Transition Diagram (Part 1).

Significant content and editorial changes resulting from review of previous document revision.

Removed superfluous bit numbers in bit field names. Modified text where necessary to clarify.
Changed bit names from “32KIRCEN” to “IRC32KEN” and “32KOSCEN” to “OSC32KEN”.

Added w1c to flag bits cleared by writing 1.

Added note to Clock Source register and modified TRIMIRC description.
Modified WKPDETx bits description.

Modified description of Z0VEC.

Added notes below Z1VEC and Z0VEC descriptions.
More changes to TRIM bits in Figure 5-2 and Table 5-2.

More changes to PWKSRIE = WKPSEL bits.

Added note to APIVAL bit description.

6 Changed Section 6.2.1.4, “Core Non-maskable Interrupt Pins (PD10 and PD11)”.
Changed “HALTACK” to “HLTACK” in title of Table 6-28.

Replaced Figure 6-49 with Figure 8-5.

In SIU_SRCR register, changed bits 4 and 28 from read-only to R/W, and removed refs to SPR0 and SPRL0
from the footnotes.

Various content and editorial changes.
Removed superfluous bit numbers in bit field names. Modified text where necessary to clarify.

Fixed conditional text error in SIU_SRCR diagram.

Changed SIU_CCR figure and bit descriptions.
Added “w1c” to SIU_EISR and SIU_OSR registers and associated text.

Modified section 6.3.2.5 and 6.3.2.12.

Added table in LPCLKDIVn field description.

7 Removed superfluous bit numbers in bit field names. Modified text where necessary to clarify.
Minor editorial changes.

Edited sections 7.1 and 7.3.2.6 to remove references to debug reset.

Numerous editorial changes.

8 Changed Section 8.2.1, “Core Interrupts” and Section 8.4.3, “Non-Maskable Interrupt (NMI)”.
Changed Figure 8.5. Copied this figure across to section 6 SIU.

Removed superfluous bit numbers in bit field names. Modified text where necessary to clarify.

Modified Section 8.1, Table 8-1 and Section 8.2.4.
More changes to Section 8.1 and Section 8.2.4.

9 Modified INTC Priority Select Register diagram (Figure 9-12) and field descriptions (Table 9-9).

Added text to VTES_PRC1/0 bit description in INT_MCR register.

Removed superfluous bit numbers in bit field names. Modified text where necessary to clarify.
Appended sentence and revised coding in section 9.5.5.2 Ensuring Coherency.

Various editorial changes.

10 Added note to bit field description tables explaining bit numbering of Power PC Book E 64-bit registers.

11 Removed “Book E” from two locations in introduction.

Table A-1. Changes Between Revisions 0 and 1 (continued)

Chapter Description

Revision History

MPC5510 Microcontroller Family Reference Manual, Rev. 1

Freescale Semiconductor A-3
 Preliminary

12 Modified EDMA_CR diagram and field descriptions.

Removed all references to groups and group functions.

Modified SSIZE encoding.

Removed superfluous bit numbers in bit field names. Modified text where necessary to clarify.

13 Modified Figure 13-3 and Figure 13-6.
Removed superfluous bit numbers in bit field names. Modified text where necessary to clarify.

Minor editorial changes.

Changed “n-1” to “n” in Figure 13-2 and all italic x to n.

14 Modified sections 14.4.1 and 14.4.2.

15 Replaced Figure 15-1 with Figure 17-1.Modified Figure 15-1 and added footnote to Figure 15-3.

16 Corrected the reset value of MUDCR in Table 16-1.
Modified MUDCR diagram and field descriptions.

Changed MCMTIR to SWTIR in section 16.2.2.3.

Removed superfluous bit numbers in bit field names. Modified text where necessary to clarify.
Changed flag bits in registers to show w1c., where appropriate.

Modified note in section 16.1 and bullet in section 16.1.1.

17 Corrected Figures 17-5, 17-6, 17-7, 17-8, 17-9.

Added note to reserved bit descriptions in Tables 17-7, 17-9.
Corrected MPU base address in Table 17-1.

Removed superfluous bit numbers in bit field names. Modified text where necessary to clarify.

Various editorial changes.

18 Corrected section 18.3.1 and Table 18-1.
Removed superfluous bit numbers in bit field names. Modified text where necessary to clarify.

Changed CP0INE and CP1INE registers and bit description tables from 32-bit to 16-bit.

19 Removed superfluous bit numbers in bit field names. Modified text where necessary to clarify.

Inserted text in first para.

20 Added note explaining bit numbering convention used.
Removed bit numbers in register bit field descriptions. Redrew flowchart diagrams to allow conversion to sans
serif font. Cleaned up fonts in other diagrams.
Removed bit numbers from bit names used in body text and modified surrounding text for clarification.
Removed everything using MSB=0 condition.
Added SYSCLK/1 as default frequency to Table 20-4 and section 20.5.5.

21 Modified section 21.4.2, and modified sections 21.6 and 21.7.

22 Deleted four lines of text in RWSC row in Table 22-11.

Corrected LLOCK bit sin LML register and field descriptions.

Corrected SLLOCK bits in SLL register and field descriptions.
Corrected LSEL bits in LMS register and field descriptions.

Removed superfluous bit numbers in bit field names. Modified text where necessary to clarify.

Added w1c to flag bits in register diagrams, where appropriate.

Add information to Table 22-1.

Table A-1. Changes Between Revisions 0 and 1 (continued)

Chapter Description

Revision History

MPC5510 Microcontroller Family Reference Manual, Rev. 1

A-4 Freescale Semiconductor
 Preliminary

23 Corrected section 23.3.1.

Removed superfluous bit numbers in bit field names. Modified text where necessary to clarify.

Changed “DIS_TX” to “DIS_TXF” in Table 23-2.

Removed shading from w1c in register diagrams, where appropriate.
Corrected reset value of TFFF bit in status register.

Modified section 23.1 and added note to section 23.1.1.

24 Removed superfluous bit numbers in bit field names. Modified text where necessary to clarify.

Removed shading from w1c in register diagrams, where appropriate.

25 Removed superfluous bit numbers in bit field names. Modified text where necessary to clarify.

26 Added note to section 26.2.1.
Removed superfluous bit numbers in bit field names. Modified text where necessary to clarify.

Amended flag bits to use w1c clearing convention.

27 Removed superfluous bit numbers in bit field names. Modified text where necessary to clarify.

Changed IBCR bit names: “TX/RX” to “TX” and “MS/SL” to “MS”.
Changed all instances of “IIC” to “I2C”.

Amended flag bits to use w1c clearing convention.

28 Removed superfluous bit numbers in bit field names. Modified text where necessary to clarify.

Amended flag bits to use w1c clearing convention.

29 Changed ADDR[3:31] to ADDR[8:31] in Figure 29-19.
Removed superfluous bit numbers in bit field names. Modified text where necessary to clarify.

Amended flag bits to use w1c clearing convention.

30 Changed “system clock / 3” to “system clock / 2” and “120 MHz” to “80 MHz” in section 30.4.2 PLL Clocking”.

Added base address to heading row in Memory Map table.
Inserted “Reserved” at address 0x000A in memory map.

31 Removed superfluous bit numbers in bit field names. Modified text where necessary to clarify.

Edited text to show only one CFSSR register (and only one ADC). Cleaned up eQADC and EQADC. Cleaned
up w1c bits.

32 Removed superfluous bit numbers in bit field names. Modified text where necessary to clarify.

Significant content and editorial changes resulting from review of previous document revision.

33 Changed “defaults to Disabled” to “defaults to MLB_SIGOBS” in Table 33-4.

Removed superfluous bit numbers in bit field names. Modified text where necessary to clarify.

Table A-1. Changes Between Revisions 0 and 1 (continued)

Chapter Description

	MPC5510_RMAD_Rev.1
	1 Addendum for Revision 1.0
	2 Revision History
	MPC5510 Reference Manual Addendum

	MPC5510RM_Readme
	MPC5510 Reference Manual

	MPC5510RM_Rev.1
	Chapter 1 Overview
	1.1 Introduction
	1.2 Block Diagram
	1.3 MPC5510 Family Comparison
	1.3.1 Family Feature Set Scaling

	1.4 Chip-Level Features
	1.5 Low-Power Operation
	1.6 Memory Map

	Chapter 2 Signal Descriptions
	2.1 Introduction
	2.2 Signal Properties Summary
	2.3 Power and Ground Supply Summary
	2.4 Pinout - 144 LQFP
	2.5 Pinout - 176 LQFP
	2.6 Pinout - 208 BGA
	2.7 Detailed External Signal Descriptions
	2.7.1 Port A Pins
	2.7.1.1 PA0 to PA13 - GPI (PA[0:13]) / Analog Input (AN[0] - AN[13])
	2.7.1.2 PA14 - GPI (PA[14]) / Analog Input (AN[14]) / 32 kHz Crystal Input (EXTAL32)
	2.7.1.3 PA15 - GPI (PA[15]) / Analog Input (AN[15]) / 32 kHz Crystal Output (XTAL32)

	2.7.2 Port B Pins
	2.7.2.1 PB0 - GPIO (PB[0]) / Analog Input (AN[28]) / eMIOS Channel (eMIOS[16]) / DSPI_C Peripheral Chip Select (PCS_C[5])
	2.7.2.2 PB1 - GPIO (PB[1]) / Analog Input (AN[29]) / eMIOS Channel (eMIOS[17]) / DSPI_C Peripheral Chip Select (PCS_C[4])
	2.7.2.3 PB2 - GPIO (PB[2]) / Analog Input (AN[30]) / eMIOS Channel (eMIOS[18]) / DSPI_C Peripheral Chip Select (PCS_C[3])
	2.7.2.4 PB3 - GPIO (PB[3]) / Analog Input (AN[31]) / DSPI_C Peripheral Chip Select (PCS_C[2])
	2.7.2.5 PB4 - GPIO (PB[4]) / Analog Input (AN[32]) / DSPI_C Peripheral Chip Select (PCS_C[1])
	2.7.2.6 PB5 - GPIO (PB[5]) / Analog Input (AN[33]) / DSPI_C Peripheral Chip Select (PCS_C[0])
	2.7.2.7 PB6 - GPIO (PB[6]) / Analog Input (AN[34]) / DSPI_C Clock (SCK_C)
	2.7.2.8 PB7 - GPIO (PB[7]) / Analog Input (AN[35]) / DSPI_C Data Output (SOUT_C)
	2.7.2.9 PB8 - GPIO (PB[8]) / Analog Input (AN[36]) / DSPI_C Data Input (SIN _C)
	2.7.2.10 PB9 - GPIO (PB[9]) / Analog Input (AN[37]) / CAN_D Transmit (CNTX_D) / DSPI_B Peripheral Chip Select (PCS_B[4])
	2.7.2.11 PB10 - GPIO (PB[10]) / Analog Input (AN[38]) / CAN_D Receive (CNRX_D) / DSPI_B Peripheral Chip Select (PCS_B[3])
	2.7.2.12 PB11 - GPIO (PB[11]) / Analog Input (AN[39]) / eMIOS Channel (eMIOS[19]) / DSPI_B Peripheral Chip Select (PCS_B[5])
	2.7.2.13 PB12 - GPIO (PB[12]) / SCI_G Transmit (TXD_G) / DSPI_B Peripheral Chip Select (PCS_B[4])
	2.7.2.14 PB13 - GPIO (PB[13]) / SCI_G Receive (RXD_G) / DSPI_B Peripheral Chip Select (PCS_B[3])
	2.7.2.15 PB14 - GPIO (PB[14]) / SCI_H Transmit (TXD_H)
	2.7.2.16 PB15 - GPIO (PB[15]) / SCI_H Receive (RXD_H)

	2.7.3 Port C Pins
	2.7.3.1 PC0 - GPIO (PC[0]) / eMIOS Channel (eMIOS[0]) / FlexRay Channel A Transmit Enable (FR_A_TX_EN) / EBI Multiplexed Address/Data (AD[24])
	2.7.3.2 PC1 - GPIO (PC[1]) / eMIOS Channel (eMIOS[1]) / FlexRay Channel A Transmit (FR_A_TX) / EBI Multiplexed Address/Data (AD[16])
	2.7.3.3 PC2 - GPIO (PC[2]) / eMIOS Channel (eMIOS[2]) / FlexRay Channel A Receive (FR_A_RX) / EBI Transfer Start (TS)
	2.7.3.4 PC3 - GPIO (PC[3]) / eMIOS Channel (eMIOS[3]) / FlexRay Debug 0 (FR_DBG0)
	2.7.3.5 PC4 - GPIO (PC[4]) / eMIOS Channel (eMIOS[4]) / FlexRay Debug 1 (FR_DBG1)
	2.7.3.6 PC5 - GPIO (PC[5]) / eMIOS Channel (eMIOS[5]) / FlexRay Debug 2 (FR_DBG2)
	2.7.3.7 PC6 - GPIO (PC[6]) / eMIOS Channel (eMIOS[6]) / FlexRay Debug 3 (FR_DBG3)
	2.7.3.8 PC7 - GPIO (PC[7]) / eMIOS Channel (eMIOS[7]) / FlexRay Channel B Receive (FR_B_RX)
	2.7.3.9 PC8 - GPIO (PC[8]) / eMIOS Channel (eMIOS[8]) / FlexRay Channel B Transmit (FR_B_TX) / Multiplexed Address/Data (AD[15])
	2.7.3.10 PC9 - GPIO (PC[9]) / eMIOS Channel (eMIOS[9]) / FlexRay Channel B Transmit Enable (FR_B_TX_EN) / Multiplexed Address/Data (AD[14])
	2.7.3.11 PC10 - GPIO (PC[10]) / eMIOS Channel (eMIOS[10]) / DSPI_C Peripheral Chip Select (PCS_C[5]) / DSPI_D Clock (SCK_D)
	2.7.3.12 PC11 - GPIO (PC[11]) / eMIOS Channel (eMIOS[11]) / DSPI_C Peripheral Chip Select (PCS_C[4]) / DSPI_D Serial Data Out (SOUT_D)
	2.7.3.13 PC12 - GPIO (PC[12]) / eMIOS Channel (eMIOS[12]) / DSPI_C Peripheral Chip Select (PCS_C[3]) / DSPI_D Serial Data Input (SIN_D)
	2.7.3.14 PC13 - GPIO (PC[13]) / eMIOS Channel (eMIOS[13]) / DSPI_A Peripheral Chip Select (PCS_A[5]) / DSPI_D Peripheral Chip Select (PCS_D[0])
	2.7.3.15 PC14 - GPIO (PC[14]) / eMIOS Channel (eMIOS[14]) / DSPI_A Peripheral Chip Select (PCS_A[4]) / DSPI_D Peripheral Chip Select (PCS_D[1])
	2.7.3.16 PC15 - GPIO (PC[15]) / eMIOS Channel (eMIOS[15]) / DSPI_A Peripheral Chip Select (PCS_A[3]) / DSPI_D Peripheral Chip Select (PCS_D[2])

	2.7.4 Port D Pins
	2.7.4.1 PD0 - GPIO (PD[0]) / CAN_A Transmit (CNTX_A) / DSPI_D Peripheral Chip Select (PCS_D[3])
	2.7.4.2 PD1 - GPIO (PD[1]) / CAN_A Receive (CNRX_A) / DSPI_D Peripheral Chip Select (PCS_D[4])
	2.7.4.3 PD2 - GPIO (PD[2]) / CAN_B Receive (CNRX_B) / eMIOS Channel (eMIOS[10]) / Boot Configuration (BOOTCFG) / DSPI_D Peripheral Chip Select (PCS_D[5])
	2.7.4.4 PD3 - GPIO (PD[3]) / CAN_B Transmit (CNTX_B) / eMIOS Channel (eMIOS[11])
	2.7.4.5 PD4 - GPIO (PD[4]) / CAN_C Transmit (CNTX_C) / eMIOS Channel (eMIOS[12])
	2.7.4.6 PD5 - GPIO (PD[5]) / CAN_C Receive (CNRX_C) / eMIOS Channel (eMIOS[13])
	2.7.4.7 PD6 - GPIO (PD[6]) / SCI_A Transmit (TXD_A) / eMIOS Channel (eMIOS[14])
	2.7.4.8 PD7 - GPIO (PD[7]) / SCI_A Receive (RXD_A) / eMIOS Channel (eMIOS[15])
	2.7.4.9 PD8 - GPIO (PD[8]) / SCI_B Transmit (TXD_B) / I2C Serial Clock Line (SCL_A)
	2.7.4.10 PD9 - GPIO (PD[9]) / SCI_B Receive (RXD_B) / I2C Serial Data Line (SDA_A)
	2.7.4.11 PD10 - GPIO (PD[10]) / DSPI_B Peripheral Chip Select (PCS_B[2]) / CAN_F Transmit (CNTX_F) / e200z1 Critical Interrupt (NMI0)
	2.7.4.12 PD11 - GPIO (PD[11]) / DSPI_B Peripheral Chip Select (PCS_B[1]) / CAN_F Receive (CNRX_F) / e200z0 Critical Interrupt (NMI1)
	2.7.4.13 PD12 - GPIO (PD[12]) / DSPI_B Peripheral Chip Select (PCS_B[0]) / eMIOS Channel (eMIOS[9])
	2.7.4.14 PD13 - GPIO (PD[13]) / DSPI_B Clock (SCK_B) / eMIOS Channel (eMIOS[8])
	2.7.4.15 PD14 - GPIO (PD[14]) / DSPI_B Data Output (SOUT_B) / eMIOS Channel (eMIOS[7])
	2.7.4.16 PD15 - GPIO (PD[15]) / DSPI_B Data Input (SIN_B) / eMIOS Channel (eMIOS[6])

	2.7.5 Port E Pins
	2.7.5.1 PE0 - GPIO (PE[0]) / DSPI_A Peripheral Chip Select (PCS_A[2]) / eMIOS Channel (eMIOS[5]) / MLB Clock (MLBCLK)
	2.7.5.2 PE1 - GPIO (PE[1]) / DSPI_A Peripheral Chip Select (PCS_A[1]) / eMIOS Channel (eMIOS[4]) / MLB Signal In / Signal (MLBSI / MLBSIG)
	2.7.5.3 PE2 - GPIO (PE[2]) / DSPI_A Peripheral Chip Select (PCS_A[0]) / eMIOS Channel (eMIOS[3]) / MLB Data In / Data (MLBDI / MLBDAT)
	2.7.5.4 PE3 - GPIO (PE[3]) / DSPI_A Clock (SCK_A) / eMIOS Channel (eMIOS[2]) / MLB Signal Out / Level Shifter Enable (MLBSO / MLBSIG_BUFEN)
	2.7.5.5 PE4 - GPIO (PE[4]) / DSPI_A Data Output (SOUT_A) / eMIOS Channel (eMIOS[1]) / MLB Data Out / Level Shifter Enable (MLBDO / MLBDAT_BUFEN)
	2.7.5.6 PE5 - GPIO (PE[5]) / DSPI_A Data Input (SIN_A) / eMIOS Channel (eMIOS[0]) / MLB SLOT / Signal Observe / Data Observe (MLB_SLOT / MLB_SIGOBS / MLB_DATOBS)
	2.7.5.7 PE6 - GPIO (PE[6]) / Clock Output (CLKOUT)
	2.7.5.8 PE7 to PE15 - GPIO (PE[7:15])

	2.7.6 Port F Pins
	2.7.6.1 PF0 - GPIO (PF[0]) / EBI Read/Write (RD_WR) / Nexus Event In (EVTI)
	2.7.6.2 PF1 - GPIO (PF[1]) / EBI Transfer Acknowledge (TA) / Nexus Event Out (EVTO) / MLB Clock (MLBCLK)
	2.7.6.3 PF2 - GPIO (PF[2]) / EBI Multiplex Address/Data (AD[8]) / EBI Non Muxed Address (ADDR[8]) / MLB Signal In / Signal (MLBSI / MLBSIG) / Nexus Message Start/End Out (MSEO)
	2.7.6.4 PF3 - GPIO (PF[3]) / EBI Multiplex Address/Data (AD[9]) / EBI Non Muxed Address (ADDR[9]) / MLB Data In / Data (MLBDI / MLBDAT) / Nexus Message Clock Out (MCKO)
	2.7.6.5 PF4 - GPIO (PF[4]) / EBI Multiplex Address/Data (AD[10]) / EBI Non Muxed Address (ADDR[10]) / MLB Signal Out / Level Shifter Enable (MLBSO / MLBSIG_BUFEN) / Nexus Message Data Out (MDO[0])
	2.7.6.6 PF5 - GPIO (PF[5]) / EBI Multiplex Address/Data (AD[11]) / EBI Non Muxed Address (ADDR[11]) / MLB Data Out / Level Shifter Enable (MLBDO / MLBDAT_BUFEN) / Nexus Message Data Out (MDO[1])
	2.7.6.7 PF6 - GPIO (PF[6]) / EBI Multiplex Address/Data (AD[12]) / EBI Non Muxed Address (ADDR[12]) / MLB SLOT / Signal Observe / Data Observe (MLB_SLOT / MLB_SIGOBS / MLB_DATOBS) / Nexus Message Data Out (MDO[2])
	2.7.6.8 PF7 - GPIO (PF[7]) / EBI Multiplex Address/Data (AD[13]) / EBI Non Muxed Address (ADDR[13]) / Nexus Message Data Out (MDO[3])
	2.7.6.9 PF8 - GPIO (PF[8]) / EBI Multiplex Address/Data (AD[14]) / EBI Non Muxed Address (ADDR[14]) / Nexus Message Data Out (MDO[4])
	2.7.6.10 PF9 - GPIO (PF[9]) / EBI Multiplex Address/Data (AD[15]) / EBI Non Muxed Address (ADDR[15]) / Nexus Message Data Out (MDO[5])
	2.7.6.11 PF10 - GPIO (PF[10]) / EBI Chip Select (CS[1]) / SCI_C Transmit (TXD_C) / Nexus Message Data Out (MDO[6])
	2.7.6.12 PF11 - GPIO (PF[11]) / EBI Chip Select (CS[0]) / SCI_C Receive (RXD_C) / Nexus Message Data Out (MDO[7])
	2.7.6.13 PF12 - GPIO (PF[12]) / EBI Transfer Start (TS) / SCI_D Transmit (TXD_D) / EBI Address Latch Enable
	2.7.6.14 PF13 - GPIO (PF[13]) / EBI Output Enable (OE) / SCI_D Receive (RXD_D)
	2.7.6.15 PF14 - GPIO (PF[14]) / EBI Write Enable (WE[0]) / EBI Burst Data In Progress (BDIP) / CAN_D Transmit (CNTX_D)
	2.7.6.16 PF15 - GPIO (PF[15]) / EBI Write Enable (WE[1]) / EBI Transfer Error Acknowledge (TEA) / CAN_D Receive (CNRX_D)

	2.7.7 Port G Pins
	2.7.7.1 PG0 - GPIO (PG[0]) / EBI Multiplex Address/Data (AD[16]) / eMIOS Channel (eMIOS[16])
	2.7.7.2 PG1 - GPIO (PG[1]) / EBI Multiplex Address/Data (AD[17]) / eMIOS Channel (eMIOS[17]) / DSPI_C Data In (SIN_C)
	2.7.7.3 PG2 - GPIO (PG[2]) / EBI Multiplex Address/Data (AD[18]) / eMIOS Channel (eMIOS[18]) / DSPI_C Data Out (SOUT_C)
	2.7.7.4 PG3 - GPIO (PG[3]) / EBI Multiplex Address/Data (AD[19]) / eMIOS Channel (eMIOS[19]) / DSPI_C Serial Clock (SCK_C)
	2.7.7.5 PG4 - GPIO (PG[4]) / EBI Multiplex Address/Data (AD[20]) / eMIOS Channel (eMIOS[20]) / DSPI_C Peripheral Chip Select (PCS_C[0])
	2.7.7.6 PG5 - GPIO (PG[5]) / EBI Multiplex Address/Data (AD[21]) / eMIOS Channel (eMIOS[21])
	2.7.7.7 PG6 - GPIO (PG[6]) / EBI Multiplex Address/Data (AD[22]) / eMIOS Channel (eMIOS[22])
	2.7.7.8 PG7 - GPIO (PG[7]) / EBI Multiplex Address/Data (AD[23]) / eMIOS Channel (eMIOS[23]) / SCI_C Receive (RXD_C)
	2.7.7.9 PG8 - GPIO (PG[8]) / EBI Multiplex Address/Data (AD[24]) / DSPI_A Peripheral Chip Select (PCS_A[4])
	2.7.7.10 PG9 - GPIO (PG[9]) / EBI Multiplex Address/Data (AD[25]) / DSPI_A Peripheral Chip Select (PCS_A[3]) / SCI_C Transmit (TXD_C)
	2.7.7.11 PG10 - GPIO (PG[10]) / EBI Multiplex Address/Data (AD[26]) / DSPI_A Peripheral Chip Select (PCS_A[2])
	2.7.7.12 PG11 - GPIO (PG[11]) / EBI Multiplex Address/Data (AD[27]) / DSPI_A Peripheral Chip Select (PCS_A[1])
	2.7.7.13 PG12 - GPIO (PG[12]) / EBI Multiplex Address/Data (AD[28]) / DSPI_A Peripheral Chip Select (PCS_A[0])
	2.7.7.14 PG13 - GPIO (PG[13]) / EBI Multiplex Address/Data (AD[29]) / DSPI_A Serial Clock (SCK_A)
	2.7.7.15 PG14 - GPIO (PG[14]) / EBI Multiplex Address/Data (AD[30]) / DSPI_C Data Out (SOUT_A)
	2.7.7.16 PG15 - GPIO (PG[15]) / EBI Multiplex Address/Data (AD[31]) / DSPI_C Data In (SIN_A)

	2.7.8 Port H Pins
	2.7.8.1 PH0 - GPIO (PH[0]) / Analog Input (AN[27]) / eMIOS Channel (eMIOS[20]) / I2C Serial Clock Line (SCL_A)
	2.7.8.2 PH1 - GPIO (PH[1]) / Analog Input (AN[26]) / eMIOS Channel (eMIOS[21]) / I2C Serial Data Line (SDA_A)
	2.7.8.3 PH2 - GPIO (PH[2]) / Analog Input (AN[25]) / eMIOS Channel (eMIOS[22]) / EBI Chip Select (CS[3])
	2.7.8.4 PH3 - GPIO (PH[3]) / Analog Input (AN[24]) / eMIOS Channel (eMIOS[23]) / EBI Chip Select (CS[2])
	2.7.8.5 PH4 - GPIO (PH[4]) / Analog Input (AN[23]) / SCI_E Transmit (TXD_E) / External Analog Mux Address Output (MA[2])
	2.7.8.6 PH5 - GPIO (PH[5]) / Analog Input (AN[22]) / SCI_E Receive (RXD_E) / External Analog Mux Address Output (MA[1])
	2.7.8.7 PH6 - GPIO (PH[6]) / Analog Input (AN[21]) / SCI_E Transmit (TXD_F)
	2.7.8.8 PH7 - GPIO (PH[7]) / Analog Input (AN[20]) / SCI_F Receive (RXD_F)
	2.7.8.9 PH8 - GPIO (PH[8]) / Analog Input (AN[19]) / CAN_E Transmit (CNTX_E) / External Analog Mux Address Output (MA[0])
	2.7.8.10 PH9 - GPIO (PH[9]) / Analog Input (AN[18]) / CAN_E Receive (CNRX_E)
	2.7.8.11 PH10 - GPIO (PH[10]) / Analog Input (AN[17]) / CAN_F Receive (CNRX_F)
	2.7.8.12 PH11 - GPIO (PH[11]) / Analog Input (AN[16]) / CAN_F Transmit (CNTX_F)
	2.7.8.13 PH12 - GPIO (PH[12]) / DSPI_D Peripheral Chip Select (PCS_D[5])
	2.7.8.14 PH13 - GPIO (PH[13])
	2.7.8.15 PH14 - GPIO (PH[14]) / EBI Write Enable (WE[2])
	2.7.8.16 PH15 - GPIO (PH[15]) / EBI Write Enable (WE[3])

	2.7.9 Port J Pins
	2.7.9.1 PJ0 to PJ7 - GPIO (PJ[0:7]) / EBI Multiplex Address/Data (AD[0:7])
	2.7.9.2 PJ8 - GPIO (PJ8) / DSPI_D Peripheral Chip Select (PCS_D[4])
	2.7.9.3 PJ9 - GPIO (PJ9) / DSPI_D Peripheral Chip Select (PCS_D[3])
	2.7.9.4 PJ10 - GPIO (PJ10) / DSPI_D Peripheral Chip Select (PCS_D[2])
	2.7.9.5 PJ11 - GPIO (PJ11) / DSPI_D Peripheral Chip Select (PCS_D[1])
	2.7.9.6 PJ12 - GPIO (PJ12) / DSPI_D Peripheral Chip Select (PCS_D[0])
	2.7.9.7 PJ13 - GPIO (PJ13) / DSPI_D Clock (SCK_D)
	2.7.9.8 PJ14 - GPIO (PJ14) / DSPI_D Serial Data Out (SOUT_D)
	2.7.9.9 PJ15 - GPIO (PJ15) / DSPI_D Serial Data In (SIN_D)

	2.7.10 Port K Pins
	2.7.10.1 PK0 - GPI (PK0) / 32 kHz Crystal Input (EXTAL32)
	2.7.10.2 PK1 - GPI (PK[1]) / 32 kHz Crystal Output (XTAL32)

	2.7.11 Miscellaneous Pins
	2.7.11.1 XTAL - Crystal Oscillator Output
	2.7.11.2 EXTAL - Crystal Oscillator Input / External Clock Input
	2.7.11.3 RESET - External Reset Input
	2.7.11.4 TCK - JTAG Test Clock Input
	2.7.11.5 TDI - JTAG Test Data Input
	2.7.11.6 TDO - JTAG Test Data Output
	2.7.11.7 TMS - JTAG Test Mode Select Input
	2.7.11.8 JCOMP - JTAG Compliance Input
	2.7.11.9 TEST - Test Mode Enable Input

	2.7.12 Power and Ground Pins
	2.7.12.1 Voltage Regulator Reference (VDDR)
	2.7.12.2 VDDA - Analog-to-Digital Converter Analog Supply
	2.7.12.3 VSSA - Analog-to-Digital Converter Analog Ground
	2.7.12.4 VRH - Analog-to-Digital Converter Reference High
	2.7.12.5 VRL - Analog-to-Digital Converter Reference Low
	2.7.12.6 REFBYPC - Reference Bypass Capacitor
	2.7.12.7 VDDSYN - Clock Synthesizer Supply
	2.7.12.8 VSSSYN - Clock Synthesizer Ground
	2.7.12.9 VDD33 - 3.3 V I/O and Flash Read Supply (VFLASH)
	2.7.12.10 VPP - Flash Program/Erase Supply
	2.7.12.11 VDD - Internal Logic Supply and Flash Logic Supply (VDDF)
	2.7.12.12 VSS - Internal Logic and Flash (VSSF) Ground
	2.7.12.13 VDDEx - External I/O Supply
	2.7.12.14 VSSEx - External I/O Ground

	Chapter 3 System Clock Description
	3.1 Introduction
	3.2 Clock Sources
	3.2.1 External High-Frequency Crystal (XOSC)
	3.2.2 External Low-Frequency Crystal (32kXOSC)
	3.2.3 Internal High-Frequency RC Oscillator (IRC)
	3.2.4 Internal Low-Frequency RC Oscillator (32kRC)

	3.3 System Clock Architecture Block Diagram
	3.4 Clock Dividers
	3.4.1 System Clock Select
	3.4.2 System Clock Dividers
	3.4.3 External Bus Clock (CLKOUT) Divider
	3.4.4 Nexus Message Clock (MCKO) Divider
	3.4.5 Peripheral Clock Dividers

	3.5 Software-Controlled Power Management
	3.5.1 Module Disable (MDIS) Clock Gating
	3.5.2 Halt Clock Gating
	3.5.3 Core WAIT Clock Gating

	3.6 Alternate Module Clock Domains
	3.6.1 FlexCAN Clock Domains
	3.6.2 FlexRay Clock Domains
	3.6.3 RTC Clock Domain
	3.6.4 SWT Clock Domain

	Chapter 4 Frequency Modulated Phase Locked Loop (FMPLL)
	4.1 Introduction
	4.1.1 Block Diagram
	4.1.2 Features
	4.1.3 Modes of Operation

	4.2 External Signal Description
	4.3 Memory Map and Registers
	4.3.1 Module Memory Map
	4.3.2 Register Descriptions
	4.3.2.1 FMPLL Synthesizer Status Register (SYNSR)
	4.3.2.2 FMPLL Enhanced Synthesizer Control Register 1 (ESYNCR1)
	4.3.2.3 FMPLL Enhanced Synthesizer Control Register 2 (ESYNCR2)

	4.4 Functional Description
	4.4.1 General
	4.4.2 PLL Off Mode
	4.4.3 Normal Mode
	4.4.3.1 PLL Lock Detection
	4.4.3.2 Loss-of-Clock Detection
	4.4.3.3 PLL Normal Mode Without FM
	4.4.3.4 PLL Normal Mode With Frequency Modulation

	4.5 Resets
	4.5.1 Clock Mode Selection
	4.5.1.1 Power-On Reset (POR)
	4.5.1.2 External Reset

	4.5.2 PLL Loss-of-Lock Reset
	4.5.3 PLL Loss-of-Clock Reset

	4.6 Interrupts
	4.6.1 Loss-of-Lock Interrupt Request
	4.6.2 Loss-of-Clock Interrupt Request

	Chapter 5 Clock, Reset, and Power Control (CRP)
	5.1 Introduction
	5.1.1 Block Diagram
	5.1.2 Features
	5.1.3 Modes of Operation

	5.2 Memory Map and Registers
	5.2.1 Module Memory Map
	5.2.2 Register Descriptions
	5.2.2.1 Clock Source Register (CRP_CLKSRC)
	5.2.2.2 RTC Status and Control Register (CRP_RTCSC)
	5.2.2.3 RTC Counter Register (CRP_RTCCNT)
	5.2.2.4 Wakeup Pin Source Select Register (CRP_WKPINSEL)
	5.2.2.5 Wakeup Source Enable Register (CRP_WKSE)
	5.2.2.6 Z1 Reset Vector Register (CRP_Z1VEC)
	5.2.2.7 Z0 Reset Vector Register (CRP_Z0VEC)
	5.2.2.8 Reset Recovery Pointer Register (CRP_RECPTR)
	5.2.2.9 Power Status and Control Register (CRP_PSCR)
	5.2.2.10 SoC Status and Control Register (CRP_SOCSC)

	5.3 Functional Description
	5.3.1 Low-Power Modes
	5.3.1.1 External Pin Configuration
	5.3.1.2 External SoC Debug Tool Configuration

	5.3.2 Low-Power Mode Entry
	5.3.2.1 CRP Clock Selection
	5.3.2.2 Sleep Mode RAM Retention

	5.3.3 Low-Power Operation
	5.3.3.1 Pad Keeper Control
	5.3.3.2 Sleep/Stop Mode Reset Operation

	5.3.4 Low-Power Wakeup
	5.3.4.1 Low Power Mode Debug Support

	5.4 Real-Time Counter (RTC)
	5.4.1 RTC Features
	5.4.2 RTC Functional Description
	5.4.3 Register Description

	5.5 Power Supply Monitors
	5.5.1 Power-On Reset (POR)
	5.5.2 Low-Voltage Monitors (LVI)

	5.6 Low-Voltage Operation

	Chapter 6 System Integration Unit (SIU)
	6.1 Introduction
	6.1.1 Block Diagram
	6.1.2 Features
	6.1.3 Modes of Operation
	6.1.3.1 Normal Mode
	6.1.3.2 Debug Mode

	6.2 External Signal Description
	6.2.1 Detailed Signal Descriptions
	6.2.1.1 Reset (RESET)
	6.2.1.2 General-Purpose I/O Pins
	6.2.1.3 Boot Configuration Pin (PD[2])
	6.2.1.4 Core Non Maskable Interrupt Pins (PD10 and PD11)

	6.3 Memory Map and Registers
	6.3.1 Module Memory Map
	6.3.2 Register Descriptions
	6.3.2.1 MCU ID Register (SIU_MIDR)
	6.3.2.2 Reset Status Register (SIU_RSR)
	6.3.2.3 System Reset Control Register (SIU_SRCR)
	6.3.2.4 External Interrupt Status Register (SIU_EISR)
	6.3.2.5 DMA/Interrupt Request Enable Register (SIU_DIRER)
	6.3.2.6 DMA/Interrupt Request Select Register (SIU_DIRSR)
	6.3.2.7 Overrun Status Register (SIU_OSR)
	6.3.2.8 Overrun Request Enable Register (SIU_ORER)
	6.3.2.9 IRQ Rising-Edge Event Enable Register (SIU_IREER)
	6.3.2.10 IRQ Falling-Edge Event Enable Register (SIU_IFEER)
	6.3.2.11 External IRQ Digital Filter Register (SIU_IDFR)
	6.3.2.12 IRQ Filtered Input Register (SIU_IFIR)
	6.3.2.13 Pad Configuration Registers (SIU_PCR)
	6.3.2.14 GPIO Pin Data Output Registers (SIU_GPDO16_19-SIU_GPDO140_143)
	6.3.2.15 GPIO Pin Data Input Registers (SIU_GPDI0_3-SIU_GPDI144_145)
	6.3.2.16 IMUX Select Register 0 (SIU_ISEL0)
	6.3.2.17 IMUX Select Register 1 (SIU_ISEL1)
	6.3.2.18 IMUX Select Register 2 (SIU_ISEL2)
	6.3.2.19 Chip Configuration Register (SIU_CCR)
	6.3.2.20 External Clock Control Register (SIU_ECCR)
	6.3.2.21 Compare A High Register (SIU_CMPAH)
	6.3.2.22 Compare A Low Register (SIU_CMPAL)
	6.3.2.23 Compare B High Register (SIU_CMPBH)
	6.3.2.24 Compare B Low Register (SIU_CMPBL)
	6.3.2.25 System Clock Register (SIU_SYSCLK)
	6.3.2.26 Halt Register (SIU_HLT)
	6.3.2.27 Halt Acknowledge Register (SIU_HLTACK)
	6.3.2.28 Parallel GPIO Pin Data Output Register 0 (SIU_PGPDO0)
	6.3.2.29 Parallel GPIO Pin Data Output Register 1 (SIU_PGPDO1)
	6.3.2.30 Parallel GPIO Pin Data Output Register 2 (SIU_PGPDO2)
	6.3.2.31 Parallel GPIO Pin Data Output Register 3 (SIU_PGPDO3)
	6.3.2.32 Parallel GPIO Pin Data Output Register 4 (SIU_PGPDO4)
	6.3.2.33 Parallel GPIO Pin Data Input Register 0 (SIU_PGPDI0)
	6.3.2.34 Parallel GPIO Pin Data Input Register 1 (SIU_PGPDI1)
	6.3.2.35 Parallel GPIO Pin Data Input Register 2 (SIU_PGPDI2)
	6.3.2.36 Parallel GPIO Pin Data Input Register 3 (SIU_PGPDI3)
	6.3.2.37 Parallel GPIO Pin Data Input Register 4 (SIU_PGPDI4)
	6.3.2.38 Masked Parallel GPIO Pin Data Output Registers

	6.4 Functional Description
	6.4.1 System Configuration
	6.4.1.1 Boot Configuration
	6.4.1.2 Pad Configuration

	6.4.2 Reset Control
	6.4.3 External Interrupt
	6.4.4 GPIO Operation
	6.4.5 Internal Multiplexing
	6.4.5.1 eQADC External Trigger Input Multiplexing
	6.4.5.2 SIU External Interrupt Input Multiplexing

	Chapter 7 Reset
	7.1 Introduction
	7.2 External Signal Description.
	7.2.1 Reset (RESET)
	7.2.2 Boot Configuration (BOOTCFG)

	7.3 Functional Description
	7.3.1 Z1, Z0 Cores Reset Vectors
	7.3.2 Reset Sources
	7.3.2.1 Power-on Reset (POR)
	7.3.2.2 Low-Voltage Inhibit (LVI) Resets
	7.3.2.3 External Reset
	7.3.2.4 Loss-of-Lock Reset
	7.3.2.5 Loss-of-Clock Reset
	7.3.2.6 Watchdog Timer
	7.3.2.7 Checkstop Reset
	7.3.2.8 JTAG Reset
	7.3.2.9 Software System Reset

	7.4 Reset Configuration
	7.4.1 Reset Configuration Timing

	Chapter 8 Interrupts
	8.1 Introduction
	8.2 Interrupt Vectors
	8.2.1 Core Interrupts
	8.2.2 External Input: Software Vector Mode
	8.2.3 External Input: Hardware Vector Mode
	8.2.4 Critical Input

	8.3 Interrupt Sources
	8.3.1 Interrupt Source Summary Table

	8.4 Interrupt Operation
	8.4.1 Software Vector Mode
	8.4.2 Hardware Vector Mode
	8.4.3 Non Maskable Interrupt (NMI)
	8.4.4 Dynamic Priority Elevation
	8.4.4.1 Hardware Implementation Dependent Register 1

	Chapter 9 Interrupt Controller (INTC)
	9.1 Introduction
	9.1.1 Features
	9.1.2 Block Diagram
	9.1.3 Modes of Operation
	9.1.3.1 Normal Mode
	9.1.3.2 Debug Mode
	9.1.3.3 Stop Mode

	9.2 Signal Description
	9.3 Memory Map and Registers
	9.3.1 Module Memory Map
	9.3.2 Register Descriptions
	9.3.2.1 INTC Module Configuration Register (INTC_MCR)
	9.3.2.2 INTC Current Priority Register for Processor 0 (Z1) (INTC_CPR_PRC0)
	9.3.2.3 INTC Current Priority Register for Processor 1 (Z0) (INTC_CPR_PRC1)
	9.3.2.4 INTC Interrupt Acknowledge Register for Processor 0 (Z1) (INTC_IACKR_PRC0)
	9.3.2.5 INTC Interrupt Acknowledge Register for Processor 1 (Z0) (INTC_IACKR_PRC1)
	9.3.2.6 INTC End-of-Interrupt Register for Processor 0 (Z1) (INTC_EOIR_PRC0)
	9.3.2.7 INTC End-of-Interrupt Register for Processor 1 (Z0) (INTC_EOIR_PRC1)
	9.3.2.8 INTC Software Set/Clear Interrupt Registers (INTC_SSCIR0_3-INTC_SSCIR4_7)
	9.3.2.9 INTC Priority Select Registers (INTC_PSR0_3-INTC_PSR292_293)

	9.4 Functional Description
	9.4.1 Interrupt Request Sources
	9.4.1.1 Peripheral Interrupt Requests
	9.4.1.2 Software Settable Interrupt Requests
	9.4.1.3 Unique Vector for Each Interrupt Request Source

	9.4.2 Priority Management
	9.4.2.1 Current Priority and Preemption
	9.4.2.2 Last-In First-Out (LIFO)

	9.4.3 Handshaking with Processor
	9.4.3.1 Software Vector Mode Handshaking
	9.4.3.2 Hardware Vector Mode Handshaking

	9.5 Initialization/Application Information
	9.5.1 Initialization Flow
	9.5.2 Interrupt Exception Handler
	9.5.2.1 Software Vector Mode
	9.5.2.2 Hardware Vector Mode

	9.5.3 ISR, RTOS, and Task Hierarchy
	9.5.4 Order of Execution
	9.5.5 Priority Ceiling Protocol
	9.5.5.1 Elevating Priority
	9.5.5.2 Ensuring Coherency

	9.5.6 Selecting Priorities According to Request Rates and Deadlines
	9.5.7 Software Settable Interrupt Requests
	9.5.7.1 Scheduling a Lower Priority Portion of an ISR
	9.5.7.2 Scheduling an ISR on Another Processor

	9.5.8 Lowering Priority Within an ISR
	9.5.9 Negating an Interrupt Request Outside of its ISR
	9.5.9.1 Negating an Interrupt Request as a Side Effect of an ISR
	9.5.9.2 Negating Multiple Interrupt Requests in One ISR
	9.5.9.3 Proper Setting of Interrupt Request Priority

	9.5.10 Examining LIFO contents

	Chapter 10 e200z1 Core (Z1)
	10.1 Introduction
	10.1.1 Features

	10.2 Microarchitecture Summary
	10.2.1 Instruction Unit Features
	10.2.2 Integer Unit Features
	10.2.3 Load/Store Unit Features
	10.2.4 e200z1 System Bus Features
	10.2.5 MMU Features

	10.3 Core Registers and Programmer’s Model
	10.3.1 Power Architecture Book E Registers
	10.3.1.1 User-Level Registers
	10.3.1.2 Supervisor-Level Registers

	10.3.2 e200-Specific Special Purpose Registers
	10.3.2.1 User-Level Registers
	10.3.2.2 Supervisor-level registers

	10.3.3 e200z1 Core Complex Features Not Supported on the MPC5510

	10.4 e200z1 Memory Management Unit
	10.4.1 Effective to Real Address Translation
	10.4.1.1 Effective Addresses
	10.4.1.2 Address Spaces
	10.4.1.3 Process ID
	10.4.1.4 Translation Flow
	10.4.1.5 Permissions

	10.4.2 Translation Lookaside Buffer
	10.4.3 MMU Assist Registers (MAS)

	10.5 Interrupt Types
	10.6 Bus Interface Unit (BIU)

	Chapter 11 e200z0 Core (Z0)
	11.1 Introduction
	11.1.1 Features

	11.2 Microarchitecture Summary
	11.2.1 Instruction Unit Features
	11.2.2 Integer Unit Features
	11.2.3 Load/Store Unit Features
	11.2.4 e200z0 System Bus Features

	11.3 Core Registers and Programmer’s Model
	11.3.1 Power Architecture Book E Registers
	11.3.1.1 User-Level Registers
	11.3.1.2 Supervisor-Level Registers

	11.3.2 e200-Specific Special Purpose Registers
	11.3.2.1 User-Level Registers
	11.3.2.2 Supervisor-level registers

	11.3.3 e200z0 Core Complex Features Not Supported on the MPC5510

	11.4 Interrupt Types
	11.5 Bus Interface Unit (BIU)

	Chapter 12 Enhanced Direct Memory Access (eDMA)
	12.1 Introduction
	12.1.1 Block Diagram
	12.1.2 Features
	12.1.3 Modes of Operation
	12.1.3.1 Normal Mode
	12.1.3.2 Debug Mode

	12.2 External Signal Description
	12.3 Memory Map and Registers
	12.3.1 Module Memory Map
	12.3.2 Register Descriptions
	12.3.2.1 eDMA Control Register (EDMA_CR)
	12.3.2.2 eDMA Error Status Register (EDMA_ESR)
	12.3.2.3 eDMA Enable Request Register (EDMA_ERQRL)
	12.3.2.4 eDMA Enable Error Interrupt Register (EDMA_EEIRL)
	12.3.2.5 eDMA Set Enable Request Register (EDMA_SERQR)
	12.3.2.6 eDMA Clear Enable Request Register (EDMA_CERQR)
	12.3.2.7 eDMA Set Enable Error Interrupt Register (EDMA_SEEIR)
	12.3.2.8 eDMA Clear Enable Error Interrupt Register (EDMA_CEEIR)
	12.3.2.9 eDMA Clear Interrupt Request Register (EDMA_CIRQR)
	12.3.2.10 eDMA Clear Error Register (EDMA_CER)
	12.3.2.11 eDMA Set START Bit Register (EDMA_SSBR)
	12.3.2.12 eDMA Clear DONE Status Bit Register (EDMA_CDSBR)
	12.3.2.13 eDMA Interrupt Request Register (EDMA_IRQRL)
	12.3.2.14 eDMA Error Register (EDMA_ERL)
	12.3.2.15 eDMA Channel n Priority Registers (EDMA_CPRn)
	12.3.2.16 Transfer Control Descriptor (TCD)

	12.4 Functional Description
	12.4.1 eDMA Basic Data Flow

	12.5 Initialization / Application Information
	12.5.1 eDMA Initialization
	12.5.2 DMA Programming Errors
	12.5.3 DMA Request Assignments
	12.5.4 DMA Arbitration Mode Considerations
	12.5.4.1 Fixed-Channel Arbitration
	12.5.4.2 Round-Robin Channel Arbitration

	12.5.5 DMA Transfer
	12.5.5.1 Single Request
	12.5.5.2 Multiple Requests
	12.5.5.3 Modulo Feature

	12.5.6 TCD Status
	12.5.6.1 Minor Loop Complete
	12.5.6.2 Active Channel TCD Reads
	12.5.6.3 Preemption Status

	12.5.7 Channel Linking
	12.5.8 Dynamic Programming
	12.5.8.1 Dynamic Channel Linking and Dynamic Scatter-Gather Operation

	Chapter 13 DMA Channel Mux (DMA_MUX)
	13.1 Introduction
	13.1.1 Block Diagram
	13.1.2 Features
	13.1.3 Modes of Operation

	13.2 External Signal Description
	13.3 Memory Map and Registers
	13.3.1 Module Memory Map
	13.3.2 Register Descriptions
	13.3.2.1 Channel Configuration Registers (CHCONFIGn)

	13.4 Functional Description
	13.4.1 DMA Channels 0-7
	13.4.2 DMA Channels 8-15
	13.4.3 Always Enabled DMA Sources

	13.5 Initialization/Application Information
	13.5.1 Reset
	13.5.2 Enabling and Configuring Sources
	13.5.2.1 Enabling a Source with Periodic Triggering
	13.5.2.2 Enabling a Source Without Periodic Triggering
	13.5.2.3 Disabling a Source
	13.5.2.4 Switching the Source of a DMA Channel

	13.6 Interrupts

	Chapter 14 Peripheral Bridge (AIPS-lite)
	14.1 Introduction
	14.1.1 Terminology
	14.1.2 Block Diagram
	14.1.3 Features
	14.1.4 Modes of Operation

	14.2 External Signal Description
	14.3 Memory Map and Registers
	14.4 Functional Description
	14.4.1 Read Cycles
	14.4.2 Write Cycles

	Chapter 15 Crossbar Switch (XBAR)
	15.1 Introduction
	15.1.1 Block Diagram
	15.1.2 Features
	15.1.3 Modes of Operation

	15.2 Signal Description
	15.3 Memory Map and Registers
	15.4 Functional Description
	15.4.1 Master Ports
	15.4.2 Slave Ports
	15.4.3 Arbitration
	15.4.3.1 Arbitration During Undefined Length Bursts
	15.4.3.2 Round-Robin Priority Operation
	15.4.3.3 Fixed Priority Operation

	15.4.4 Slave Port State Machine
	15.4.4.1 Slave Port State Machine Arbitration
	15.4.4.2 Slave Port State Machine Parking

	15.5 DMA Requests
	15.6 Interrupt Requests

	Chapter 16 Miscellaneous Control Module (MCM)
	16.1 Introduction
	16.1.1 Features

	16.2 Memory Map and Registers
	16.2.1 Module Memory Map
	16.2.2 Register Descriptions
	16.2.2.1 Software Watchdog Timer Control Register (SWTCR)
	16.2.2.2 Software Watchdog Timer Service Register (SWTSR)
	16.2.2.3 SWT Interrupt (SWTIR)
	16.2.2.4 Miscellaneous User-Defined Control Register (MUDCR)
	16.2.2.5 ECC Registers

	16.3 Functional Description
	16.3.1 High-Priority Enables

	Chapter 17 Memory Protection Unit (MPU)
	17.1 Introduction
	17.1.1 Block Diagram
	17.1.2 Features
	17.1.3 Modes of Operation

	17.2 Signal Description
	17.3 Memory Map and Registers
	17.3.1 Module Memory Map
	17.3.2 Register Descriptions
	17.3.2.1 MPU Control/Error Status Register (MPU_CESR)
	17.3.2.2 MPU Error Address Register, MPU Port 0 to 2 (MPU_EARn)
	17.3.2.3 MPU Error Detail Register, MPU Port 0 to 2 (MPU_EDRn)
	17.3.2.4 MPU Region Descriptor n (MPU_RGDn)
	17.3.2.5 MPU Region Descriptor Alternate Access Control n (MPU_RGDAACn)

	17.4 Functional Description
	17.4.1 Access Evaluation Macro
	17.4.1.1 Access Evaluation-Hit Determination
	17.4.1.2 Access Evaluation-Privilege Violation Determination

	17.4.2 Putting It All Together and AHB Error Terminations

	17.5 Initialization Information
	17.6 Application Information

	Chapter 18 Semaphores
	18.1 Introduction
	18.1.1 Block Diagram
	18.1.2 Features
	18.1.3 Modes of Operation

	18.2 Signal Description
	18.3 Memory Map and Registers
	18.3.1 Module Memory Map
	18.3.2 Register Descriptions
	18.3.2.1 Semaphores Gate n Register (SEMA4_GATEn)
	18.3.2.2 Semaphores Processor n IRQ Notification Enable (SEMA4_CP{0,1}INE)
	18.3.2.3 Semaphores Processor n IRQ Notification (SEMA4_CP{0,1}NTF)
	18.3.2.4 Semaphores (Secure) Reset Gate n (SEMA4_RSTGT)
	18.3.2.5 Semaphores (Secure) Reset IRQ Notification (SEMA4_RSTNTF)

	18.4 Functional Description
	18.4.1 Semaphore Usage

	18.5 Initialization Information
	18.6 Application Information
	18.7 DMA Requests
	18.8 Interrupt Requests

	Chapter 19 IEEE 1149.1 Test Access Port Controller (JTAGC)
	19.1 Introduction
	19.1.1 Block Diagram
	19.1.2 Features
	19.1.3 Modes of Operation
	19.1.3.1 Reset
	19.1.3.2 IEEE 1149.1-2001 Defined Test Modes
	19.1.3.3 Bypass Mode
	19.1.3.4 TAP Sharing Mode

	19.2 External Signal Description
	19.3 Memory Map and Registers
	19.3.1 Instruction Register
	19.3.2 Bypass Register
	19.3.3 Device Identification Register
	19.3.4 Boundary Scan Register

	19.4 Functional Description
	19.4.1 JTAGC Reset Configuration
	19.4.2 IEEE 1149.1-2001 (JTAG) Test Access Port
	19.4.3 TAP Controller State Machine
	19.4.3.1 Enabling the TAP Controller
	19.4.3.2 Selecting an IEEE 1149.1-2001 Register

	19.4.4 JTAGC Instructions
	19.4.4.1 BYPASS Instruction
	19.4.4.2 ACCESS_AUX_TAP_x Instructions
	19.4.4.3 CLAMP Instruction
	19.4.4.4 EXTEST - External Test Instruction
	19.4.4.5 HIGHZ Instruction
	19.4.4.6 IDCODE Instruction
	19.4.4.7 SAMPLE Instruction
	19.4.4.8 SAMPLE/PRELOAD Instruction

	19.4.5 Boundary Scan

	19.5 e200z0 and e200z1 OnCE Controllers
	19.5.1 e200z0 OnCE Controller Block Diagram
	19.5.2 e200z0 OnCE Controller Functional Description
	19.5.2.1 Enabling the TAP Controller

	19.5.3 e200z0 OnCE Controller Register Descriptions
	19.5.3.1 OnCE Command Register (OCMD)
	19.5.3.2 OnCE Shared Nexus Control Register (SNC)

	19.6 Initialization/Application Information

	Chapter 20 Nexus Development Interface (NDI)
	20.1 Introduction
	20.2 Block Diagram
	20.2.1 Features
	20.2.2 Modes of Operation
	20.2.2.1 Nexus Reset
	20.2.2.2 Full-Port Mode
	20.2.2.3 Reduced-Port Mode
	20.2.2.4 Disabled-Port Mode
	20.2.2.5 Censored Mode
	20.2.2.6 Stop Mode

	20.3 External Signal Description
	20.3.1 Nexus Signal Reset States

	20.4 Memory Map and Registers
	20.4.1 Nexus Debug Interface Registers
	20.4.2 Register Descriptions
	20.4.2.1 Nexus Device ID Register (DID)
	20.4.2.2 Port Configuration Register (PCR)
	20.4.2.3 Development Control Register 1, 2 (DC1, DC2)
	20.4.2.4 Development Status Register (DS)
	20.4.2.5 Read/Write Access Control/Status (RWCS)
	20.4.2.6 Read/Write Access Address (RWA)
	20.4.2.7 Read/Write Access Data (RWD)
	20.4.2.8 Watchpoint Trigger Register (WT)

	20.5 Functional Description
	20.5.1 Enabling Nexus Clients for TAP Access
	20.5.2 Configuring the NDI for Nexus Messaging
	20.5.3 Switching Ownership of Nexus2+
	20.5.4 Programmable MCKO Frequency
	20.5.5 Nexus Messaging
	20.5.6 EVTO Sharing
	20.5.7 Nexus2+ DMA Control
	20.5.8 Debug Mode Control
	20.5.8.1 EVTI Generated Break Request
	20.5.8.2 Nexus Event-Out Generated Break Request

	20.5.9 Nexus Reset Control

	Chapter 21 Internal Static RAM (SRAM)
	21.1 Introduction
	21.1.1 Block Diagram
	21.1.2 Features
	21.1.3 Modes of Operation
	21.1.3.1 Normal (Functional) Mode
	21.1.3.2 Sleep Mode

	21.2 External Signal Description
	21.3 Memory Map and Registers
	21.3.1 Array Memory Map
	21.3.2 Register Descriptions

	21.4 Functional Description
	21.4.1 Access Timing
	21.4.2 Reset Operation

	21.5 DMA Requests
	21.6 Interrupt Requests
	21.7 Initialization/Application Information
	21.7.1 Example Code

	Chapter 22 Flash Array and Control
	22.1 Introduction
	22.2 Block Diagram
	22.2.1 Features
	22.2.2 Modes of Operation

	22.3 External Signal Description
	22.4 Memory Map and Registers
	22.4.1 Module Memory Map
	22.4.2 Register Descriptions
	22.4.2.1 Module Configuration Register (MCR)
	22.4.2.2 Low-/Mid-Address Space Block Locking Register
	22.4.2.3 High-Address Space Block Locking Register (HBL)
	22.4.2.4 Secondary Low-/Mid-Address Space Block Locking Register (SLL)
	22.4.2.5 Low-/Mid-Address Space Block Select Register (LMS)
	22.4.2.6 High-Address Space Block Select Register (HBS)
	22.4.2.7 Address Register (ADR)
	22.4.2.8 Platform Flash Configuration Register for Port n (PFCRPn)

	22.5 Functional Description
	22.5.1 Flash User Mode
	22.5.2 Flash Read and Write
	22.5.3 Read While Write (RWW)
	22.5.4 Flash Programming
	22.5.4.1 Software Locking

	22.5.5 Flash Erase
	22.5.5.1 Flash Erase Suspend/Resume

	22.5.6 Flash Shadow Block
	22.5.7 Flash Stop Mode
	22.5.8 Flash Reset

	22.6 DMA Requests
	22.7 Interrupt Requests

	Chapter 23 Deserial Serial Peripheral Interface (DSPI)
	23.1 Introduction
	23.1.1 Block Diagram
	23.1.2 Features
	23.1.3 Modes of Operation
	23.1.3.1 Master Mode
	23.1.3.2 Slave Mode
	23.1.3.3 Module Disable Mode
	23.1.3.4 Debug Mode

	23.2 External Signal Description
	23.3 Memory Map and Registers
	23.3.1 Module Memory Map
	23.3.2 Register Descriptions
	23.3.2.1 DSPI Module Configuration Register (DSPI_MCR)
	23.3.2.2 DSPI Transfer Count Register (DSPI_TCR)
	23.3.2.3 DSPI Clock and Transfer Attributes Registers 0-7 (DSPI_CTARn)
	23.3.2.4 DSPI Status Register (DSPI_SR)
	23.3.2.5 DSPI DMA/Interrupt Request Select and Enable Register (DSPI_RSER)
	23.3.2.6 DSPI PUSH TX FIFO Register (DSPI_PUSHR)
	23.3.2.7 DSPI POP RX FIFO Register (DSPI_POPR)
	23.3.2.8 DSPI Transmit FIFO Registers 0-3 (DSPI_TXFRn)
	23.3.2.9 DSPI Receive FIFO Registers 0-3 (DSPI_RXFRn)
	23.3.2.10 DSPI DSI Configuration Register (DSPI_DSICR)
	23.3.2.11 DSPI DSI Serialization Data Register (DSPI_SDR)
	23.3.2.12 DSPI DSI Alternate Serialization Data Register (DSPI_ASDR)
	23.3.2.13 DSPI DSI Transmit Comparison Register (DSPI_COMPR)
	23.3.2.14 DSPI DSI Deserialization Data Register (DSPI_DDR)

	23.4 Functional Description
	23.4.1 Modes of Operation
	23.4.1.1 Master Mode
	23.4.1.2 Slave Mode
	23.4.1.3 Module Disable Mode
	23.4.1.4 Halt Mode
	23.4.1.5 Debug Mode

	23.4.2 Start and Stop of DSPI Transfers
	23.4.3 Serial Peripheral Interface (SPI) Configuration
	23.4.3.1 SPI Master Mode
	23.4.3.2 SPI Slave Mode
	23.4.3.3 FIFO Disable Operation
	23.4.3.4 Transmit First-In First-Out (TX FIFO) Buffering Mechanism
	23.4.3.5 Receive First-In First-Out (RX FIFO) Buffering Mechanism

	23.4.4 Deserial Serial Interface (DSI) Configuration
	23.4.4.1 DSI Master Mode
	23.4.4.2 DSI Slave Mode
	23.4.4.3 DSI Serialization
	23.4.4.4 DSI Deserialization
	23.4.4.5 DSI Transfer Initiation Control
	23.4.4.6 DSPI_A Connectivity
	23.4.4.7 DSPI_B Connectivity
	23.4.4.8 DSPI_C Connectivity
	23.4.4.9 DSPI_D Connectivity

	23.4.5 Combined Serial Interface (CSI) Configuration
	23.4.5.1 CSI Serialization
	23.4.5.2 CSI Deserialization

	23.4.6 Buffered SPI Operation
	23.4.7 DSPI Baud Rate and Clock Delay Generation
	23.4.7.1 Baud Rate Generator
	23.4.7.2 PCS to SCK Delay (tCSC)
	23.4.7.3 After SCK Delay (tASC)
	23.4.7.4 Delay after Transfer (tDT)
	23.4.7.5 Peripheral Chip Select Strobe Enable (PCSS)

	23.4.8 Transfer Formats
	23.4.8.1 Classic SPI Transfer Format (CPHA = 0)
	23.4.8.2 Classic SPI Transfer Format (CPHA = 1)
	23.4.8.3 Modified SPI/DSI Transfer Format (MTFE = 1, CPHA = 0)
	23.4.8.4 Modified SPI/DSI Transfer Format (MTFE = 1, CPHA = 1)
	23.4.8.5 Continuous Selection Format
	23.4.8.6 Clock Polarity Switching Between DSPI Transfers

	23.4.9 Continuous Serial Communications Clock
	23.4.10 Peripheral Chip Select Expansion and Deglitching
	23.4.11 DMA and Interrupt Conditions
	23.4.11.1 End of Queue Interrupt Request (EOQF)
	23.4.11.2 Transmit FIFO Fill Interrupt or DMA Request (TFFF)
	23.4.11.3 Transfer Complete Interrupt Request (TCF)
	23.4.11.4 Transmit FIFO Underflow Flag (TFUF)
	23.4.11.5 Receive FIFO Drain Interrupt or DMA Request (RFDF)
	23.4.11.6 Receive FIFO Overflow Flag (RFOF)
	23.4.11.7 DMA Requests
	23.4.11.8 Interrupt Requests

	23.4.12 Power Saving Features
	23.4.12.1 Halt Mode
	23.4.12.2 Module Disable Mode
	23.4.12.3 Slave Interface Signal Gating

	23.5 Initialization/Application Information
	23.5.1 How to Change Queues
	23.5.2 Baud Rate Settings
	23.5.3 Delay Settings
	23.5.4 Calculation of FIFO Pointer Addresses
	23.5.4.1 Address Calculation for the First-in Entry and Last-in Entry in the TX FIFO
	23.5.4.2 Address Calculation for the First-in Entry and Last-in Entry in the RX FIFO

	Chapter 24 Enhanced Serial Communication Interface (eSCI)
	24.1 Introduction
	24.1.1 Block Diagram
	24.1.2 Features
	24.1.3 Modes of Operation

	24.2 External Signal Description
	24.3 Memory Map and Registers
	24.3.1 Module Memory Map
	24.3.2 Register Descriptions
	24.3.2.1 eSCI Control Register 1 (ESCIx_CR1)
	24.3.2.2 eSCI Control Register 2 (ESCIx_CR2)
	24.3.2.3 eSCI Data Register (ESCIx_DR)
	24.3.2.4 eSCI Status Register (ESCIx_SR)
	24.3.2.5 LIN Control Register (ESCIx_LCR)
	24.3.2.6 LIN Transmit Register (ESCIx_LTR)
	24.3.2.7 LIN Receive Register (ESCIx_LRR)
	24.3.2.8 LIN CRC Polynomial Register (ESCIx_LPR)

	24.4 Functional Description
	24.4.1 Data Format
	24.4.2 Baud Rate Generation
	24.4.3 Transmitter
	24.4.3.1 Transmitter Character Length
	24.4.3.2 Character Transmission
	24.4.3.3 Break Characters
	24.4.3.4 Idle Characters
	24.4.3.5 Fast Bit Error Detection in LIN Mode

	24.4.4 Receiver
	24.4.4.1 Receiver Character Length
	24.4.4.2 Character Reception
	24.4.4.3 Data Sampling
	24.4.4.4 Framing Errors
	24.4.4.5 Baud Rate Tolerance
	24.4.4.6 Receiver Wakeup

	24.4.5 Single-Wire Operation
	24.4.6 Loop Operation
	24.4.7 Disabling the eSCI
	24.4.7.1 Stop Mode

	24.4.8 Interrupt Operation
	24.4.8.1 Interrupt Sources
	24.4.8.2 Interrupt Flags

	24.4.9 Using the LIN Hardware
	24.4.9.1 Features of the LIN Hardware
	24.4.9.2 Generating a TX Frame
	24.4.9.3 Generating an RX Frame
	24.4.9.4 LIN Error Handling
	24.4.9.5 LIN Setup

	Chapter 25 Controller Area Network (FlexCAN)
	25.1 Introduction
	25.1.1 Block Diagram
	25.1.2 Features
	25.1.3 Modes of Operation
	25.1.3.1 Normal Mode
	25.1.3.2 Freeze Mode
	25.1.3.3 Listen-Only Mode
	25.1.3.4 Loop-Back Mode
	25.1.3.5 Module-Disabled Mode
	25.1.3.6 Stop Mode

	25.2 External Signal Description
	25.3 Memory Map and Registers
	25.3.1 Module Memory Map
	25.3.2 Message Buffer Structure
	25.3.3 Rx FIFO Structure
	25.3.4 Register Descriptions
	25.3.4.1 Module Configuration Register (CANx_MCR)
	25.3.4.2 Control Register (CANx_CTRL)
	25.3.4.3 Free-Running Timer (CANx_TIMER)
	25.3.4.4 Rx Mask Registers
	25.3.4.5 Error Counter Register (CANx_ECR)
	25.3.4.6 Error and Status Register (CANx_ESR)
	25.3.4.7 Interrupt Masks 2 Register (CANx_IMASK2)
	25.3.4.8 Interrupt Masks 1 Register (CANx_IMASK1)
	25.3.4.9 Interrupt Flags 2 Register (CANx_IFLAG2)
	25.3.4.10 Interrupt Flags 1 Register (CANx_IFLAG1)
	25.3.4.11 Rx Individual Mask Registers (CANx_RXIMR0-CANx_RXIMR63)

	25.4 Functional Description
	25.4.1 Transmit Process
	25.4.2 Arbitration Process
	25.4.3 Receive Process
	25.4.4 Matching Process
	25.4.5 Data Coherence
	25.4.5.1 Transmission Abort Mechanism
	25.4.5.2 Message Buffer Deactivation
	25.4.5.3 Message Buffer Lock Mechanism

	25.4.6 Rx FIFO
	25.4.7 CAN Protocol Related Features
	25.4.7.1 Remote Frames
	25.4.7.2 Overload Frames
	25.4.7.3 Time Stamp
	25.4.7.4 Protocol Timing
	25.4.7.5 Arbitration and Matching Timing

	25.4.8 Modes of Operation Details
	25.4.8.1 Freeze Mode
	25.4.8.2 Module Disabled Mode
	25.4.8.3 Stop Mode

	25.4.9 Interrupts
	25.4.10 Bus Interface

	25.5 Initialization and Application Information
	25.5.1 FlexCAN Initialization Sequence

	Chapter 26 Enhanced Modular I/O Subsystem (eMIOS200)
	26.1 Introduction
	26.1.1 Block Diagram
	26.1.2 Features
	26.1.3 Modes of Operation
	26.1.4 Channel Types

	26.2 External Signal Description
	26.2.1 eMIOS[n]
	26.2.2 Output Disable Input - eMIOS200 Output Disable Input Signal

	26.3 Memory Map and Registers
	26.3.1 Module Memory Map

	26.4 Register Descriptions
	26.4.1 eMIOS200 Module Configuration Register (EMIOS_MCR)
	26.4.2 eMIOS200 Global FLAG Register (EMIOS_GFR)
	26.4.3 eMIOS200 Output Update Disable (EMIOS_OUDR)
	26.4.4 eMIOS200 Disable Channel (EMIOSUCDIS)
	26.4.5 eMIOS200 A Register (EMIOS_CADR[n])
	26.4.6 eMIOS200 B Register (EMIOS_CBDR[n])
	26.4.7 eMIOS200 Counter Register (EMIOS_CCNTR[n])
	26.4.8 eMIOS200 Control Register (EMIOS_CCR[n])
	26.4.9 eMIOS200 Status Register (EMIOS_CSR[n])

	26.5 Functional Description
	26.5.1 Unified Channel (UC)
	26.5.1.1 Unified Channel Modes of Operation
	26.5.1.2 Input Programmable Filter (IPF)
	26.5.1.3 Clock Prescaler (CP)
	26.5.1.4 Effect of Freeze on the Unified Channel

	26.5.2 IP Bus Interface Unit (BIU)
	26.5.2.1 Effect of Freeze on the BIU

	26.5.3 Global Clock Prescaler Submodule (GCP)
	26.5.3.1 Effect of Freeze on the GCP

	26.6 Reset
	26.7 Interrupts
	26.8 DMA Requests
	26.9 Initialization/Application Information
	26.9.1 Considerations
	26.9.2 Application Information
	26.9.3 Coherent Accesses

	Chapter 27 Inter-Integrated Circuit Bus Controller Module (I2C)
	27.1 Introduction
	27.1.1 Block Diagram
	27.1.2 DMA Interface
	27.1.3 Features
	27.1.4 Modes of Operation

	27.2 External Signal Description
	27.3 Memory Map and Registers
	27.3.1 Module Memory Map
	27.3.2 Register Descriptions
	27.3.2.1 I2C Bus Address Register (IBAD)
	27.3.2.2 I2C Bus Frequency Divider Register (IBFD)
	27.3.2.3 I2C Bus Control Register (IBCR)
	27.3.2.4 I2C Bus Status Register (IBSR)
	27.3.2.5 I2C Bus Data I/O Register (IBDR)
	27.3.2.6 I2C Bus Interrupt Config Register (IBIC)

	27.4 Functional Description
	27.4.1 I-Bus Protocol
	27.4.1.1 START Signal
	27.4.1.2 Slave Address Transmission
	27.4.1.3 Data Transfer
	27.4.1.4 STOP Signal
	27.4.1.5 Repeated START Signal
	27.4.1.6 Arbitration Procedure
	27.4.1.7 Clock Synchronization
	27.4.1.8 Handshaking
	27.4.1.9 Clock Stretching

	27.4.2 Interrupts
	27.4.2.1 General
	27.4.2.2 Interrupt Description

	27.5 Initialization/Application Information
	27.5.1 I2C Programming Examples
	27.5.1.1 Initialization Sequence
	27.5.1.2 Generation of START
	27.5.1.3 Post-Transfer Software Response
	27.5.1.4 Generation of STOP
	27.5.1.5 Generation of Repeated START
	27.5.1.6 Slave Mode
	27.5.1.7 Arbitration Lost

	27.5.2 DMA Application Information
	27.5.2.1 DMA Mode, Master Transmit
	27.5.2.2 DMA Mode, Master RX
	27.5.2.3 Exiting DMA Mode, System Requirement Considerations

	Chapter 28 Periodic Interrupt Timer and Real Time Interrupt (PIT_RTI)
	28.1 Introduction
	28.1.1 Block Diagram
	28.1.2 Features
	28.1.3 Modes of Operation

	28.2 Signal Description
	28.2.1 External Signal Description

	28.3 Memory Map and Registers
	28.3.1 Module Memory Map
	28.3.2 Register Descriptions
	28.3.2.1 PIT RTI / Timer Load Value Register (TLVAL0-TLVAL8)
	28.3.2.2 PIT Current RTI / Timer Values (TVAL0-TVAL8)
	28.3.2.3 Interrupt Flags Register (PITFLG)
	28.3.2.4 PIT Interrupt Enable Register (PITINTEN)
	28.3.2.5 PIT Interrupt/DMA Select Registers (PITINTSEL)
	28.3.2.6 PIT Timer Enable Register (PITEN)
	28.3.2.7 PIT Control Register (PITCTRL)

	28.4 Functional Description
	28.4.1 Timer / RTI
	28.4.2 Debug Mode
	28.4.3 Interrupts
	28.4.3.1 Real-Time Interrupt
	28.4.3.2 Timer Interrupts

	28.5 Initialization and Application Information
	28.5.1 Example Configuration

	Chapter 29 External Bus Interface (EBI)
	29.1 Introduction
	29.1.1 Block Diagram
	29.1.2 Features
	29.1.3 Modes of Operation
	29.1.3.1 Single Master Mode
	29.1.3.2 External Master Mode
	29.1.3.3 Module Disable Mode
	29.1.3.4 Configurable Bus Speed Modes
	29.1.3.5 16-Bit Data Bus Mode
	29.1.3.6 Multiplexed Address on Data Bus Mode
	29.1.3.7 Debug Mode
	29.1.3.8 Stop Mode

	29.2 Signal Description
	29.2.1 External Signal Description
	29.2.1.1 BDIP - Burst Data in Progress
	29.2.1.2 ADDR [8:15] - Address Lines 8-15
	29.2.1.3 CLKOUT - Clockout
	29.2.1.4 CS [0:3] - Chip Selects 0-3
	29.2.1.5 AD[0:31] - Multiplexed Address and Data Lines 0-31
	29.2.1.6 ALE - Address Latch Enable
	29.2.1.7 OE - Output Enable
	29.2.1.8 RD_WR - Read / Write
	29.2.1.9 TA - Transfer Acknowledge
	29.2.1.10 TEA - Transfer Error Acknowledge
	29.2.1.11 TS - Transfer Start
	29.2.1.12 WE[0:3] - Write Enables 0-3

	29.2.2 Signal Function and Direction by Mode
	29.2.3 Signal Pad Configuration by Mode

	29.3 Memory Map and Registers
	29.3.1 Module Memory Map
	29.3.2 Register Descriptions
	29.3.2.1 Writing EBI Registers While a Transaction is in Progress
	29.3.2.2 Separate Input Clock for Registers
	29.3.2.3 EBI Module Configuration Register (EBI_MCR)
	29.3.2.4 EBI Transfer Error Status Register (EBI_TESR)
	29.3.2.5 EBI Bus Monitor Control Register (EBI_BMCR)
	29.3.2.6 EBI Base Registers 0-3 (EBI_BRn)
	29.3.2.7 EBI Option Registers 0-3 (EBI_ORn)

	29.4 Functional Description
	29.4.1 External Bus Interface Features
	29.4.1.1 Multiplexed 32-bit Address/Data Bus (Single Master)
	29.4.1.2 Memory Controller with Support for Various Memory Types
	29.4.1.3 Burst Support (Wrapped Only)
	29.4.1.4 Bus Monitor
	29.4.1.5 Port Size Configuration Per Chip Select (16 or 32 Bits)
	29.4.1.6 Configurable Wait States
	29.4.1.7 Configurable Internal or External TA per chip select
	29.4.1.8 Four Chip Select (CS[0:3]) Signals
	29.4.1.9 Four Write/Byte Enable (WE) Signals
	29.4.1.10 Configurable Bus Speed Clock Modes
	29.4.1.11 Stop and Module Disable Modes for Power Savings
	29.4.1.12 Optional Automatic CLKOUT Gating
	29.4.1.13 Misaligned Access Support

	29.4.2 External Bus Operations
	29.4.2.1 External Clocking
	29.4.2.2 Reset
	29.4.2.3 Basic Transfer Protocol
	29.4.2.4 Single Beat Transfer
	29.4.2.5 Burst Transfer
	29.4.2.6 Small Accesses (Small Port Size and Short Burst Length)
	29.4.2.7 Size, Alignment, and Packaging on Transfers
	29.4.2.8 Arbitration
	29.4.2.9 Termination Signals Protocol
	29.4.2.10 Non-Chip-Select Burst in 16-bit Data Bus Mode
	29.4.2.11 Address Data Multiplexing

	29.5 Initialization/Application Information
	29.5.1 Booting from External Memory (for Factory Test only)
	29.5.2 Running with Single Data Rate (SDR) Burst Memories
	29.5.3 Running with Asynchronous Memories
	29.5.3.1 Example Wait State Calculation
	29.5.3.2 Timing and Connections for Asynchronous Memories

	29.5.4 Connecting an MCU to Multiple Memories
	29.5.5 Dual-MCU Operation with Reduced Pinout MCUs
	29.5.5.1 Connecting 16-Bit MCU to 32-Bit MCU (Master/Master or Master/Slave)
	29.5.5.2 No Transfer Acknowledge (TA) Pin
	29.5.5.3 No Transfer Error (TEA) Pin

	Chapter 30 FlexRay Communication Controller (FLEXRAY)
	30.1 Introduction
	30.1.1 Reference
	30.1.2 Glossary
	30.1.3 Color Coding
	30.1.4 Overview
	30.1.5 Features
	30.1.6 Modes of Operation
	30.1.6.1 Disabled Mode
	30.1.6.2 Normal Mode

	30.2 External Signal Description
	30.2.1 Detailed Signal Descriptions
	30.2.1.1 FR_A_RX - Receive Data Channel A
	30.2.1.2 FR_A_TX - Transmit Data Channel A
	30.2.1.3 FR_A_TX_EN - Transmit Enable Channel A
	30.2.1.4 FR_B_RX - Receive Data Channel B
	30.2.1.5 FR_B_TX - Transmit Data Channel B
	30.2.1.6 FR_B_TX_EN - Transmit Enable Channel B
	30.2.1.7 FR_DBG[3], FR_DBG[2], FR_DBG[1], FR_DBG[0] - Strobe Signals

	30.3 Controller Host Interface Clocking
	30.4 Protocol Engine Clocking
	30.4.1 Oscillator Clocking
	30.4.2 PLL Clocking

	30.5 Memory Map and Register Description
	30.5.1 Memory Map
	30.5.2 Register Descriptions
	30.5.2.1 Register Reset
	30.5.2.2 Register Write Access
	30.5.2.3 Module Version Register (MVR)
	30.5.2.4 Module Configuration Register (MCR)
	30.5.2.5 System Memory Base Address High Register (SYMBADHR) and System Memory Base Address Low Register (SYMBADLR)
	30.5.2.6 Strobe Signal Control Register (STBSCR)
	30.5.2.7 Message Buffer Data Size Register (MBDSR)
	30.5.2.8 Message Buffer Segment Size and Utilization Register (MBSSUTR)
	30.5.2.9 Protocol Operation Control Register (POCR)
	30.5.2.10 Global Interrupt Flag and Enable Register (GIFER)
	30.5.2.11 Protocol Interrupt Flag Register 0 (PIFR0)
	30.5.2.12 Protocol Interrupt Flag Register 1 (PIFR1)
	30.5.2.13 Protocol Interrupt Enable Register 0 (PIER0)
	30.5.2.14 Protocol Interrupt Enable Register 1 (PIER1)
	30.5.2.15 CHI Error Flag Register (CHIERFR)
	30.5.2.16 Message Buffer Interrupt Vector Register (MBIVEC)
	30.5.2.17 Channel A Status Error Counter Register (CASERCR)
	30.5.2.18 Channel B Status Error Counter Register (CBSERCR)
	30.5.2.19 Protocol Status Register 0 (PSR0)
	30.5.2.20 Protocol Status Register 1 (PSR1)
	30.5.2.21 Protocol Status Register 2 (PSR2)
	30.5.2.22 Protocol Status Register 3 (PSR3)
	30.5.2.23 Macrotick Counter Register (MTCTR)
	30.5.2.24 Cycle Counter Register (CYCTR)
	30.5.2.25 Slot Counter Channel A Register (SLTCTAR)
	30.5.2.26 Slot Counter Channel B Register (SLTCTBR)
	30.5.2.27 Rate Correction Value Register (RTCORVR)
	30.5.2.28 Offset Correction Value Register (OFCORVR)
	30.5.2.29 Combined Interrupt Flag Register (CIFRR)
	30.5.2.30 System Memory Access Time-Out Register (SYMATOR)
	30.5.2.31 Sync Frame Counter Register (SFCNTR)
	30.5.2.32 Sync Frame Table Offset Register (SFTOR)
	30.5.2.33 Sync Frame Table Configuration, Control, Status Register (SFTCCSR)
	30.5.2.34 Sync Frame ID Rejection Filter Register (SFIDRFR)
	30.5.2.35 Sync Frame ID Acceptance Filter Value Register (SFIDAFVR)
	30.5.2.36 Sync Frame ID Acceptance Filter Mask Register (SFIDAFMR)
	30.5.2.37 Network Management Vector Registers (NMVR0-NMVR5)
	30.5.2.38 Network Management Vector Length Register (NMVLR)
	30.5.2.39 Timer Configuration and Control Register (TICCR)
	30.5.2.40 Timer 1 Cycle Set Register (TI1CYSR)
	30.5.2.41 Timer 1 Macrotick Offset Register (TI1MTOR)
	30.5.2.42 Timer 2 Configuration Register 0 (TI2CR0)
	30.5.2.43 Timer 2 Configuration Register 1 (TI2CR1)
	30.5.2.44 Slot Status Selection Register (SSSR)
	30.5.2.45 Slot Status Counter Condition Register (SSCCR)
	30.5.2.46 Slot Status Registers (SSR0-SSR7)
	30.5.2.47 Slot Status Counter Registers (SSCR0-SSCR3)
	30.5.2.48 MTS A Configuration Register (MTSACFR)
	30.5.2.49 MTS B Configuration Register (MTSBCFR)
	30.5.2.50 Receive Shadow Buffer Index Register (RSBIR)
	30.5.2.51 Receive FIFO Selection Register (RFSR)
	30.5.2.52 Receive FIFO Start Index Register (RFSIR)
	30.5.2.53 Receive FIFO Depth and Size Register (RFDSR)
	30.5.2.54 Receive FIFO A Read Index Register (RFARIR)
	30.5.2.55 Receive FIFO B Read Index Register (RFBRIR)
	30.5.2.56 Receive FIFO Message ID Acceptance Filter Value Register (RFMIDAFVR)
	30.5.2.57 Receive FIFO Message ID Acceptance Filter Mask Register (RFMIAFMR)
	30.5.2.58 Receive FIFO Frame ID Rejection Filter Value Register (RFFIDRFVR)
	30.5.2.59 Receive FIFO Frame ID Rejection Filter Mask Register (RFFIDRFMR)
	30.5.2.60 Receive FIFO Range Filter Configuration Register (RFRFCFR)
	30.5.2.61 Receive FIFO Range Filter Control Register (RFRFCTR)
	30.5.2.62 Last Dynamic Transmit Slot Channel A Register (LDTXSLAR)
	30.5.2.63 Last Dynamic Transmit Slot Channel B Register (LDTXSLBR)
	30.5.2.64 Protocol Configuration Registers
	30.5.2.65 Message Buffer Configuration, Control, Status Registers (MBCCSRn)
	30.5.2.66 Message Buffer Cycle Counter Filter Registers (MBCCFRn)
	30.5.2.67 Message Buffer Frame ID Registers (MBFIDRn)
	30.5.2.68 Message Buffer Index Registers (MBIDXRn)

	30.6 Functional Description
	30.6.1 Message Buffer Concept
	30.6.2 Physical Message Buffer
	30.6.2.1 Message Buffer Header Field
	30.6.2.2 Message Buffer Data Field

	30.6.3 Message Buffer Types
	30.6.3.1 Individual Message Buffers
	30.6.3.2 Receive Shadow Buffers
	30.6.3.3 Receive FIFO
	30.6.3.4 Message Buffer Configuration and Control Data
	30.6.3.5 Individual Message Buffer Control Data
	30.6.3.6 Receive Shadow Buffer Configuration Data
	30.6.3.7 Receive FIFO Control and Configuration Data

	30.6.4 FlexRay Memory Layout
	30.6.4.1 Message Buffer Header Area
	30.6.4.2 Message Buffer Data Area
	30.6.4.3 Sync Frame Table Area

	30.6.5 Physical Message Buffer Description
	30.6.5.1 Message Buffer Protection and Data Consistency
	30.6.5.2 Message Buffer Header Field Description
	30.6.5.3 Message Buffer Data Field Description

	30.6.6 Individual Message Buffer Functional Description
	30.6.6.1 Individual Message Buffer Configuration
	30.6.6.2 Single Transmit Message Buffers
	30.6.6.3 Receive Message Buffers
	30.6.6.4 Double Transmit Message Buffer

	30.6.7 Individual Message Buffer Search
	30.6.7.1 Message Buffer Cycle Counter Filtering
	30.6.7.2 Message Buffer Channel Assignment Consistency
	30.6.7.3 Node Related Slot Multiplexing
	30.6.7.4 Message Buffer Search Error

	30.6.8 Individual Message Buffer Reconfiguration
	30.6.8.1 Reconfiguration Schemes

	30.6.9 Receive FIFO
	30.6.9.1 Overview
	30.6.9.2 Receive FIFO Configuration
	30.6.9.3 Receive FIFO Reception
	30.6.9.4 Receive FIFO Message Access
	30.6.9.5 Receive FIFO filtering

	30.6.10 Channel Device Modes
	30.6.10.1 Dual Channel Device Mode
	30.6.10.2 Single Channel Device Mode

	30.6.11 External Clock Synchronization
	30.6.12 Sync Frame ID and Sync Frame Deviation Tables
	30.6.12.1 Sync Frame ID Table Content
	30.6.12.2 Sync Frame Deviation Table Content
	30.6.12.3 Sync Frame ID and Sync Frame Deviation Table Setup
	30.6.12.4 Sync Frame ID and Sync Frame Deviation Table Generation
	30.6.12.5 Sync Frame Table Access

	30.6.13 MTS Generation
	30.6.14 Sync Frame and Startup Frame Transmission
	30.6.14.1 Sync Frame and Startup Frame Transmission in POC:startup
	30.6.14.2 Sync Frame and Startup Frame Transmission in POC:normal active

	30.6.15 Sync Frame Filtering
	30.6.15.1 Sync Frame Acceptance Filtering
	30.6.15.2 Sync Frame Rejection Filtering

	30.6.16 Strobe Signal Support
	30.6.16.1 Strobe Signal Assignment
	30.6.16.2 Strobe Signal Timing

	30.6.17 Timer Support
	30.6.17.1 Absolute Timer T1
	30.6.17.2 Absolute / Relative Timer T2

	30.6.18 Slot Status Monitoring
	30.6.18.1 Channel Status Error Counter Registers
	30.6.18.2 Protocol Status Registers
	30.6.18.3 Slot Status Registers
	30.6.18.4 Slot Status Counter Registers
	30.6.18.5 Message Buffer Slot Status Field

	30.6.19 Interrupt Support
	30.6.19.1 Individual Interrupt Sources
	30.6.19.2 Combined Interrupt Sources

	30.6.20 Lower Bit Rate Support

	30.7 Application Information
	30.7.1 Initialization Sequence
	30.7.1.1 Module Initialization
	30.7.1.2 Protocol Initialization

	30.7.2 Shut Down Sequence
	30.7.3 Number of Usable Message Buffers
	30.7.4 Protocol Control Command Execution
	30.7.5 Protocol Reset Command
	30.7.6 Message Buffer Search on Simple Message Buffer Configuration
	30.7.6.1 Simple Message Buffer Configuration
	30.7.6.2 Behavior in static segment
	30.7.6.3 Behavior in dynamic segment

	Chapter 31 Enhanced Queued Analog-to-Digital Converter (eQADC)
	31.1 Introduction
	31.1.1 Block Diagram
	31.1.2 Features
	31.1.3 Modes of Operation
	31.1.4 Normal Mode
	31.1.5 Debug Mode
	31.1.5.1 Stop Mode

	31.2 External Signal Description
	31.3 Memory Map and Registers
	31.3.1 Module Memory Map
	31.3.2 Register Descriptions
	31.3.3 eQADC Register Descriptions
	31.3.3.1 eQADC Module Configuration Register (EQADC_MCR)
	31.3.3.2 eQADC Null Message Send Format Register (EQADC_NMSFR)
	31.3.3.3 eQADC External Trigger Digital Filter Register (EQADC_ETDFR)
	31.3.3.4 eQADC CFIFO Push Registers 0-5 (EQADC_CFPRn)
	31.3.3.5 eQADC Result FIFO Pop Registers 0-5 (EQADC_RFPRn)
	31.3.3.6 eQADC CFIFO Control Registers 0-5 (EQADC_CFCRn)
	31.3.3.7 eQADC Interrupt and eDMA Control Registers 0-5 (EQADC_IDCRn)
	31.3.3.8 eQADC FIFO and Interrupt Status Registers 0-5 (EQADC_FISRn)
	31.3.3.9 eQADC CFIFO Transfer Counter Registers 0-5 (EQADC_CFTCRn)
	31.3.3.10 eQADC CFIFO Status Snapshot Register (EQADC_CFSSR)
	31.3.3.11 eQADC CFIFO Status Register (EQADC_CFSR)
	31.3.3.12 eQADC CFIFO Registers (EQADC_CF[0-5]Rn)
	31.3.3.13 eQADC RFIFO Registers (EQADC_RF[0-5]Rn)

	31.3.4 On-Chip ADC Registers
	31.3.4.1 ADC0 Control Register (ADC0_CR)
	31.3.4.2 ADC Time Stamp Control Register (ADC_TSCR)
	31.3.4.3 ADC Time Base Counter Registers (ADC_TBCR)
	31.3.4.4 ADC0 Gain Calibration Constant Register (ADC0_GCCR)
	31.3.4.5 ADC0 Offset Calibration Constant Register (ADC0_OCCR)

	31.4 Functional Description
	31.4.1 Data Flow in the eQADC
	31.4.1.1 Message Format in eQADC

	31.4.2 Command/Result Queues
	31.4.3 eQADC Command FIFOs
	31.4.3.1 CFIFO Basic Functionality
	31.4.3.2 CFIFO Prioritization and Command Transfer
	31.4.3.3 External Trigger from eTPU or eMIOS Channels
	31.4.3.4 External Trigger Event Detection
	31.4.3.5 CFIFO Scan Trigger Modes
	31.4.3.6 CFIFO and Trigger Status

	31.4.4 Result FIFOs
	31.4.4.1 RFIFO Basic Functionality
	31.4.4.2 Distributing Result Data into RFIFOs

	31.4.5 On-Chip ADC Configuration and Control
	31.4.5.1 Enabling and Disabling the on-chip ADC
	31.4.5.2 ADC Clock and Conversion Speed
	31.4.5.3 Time Stamp Feature
	31.4.5.4 ADC Calibration Feature
	31.4.5.5 ADC Control Logic Overview and Command Execution

	31.4.6 Internal/External Multiplexing
	31.4.6.1 Channel Assignment
	31.4.6.2 External Multiplexing

	31.4.7 eQADC eDMA/Interrupt Request
	31.4.8 Analog Submodule
	31.4.8.1 Reference Bypass
	31.4.8.2 Analog-to-Digital Converter (ADC)

	31.5 Initialization/Application Information
	31.5.1 Multiple Queues Control Setup Example
	31.5.1.1 Initialization of On-Chip ADC
	31.5.1.2 Configuring eQADC for Applications

	31.5.2 eQADC/eDMA Controller Interface
	31.5.2.1 Command Queue/CFIFO Transfers
	31.5.2.2 Receive Queue/RFIFO Transfers

	31.5.3 Sending Immediate Command Setup Example
	31.5.4 Modifying Queues
	31.5.5 Command Queue and Result Queue Usage
	31.5.6 ADC Result Calibration
	31.5.6.1 MAC Configuration Procedure
	31.5.6.2 Example Calculation of Calibration Constants
	31.5.6.3 Quantization Error Reduction During Calibration

	Chapter 32 Boot Assist Module (BAM)
	32.1 Introduction
	32.1.1 Features
	32.1.2 Modes of Operation
	32.1.3 Normal Mode
	32.1.4 Debug Mode
	32.1.5 Internal Boot Mode
	32.1.6 Serial Boot Mode

	32.2 Memory Map and Registers
	32.2.1 Module Memory Map
	32.2.2 Register Descriptions

	32.3 Functional Description
	32.3.1 BAM Program Resources
	32.3.2 BAM Program Operation
	32.3.3 Features
	32.3.3.1 Internal Boot Mode
	32.3.3.2 Serial Boot Mode Features

	Chapter 33 Media Local Bus (MLB)
	33.1 Introduction
	33.1.1 Block Diagram
	33.1.2 Features
	33.1.3 Modes of Operation
	33.1.3.1 Normal Mode
	33.1.3.2 Stop Mode

	33.2 External Signal Description
	33.3 Memory Map and Registers
	33.3.1 Register Descriptions
	33.3.1.1 MLB Module Configuration Register (MLB_MCR)
	33.3.1.2 MLB Blank Register (MLB_MBR)
	33.3.1.3 MLB Module Status Register (MLB_MSR)
	33.3.1.4 RX Control Channel Address Register (MLB_RXCCHAR)
	33.3.1.5 RX Async Channel Address Register (MLB_RXACHAR)
	33.3.1.6 TX Control Channel Address Register (MLB_TXCCHAR)
	33.3.1.7 TX Async Channel Address Register (MLB_TXACHAR)
	33.3.1.8 TX Sync Channel Address Register (MLB_TXSCHAR)
	33.3.1.9 TX Sync Channel Address Mask Register (MLB_TXSCHAMR)
	33.3.1.10 MLBCLK Clock Adjust Control Register (MLB_CLKACR)
	33.3.1.11 RX Isochronous Channel Address Register (MLB_RXICHAR)
	33.3.1.12 TX Isochronous Channel Address Register (MLB_TXICHAR)

	33.4 Functional Description
	33.4.1 SoftMLB Interface Logic Description
	33.4.2 SoftMLB Interface Logic Signal Description
	33.4.2.1 Three-pin Interface
	33.4.2.2 Five-pin Interface

	Appendix A Revision History
	A.1 Changes Between Revisions 0 and 1

	MPC5510RM_Readme.pdf
	MPC5510 Reference Manual

